半导体器件及其制造方法

文档序号:6819276阅读:230来源:国知局
专利名称:半导体器件及其制造方法
技术领域
本发明涉及半导体器件及其制造方法,特另涉及层间绝缘膜的结构及其形成方法。
为了形成半导体器件的层间绝缘膜,使用硅化合物例如硅烷气(SiH4)和过氧化氢(H2O2)用CVD(化学气相淀积)法形成的氧化硅膜,由于能够埋入0.25μm以下的极微细的配线之间,而且,流动性优良,由此表现出的自身的平坦化作用,所以正成为引人注目的作为替代以往使用的SOG法等(在玻璃上旋涂)的下一代层间绝缘膜的平坦化手段。例如,可参照“NOVEL SELF-PLANARIZING CVD OXIDE FOR INTERLAYERDIELECTRIC APPLICATIONS”(Technical digest of IEDM,94)。
由这种方式形成的氧化硅膜按以下化学式进行。首先,通过硅烷气(SiH4)与过氧化氢(H2O2)的氧化反应形成硅烷醇(Si(OH)4)[化学式(1-1)-(1-3)]。通过使形成的硅烷醇加水分解或通过热能引起脱水聚合反应,生成氧化硅(SiO2)[化学式(2)]。在这样的反应在某个基片上进行的情况下,可形成氧化硅膜。
(1-1)(1-2)(1-3)(2)图7表示使用上述现有的层间绝缘膜的形成流程的模式图。参照图7,进行层间绝缘膜形成流程的说明。
首先,图7(a)中,1表示包括硅基片和在其上形成的元件及绝缘层的半导体器件基片。在该基片1上形成铝配线2。
层间绝缘膜的形成是,在进行上述铝配线2的基片1上首先形成第一等离子体氧化膜3。接着,通过采用所述硅烷气(SiH4)和过氧化氢(H2O2)的CVD法来形成氧化硅膜4a,以便覆盖第一等离子体氧化膜3。最后,形成平坦的层间绝缘膜,以全部覆盖第二等离子体氧化膜5。
而且,由于在膜形成过程中生成的硅烷醇具有优良的流动性,所以采用所述硅烷气(SiH4)和过氧化氢(H2O2)的CVD法形成的氧化硅膜可在极微细的配线间埋入,并且实现优良的自身平坦化特性。
其次,通过这样的硅烷醇生成的氧化硅膜的介电常数为4.5~5.0。随着近年来的器件微细化,由层间绝缘膜的电容量引起的配线延迟问题正在变得深刻。为此,在今后的层间绝缘膜方面,减小其电容量正变为大课题。尤其,使0.3μm以下微细的配线间的电容量减少是十分重要的,因此,一直在探求介电常数较低,并且埋入性、平坦化特性优良的层间绝缘膜。
作为满足这种要求的已有方法,有在膜中含甲基的有机SOG膜(spin-on-gless玻璃上旋涂)。这种材料有如图8所示的分子结构,通过用甲基使硅原子的一个结合键成为终端来中断Si-O网状结构,其结果,使膜密度下降,实现低介电常数化。例如,可参见“A New MethylsilsesquioxaneSpin-on Polymer”(Proceedings of The 48th Syposium on Semiconductors andIntegrated circuits Technology)和“New Reflowable Organic Spin-on Glass forAdvanced Gap-filling and Planari zation”(VMIC会议汇编,1994)。
在该材料中,为了进行低介电常数化,有必要混入多量的甲基,由此会引起所谓有毒掺杂(Poisoned via,污染通道)的配线可靠性不良的问题。
图9是用于说明有毒掺杂产生机理的图。在图9中,1是形成元件和绝缘膜的基片,2是下层的铝配线,3是第一等离子体氧化膜,4a是有机SOG,5是第二等离子体氧化膜,6是氮化钛膜/钛膜,7是钨膜,8是氧等离子体产生的变性层,9是从通道侧脱离的水分,10表示空隙(有毒掺杂孔)。
有毒掺杂孔是因连接上下配线的连接孔10(通道)引起的不良污染,在通道侧壁露出的有机膜SOG4a暴露于该通道开口后为除去光刻胶而使用的氧等离子体中而变成,也就是说,通过氧等离子体使Si-CH3基变为Si-OH基,导致来自外部的水分容易侵入而发生。来自外部侵入的水分,例如在用CVD法把钨7埋入通道内时就从侧壁排出,妨碍通道10内的钨7的生长。结果,在通道10中产生电阻上升或断线,使配线的可靠性显著地劣化。
本发明的目的在于解决以上现有方法中的问题。详细地说,其目的在于在使用甲基硅烷等有机硅烷和过氧化氢(H2O2)的CVD法制成的氧化硅膜中,既可防止有毒掺杂不良,实现优良的埋入性能,同时,还使形成的绝缘膜的介电常数降低。
本发明的半导体器件的特征在于,采用以硅原子为主要成分,在使所述硅原子与氧和碳键合的同时,至少有一部分所述硅原子与氢键合的材料形成层间绝缘膜。
此外,本发明的半导体器件的特征在于,所述碳键为与甲基、乙基或乙烯基中任何一个的结合键。
再有,本发明的半导体器件的制造方法的特征在于,使用气体分子结构中有硅原子与氢和碳键合的反应性气体和过氧化氢的混合气体,通过化学气相生长法形成层间绝缘膜,同时,所述形成的层间绝缘膜以硅原子为主要元素,在所述硅原子与氧和碳键合的同时,还至少形成一部分所述硅原子与氢的键合。
并且,本发明的半导体器件的制造方法的特征在于,作为所述反应性气体,使用有机硅烷。
此外,本发明的半导体器件的制造方法的特征在于,作为所述有机硅烷,以甲基硅烷、乙基硅烷或乙烯基硅烷中之一或其混合物为主要成分。


图1是表示本发明实施例的半导体器件的制造方法,特别是层间绝缘膜的形成方法的剖面图。
图2是表示依据本发明实施例1,在原料气体中使用甲基硅烷情况下硅氧化膜的分子结构模式图。
图3是表示为了测定根据本发明的硅氧化膜和现有方法的有机SOG膜中的脱水量,在升温脱气分析中使用的试验材料的结构图,和脱水量的测定结果的图。
图4是表示根据本发明实施例2,在原料气体中使用单甲基硅烷和二甲基硅烷的混合气体情况下的硅氧化膜的分子结构模式图。
图5是表示根据本发明实施例3,在原料气体中单独使用单甲基硅烷或使用单乙基硅烷和二乙基硅烷的混合气体情况下的硅氧化膜的分子结构模式图。
图6是表示根据本发明实施例4,在原料气体中使用乙烯基硅烷情况下的硅氧化膜的分子结构模式图。
图7是表示现有方法中层间绝缘膜的形成流程模式图。
图8是表示现有的有机SOG分子结构的模式图。
图9是说明现有技术中有毒掺杂孔的不良机理的模式图。
下面,参照附图附说明本发明的实施例。图中的相同符号表示同一或相当的部分。
实施例1图1是表示本发明实施例1的半导体器件的制造方法,特别是层间绝缘膜的形成方法的流程图,是展示各工序的剖面图。参照图1,说明其制造方法,特别说明层问绝缘膜的形成工序。
首先,在图1(a)中,1表示包括硅基片和在其上形成的元件及绝缘层的半导体器件基片。在该基片1上,形成铝配线2。
层间绝缘膜的形成是首先在带有铝配线2的基片1上形成第一等离子体氧化膜3。
用等离子体CVD法形成该氧化膜。一般的形成条件是采用形成温度为300℃,压力为700mTorr(9.13Pa),高频功率为500W,在原料气体上使用硅烷(SiH4)和亚氧化氮(N2O)。形成的氧化膜的膜厚为1000。
当然,在这种情况下,作为原料气体,也可以使用TEOS(四乙氧基硅烷),和氧气按照等离子体CVD法,一般来说以形成温度为400℃,压力为5Torr(665Pa),高频功率为500W来形成等离子体氧化膜。
接着,如图1(b)所示,在第一等离子体氧化膜3上,使用甲基硅烷(SiH3CH3)和过氧化氢(H2O2)按CVD法形成硅氧化膜4(以下简称为HMO膜)。
随后,如图1(c)所示,按CVD法在硅氧化膜4上形成第二等离子体氧化膜5。该第二等离子体氧化膜5的形成条件可以是与第一等离子体氧化膜3为同一条件。此外,也可以按不同的条件形成。
再有,在图1(c)中虽未示出,但作为半导体器件的制造流程,在第二等离子体氧化膜5上形成第二铝配线。此外还有,还形成连接下层配线和上层配线的连接孔。经过其它必要的流程,制造半导体器件。
以上说明的本实施例的特征在于,按CVD法形成硅氧化膜4(HMO膜)的分子结构和其形成方法。其中使用的甲基硅烷为单甲基硅烷(SiH3CH3)。有代表性的HMO膜的形成条件如下。
形成温度1(℃)形成压力1000(mTorr)(133Pa)气体流量SiH3CH380(SCCM)H2O20.65g/分此外,可成膜的条件范围如下。
形成温度-20~20(℃)形成压力500~2000(mTorr)(66.5~226Pa)气体流量SiH3CH340~200(SCCM)H2O20.4~0.9g/分在该条件下成膜可认为是按以下化学反应式进行。
(3-1)(3-2)(3-3)(4)在以上的化学反应式中,首先,通过单甲基硅烷(SiH3CH3)与过氧化氢(H2O2)的反应,产生包含Si-OH键的中间体[SiH2(OH)CH3、SiH(OH)2CH3]和SiH(OH)3CH3[化学式(3-1)、(3-2)和(3-3)]。
然后,通过中间体中的Si-OH基相互间的脱水缩合使Si-O网状结构生长,有助于该过程中的中间体是按化学式(3-2)生成的物质,反应则按化学式(4)进行。按化学式(3-1)形成的中间体有助于使Si-O网状结构作为终端时的反应。此外,虽然几率很小,但按化学式(3-3)形成的中间体也有助于成膜。
图2是表示根据这样的条件形成的氧化硅膜分子结构的模式图。该层间绝缘膜以硅原子作为主要元素,这些硅原子在与氧和碳键合的同时,至少形成一部分的硅原子与氢的结合。而且,这种情况下,与碳键合就变为与甲基的键合。
在现有方法的有机SOG中,如图8所示,由Si-O键和Si-CH3键构成。与其比较,按照本发明的HMO膜是由Si-O键和Si-CH3键及Si-H键构成。
这种情况下,由于使在现有方法中没有的Si-H键在分子结构内存在,所以在有机SOG情况中Si-CH3键的一部分变成被置换成Si-H键,即使Si-CH3键的含量为低浓度,也能引起同样的密度下降。因此,即使在更低浓度的Si-CH3基混入时,也使相同程度的低介电常数化变为可能。
下面,说明把根据本发明的HMO膜的脱水特性与现有方法的有机SOG的脱水特性进行的比较。
图3(a)表示测定由HMO膜或有机SOG脱水量用的试验材料的结构。如图所示,该试验材料是在半导体基片1上叠合第一等离子体氧化膜3、本发明的氧化硅膜或以往的氧化硅膜4、以及第二等离子体氧化膜,并对连接孔6(通道)进行开孔的材料。
利用这样的试验材料,采用升温脱气分析法,测定由通道6的侧壁上露出的HMO膜或有机SOG的水分脱离量。图3(a)表示试验材料的结构中,实际上,在通道开孔后的光刻胶除去时的通道侧壁曝露于氧等离子体中。
图3(b)是表示本发明的HMO膜的脱水特性与现有方法的有机SOG的脱水特性的图。根据该图,可明显看出,根据本发明的HMO膜的水分脱水量较少。这样的结果可认为是由于根据本发明的HMO膜的Si-CH3键浓度低于有机SOG的缘故。
如上所述,本发明的HMO膜实现了与现有方法的有机SOG相同程度的低介电常数,并且,解决了现有方法中存在有毒掺杂孔的问题,使提供更高可靠性的层间绝缘膜结构成为可能。
再有,在上述实施例中,HMO膜是在第一等离子体氧化膜3上形成,但也可以直接在铝配线2上形成。
实施例2在实施例1中,作为甲基硅烷,使用了单甲基硅烷SiH3CH3,而在实施例2中,还同时混合使用二甲基硅烷(SiH2(CH3)2。这种情况下的化学反应式是除(3-1)、(3-2)和(4)以外,再附加以下的化学式(5-1)和(5-2)。(5-1)(5-2)由化学式(5-1)生成的中间体,与化学式(3-1)同样,仅有助于使Si-O网状结构成为终端的反应。此外,在几率上虽然很小,但也有助于按化学式(5-2)成膜。
图4是表示由本实施例形成的氧化硅膜分子结构的图。与图3的结构相比,在Si-O网状结构的终端部分,除了甲基稍稍增加外,基本上与图3的结构相同。
也就是说,在本实施例中,HMO膜也由Si-O键和Si-CH3键及Si-H键构成的。这种情况下,由于分子结构内存在现有方法中没有的Si-H键,所以在有机SOG情况中Si-CH3键的一部分被置换成Si-H键,即使Si-CH3键的含量为低浓度,也能引起同样的密度下降。因此,即使更低浓度的Si-CH3基混入时,也使相同程度的低介电常数化变为可能。
实施例3作为前面实施例1中的反应性气体,使用了甲基硅烷,但在实施例3中,混合使用乙基硅烷[单乙基硅烷SiH3(C2H5)],或单乙基硅烷和二乙基硅烷[SiH2(C2H5)2]。
在单独使用单乙基硅烷的情况下,通过与化学式(3-1)、(3-2)、(3-3)和(4)同样的反应能形成氧化硅膜。这种情况下的化学反应式如下。
(6-1)(6-2)(6-3)(7)
此外,在混合使用二乙基硅烷的情况下,除上述化学反应式(6-1)、(6-2)、(6-3)和(7)以还,还发生以下的化学式(8-1)和(8-2)。
(8-1)(8-2)图5是表示本实施例形成的氧化硅膜分子结构的图,图5(a)表示使用单乙基硅烷气体的情况,图5(b)表示使用单乙基硅烷和二乙基硅烷的混合气体的情况。
如果把图2、图4分别与图5(a)和图5(b)比较,那么除了甲基被置换为乙基外,其它结构相同。
也就是说,在本实施例中,HMO膜也是由Si-O键和Si-C2H5键及Si-H键构成。这种情况下,由于使在现有方法中没有的Si-H键在分子结构内存在,所以在有机SOG情况中Si-C2H5键的一部分被置换成Si-H键,即使Si-C2H5键的含量为低浓度,也能引起同样的密度下降。因此,即使更低浓度的Si-C2H5基混入时,也使相同程度的低介电常数化变为可能。
实施例4作为前面实施例1中的反应性气体,使用了甲基硅烷,但在实施例4中,使用乙烯基硅烷(SiH3(CH=CH2))。
在使用乙烯基硅烷的情况下,能够通过与化学式(3-1)、(3-2)、(3-3)和(4)同样的反应形成氧化硅膜。这种情况下的化学反应式如下。(9-1)(9-2)(9-3)(10)图6表示本实施例形成的氧化硅膜分子结构的图。如果把图2与图6比较,那么除了甲基被置换为乙烯基外,其它结构相同。
也就是说,在本实施例中,HMO膜由Si-O键和Si-CH=CH2键及Si-H键构成的。这种情况下,由于使在现有方法中没有的Si-H键在分子结构内存在,所以在有机SOG情况中Si-CH=CH2键的一部分变成被置换成Si-H键,即使Si-CH=CH2键的含量为低浓度,也能引起同样的密度下降。因此,即使更低浓度的Si-CH=CH2基混入时,也使相同程度的低介电常数化变为可能。
再有,在以上各实施例中,作为反应气体,分别使用了甲基硅烷、乙基硅烷和乙烯基硅烷。如果将由这些反应性气体形成的氧化硅膜进行比较,那么在膜的结构或化学结构上,膜密度以甲基硅烷最大,其次是乙基硅烷和乙烯基硅烷依序递减。此外,介电常数的大小也是这样的顺序。
此外,如果把用单甲基硅烷或单乙基硅烷的单独系列形成的氧化硅膜与用单甲基硅烷和二甲基硅烷或单乙基硅烷和二乙基硅烷的混合系列形成的膜进行比较,那么在使用混合系列的情况下,由于比单系列掺杂的有机基多,所以虽然有毒掺杂的抑制效果下降,但介电常数减小。
因此,考虑这些,按照用途选用适当的反应气体较好。再有,也可以进一步混合使用上述各反应气体。
如上所述,本发明的半导体器件,作为层间绝缘膜,使用形成以硅原子为主要元素,在所述硅原子与氧键合和与碳键合的同时,至少有一部分所述硅原子与氢键合的材料以形成其层间绝缘膜。此外,作为其碳键合,可使用甲基、乙基和乙烯基中的任何一种。
因此,由于分子结构内存在现有方法中没有的Si-H键,所以历来的Si-CH3键的一部分变成被Si-H键置换,Si-C键的含量即使是低浓度,也能引起密度下降。因此,低介电常数化也变为可能。
此外,在本发明的半导体器件的制造方法中,作为其层间绝缘膜的形成方法,作为气体的分子结构,使用具有硅原子与氢键合和与碳键合的反应性气体和过氧化氢的混合气体,按化学气相生长法形成层间绝缘膜,同时,在以硅原子为主要元素,所述硅原子有与氧键合和碳键合的同时,还使至少一部分的所述硅原子与氢键合来形成所述形成的层间绝缘膜。
再有,作为反应性气体,使用有机硅烷。更具体地说,作为有机硅烷,以甲基硅烷、乙基硅烷和乙烯基硅烷的其中之一或其化合物为主要成分。
利用这样的制造方法,可获得前述那样的密度较低,介电常数较低的层间绝缘膜,可得到配置有这种层间绝缘膜的半导体器件。
权利要求
1.一种半导体器件,其特征在于,所述器件配有层间绝缘膜,该层间绝缘膜以硅原子为主要成分,所述硅原子有与氧的键合和与碳的键合,并且,有至少一部分所述硅原子与氢键合的材料形成。
2.如权利要求1所述的半导体器件,其特征在于,所述碳键合为与甲基、乙基或乙烯基中的任何一种键合。
3.一种半导体器件的制造方法,其特征在于,用一种分子结构中有硅原子与氢键合和与碳键合的反应性气体和过氧化氢的混合气体,通过化学气相生长法形成层间绝缘膜,所形成的层间绝缘膜具有如权利要求1所述的层间绝缘膜结构。
4.如权利要求3所述的半导体器件的制造方法,其特征在于,使用有机硅烷作为所述反应性气体。
5.如权利要求4所述的半导体器件的制造方法,其特征在于,使用甲基硅烷、乙基硅烷和乙烯基硅烷中任何一种或其混合物作为所述有机硅烷。
全文摘要
在以往的用硅烷和过氧化氢作为混合气体,按CVD法形成的氧化硅膜中,在连接上下配线的连接孔(通道)内,发生称为有毒掺杂孔的配线不良。按照本发明,用以硅原子为主要元素,在所述硅原子与氧键合和与碳键合的同时,至少有一部分所述硅原子与氢键合的材料来形成半导体器件的层间绝缘膜。此外,作为层间绝缘膜的形成方法,使用气体分子结构中有硅原子与氢和碳键合的反应性气体与过氧化氢的混合气体,按化学气相生长法形成层间绝缘膜。
文档编号H01L23/522GK1204143SQ9810662
公开日1999年1月6日 申请日期1998年2月17日 优先权日1997年6月26日
发明者松浦正纯 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1