GaN基LED外延结构的制备方法

文档序号:8300509阅读:361来源:国知局
GaN基LED外延结构的制备方法
【技术领域】
[0001]本发明属于半导体照明领域,特别是涉及一种GaN基LED外延结构的制备方法。
【背景技术】
[0002]发光二极管(LED, Light Emitting D1de)由于具有寿命长、耗能低等优点,已被广泛应用于各个领域,尤其随着其照明性能指标日益大幅提高,LED在照明领域常用作发光装置。其中,以氮化镓(GaN)为代表的II1-V族化合物半导体,尤其是InGaN/GaN(氮化镓铟/氮化镓)基LED由于具有带隙宽、发光效率高、电子饱和漂移速度高、化学性质稳定等特点,在高亮度蓝光发光二极管、蓝光激光器等光电子器件领域有着巨大的应用潜力,引起了人们的广泛关注。
[0003]然而,由于InGaN/GaN结构存在很大的晶格和热膨胀系数失配,导致量子阱内存在极化电场。这种极化电场容易造成了量子阱倾斜,导致量子阱内电子和空穴波函数在空间上发生分离,从而使电子和空穴的复合效率降低。虽然,当前InGaN/GaN LEDs的发光效率已经有了显著地改善,但对于大功率GaN基LEDs来说,仍然存在着严重的量子效率下降(efficiency droop)问题,即在大电流注入的情况下,LEDs的内量子效率会迅速下降。而电子向P端泄漏也是造成效率低的原因之一。
[0004]出现以上问题的原因主要是由于InGaN/GaN量子阱结构的晶格失配导致阱中存在极化电场,该极化电场的存在使量子阱中电子和空穴波函数在空间上发生分离,从而降低了电子空穴的复合效率。因此,为了降低该内建极化电场的负面效应,现有技术中通常采用InGaN、ALINGAN等来降低势垒和势阱之间的失配;也有人提出将势阱中的铟组分渐变来实现晶格失配的减小。然后,由于铟原子受热易从外延材料中挥发,以上的这些方法很难按设定的值来实现。
[0005]鉴于现有技术的以上缺陷,提出一种可以使电子在各个发光阱中分布更加均匀,减小了电子向P端泄漏,以提高量子阱的发光效率的GaN基LED外延结构及其制备方法实属必要。

【发明内容】

[0006]鉴于以上所述现有技术的缺点,本发明的目的在于提供一种GaN基LED外延结构的制备方法,用于解决现有技术中由于发光阱中电子分布不均匀以及电子向P端泄漏而导致GaN基发光外延结构发光效率较低的问题。
[0007]为实现上述目的及其他相关目的,本发明提供一种GaN基LED外延结构的制备方法,所述制备方法包括步骤:
[0008]步骤I),提供一生长衬底,于所述生长衬底上依次生长成核层、未掺杂的GaN层以及N型GaN层;
[0009]步骤2),于所述N型GaN层上生长InGaN/GaN超晶格量子阱结构;
[0010]步骤3),于所述InGaN/GaN超晶格量子阱结构上由高温到低温逐渐变温生长InGaN/GaN前置量子阱结构;
[0011]步骤4),于所述InGaN/GaN前置量子阱结构上生长多量子阱发光层结构;
[0012]步骤5),于所述多量子阱发光层结构上依次生长AlGaN层、低温P型层以及P型电子阻挡层;
[0013]步骤6),于所述P型电子阻挡层上生长P型GaN层。
[0014]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,所述成核层的生长温度450?650°C,生长厚度范围为15?50nm ;所述未掺杂的GaN层及N型GaN层生长温度范围为1000?1200°C,总生长厚度范围为1.5?4.5um,所述N型GaN层中,Si掺杂浓度范围为lel8?3el9。
[0015]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤2)中,所述InGaN/GaN超晶格结构的生长温度范围为700?900°C。
[0016]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤2)中,所述InGaN/GaN超晶格量子阱结构的周期对数量范围为3?30,InGaN势阱中In组分的原子比范围为I?5%,InGaN势阱的厚度范围为1.0?4.0nm,GaN势垒的厚度范围为1.0?9.0nm0
[0017]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤3)中,所述InGaN/GaN前置量子阱结构变温生长的温度范围为795?780°C,且各势垒势阱周期的生长温度依次降低。
[0018]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤3)中,所述InGaN/GaN前置量子阱结构含有的势垒势阱周期对数量范围为3?10。
[0019]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤3)中,所述InGaN/GaN前置量子阱结构中InGaN势阱的In组分的原子比范围为15?20%。
[0020]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤3)中,所述InGaN/GaN前置量子阱结构中的InGaN势阱的厚度范围为2.0?4.0nm7GaN势垒的厚度范围为3?15nm。
[0021]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤4)中,所述多量子阱发光层结构生长温度范围为700?900°C。
[0022]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤4)中,所述多量子阱发光层结构含有的势垒势阱周期对数量范围为5?18,InGaN势阱中In的组分的原子比范围为15?20%,InGaN势阱的厚度范围为2.0?4.0nm,GaN势垒的厚度范围为3 ?15nm。
[0023]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤5)中,所述AlGaN层中Al组分原子比范围为2?20%,所述AlGaN层的厚度范围为20?35nm。
[0024]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤5)中,所述P型电子阻挡层包括P型AlGaN、P型AlInGaN及P型AlGaN/GaN超晶格结构中的一种,所述P型电子阻挡层的总厚度范围为30?80nm,所述P型电子阻挡层中Mg掺杂浓度范围为5el8 ?3.5el90
[0025]作为本发明的GaN基LED外延结构的制备方法的一种优选方案,步骤6)中,所述P型GaN层中Mg掺杂浓度范围为5el8?le20,所述P型GaN层的厚度范围为30?150nm。
[0026]本发明还提供一种GaN基LED外延结构,包括依次层叠的成核层、未掺杂的GaN层、N型GaN层、InGaN/GaN超晶格量子阱结构、由高温到低温逐渐变温生长的InGaN/GaN前置量子阱结构、多量子阱发光层结构、AlGaN层,低温P型层、P型电子阻挡层、以及P型GaN层。
[0027]作为本发明的GaN基LED外延结构的一种优选方案,所述GaN基LED外延结构形成于包括蓝宝石、GaN、娃以及碳化娃之一的生长衬底上。
[0028]作为本发明的GaN基LED外延结构的一种优选方案,所述成核层的厚度范围为15?50nm ;所述未掺杂的GaN层及N型GaN层的总厚度范围为1.5?4.5um,所述N型GaN层中,Si掺杂浓度范围为lel8?3el9。
[0029]作为本发明的GaN基LED外延结构的一种优选方案,所述InGaN/GaN超晶格量子阱结构的周期对数量范围为3?30,InGaN势阱中In组分的原子比范围为I?5%,InGaN势阱的厚度范围为1.0?4.0nm, GaN势垒的厚度范围为1.0?9.0nm。
[0030]作为本发明的GaN基LED外延结构的一种优选方案,所述InGaN/GaN前置量子阱结构含有的势垒势阱周期对数量范围为3?10。
[0031]作为本发明的GaN基LED外延结构的一种优选方案,所述InGaN/GaN前置量子阱结构中InGaN势阱的In组分的原子比范围为15?20%。
[0032]作为本发明的GaN基LED外延结构的一种优选方案,所述InGaN/GaN前置量子阱结构中的InGaN势阱的厚度范围为2.0?4.0nm, GaN势垒的厚度范围为3?15nm。
[0033]作为本发明的GaN基LED外延结构的一种优选方案,所述多量子讲发光层结构含有的势垒势阱周期对数量范围为5?18,InGaN势阱中In的组分的原子比范围为15?20%, InGaN势阱的厚度范围为2.0?4.0nm, GaN势垒的厚度范围为3?15nm。
[0034]作为本发明的GaN基LED外延结构的一种优选方案,所述AlGaN层中Al组分原子比范围为2?20%,所述AlGaN层的厚度范围为20?35nm。
[0035]作为本发明的GaN基LED外延结构的一种优选方案,所述P型电子阻挡层包括P型AlGaN、P型AlInGaN及P型AlGaN/GaN超晶格结构中的一种,所述P型电子阻挡层的总厚度范围为30?80nm,所述P型电子阻挡层中Mg掺杂浓度范围为5el8?3.5el9。
[0036]作为本发明的GaN基LED外延结构的一种优选方案,所述P型GaN层中Mg掺杂浓度范围为5el8?le20,所述P型GaN层的厚度范围为30?150nm。
[0037]如上所述,本发明提供一种GaN基LED外延结构的制备方法,所述制备方法包括制作依次层叠的成核层、未掺杂的GaN层、N型GaN层、InGaN/GaN超晶格量子阱结构、由高温到低温逐渐变温生长的InGaN/GaN
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1