D·t·r·m数据定时恢复组件的制作方法

文档序号:7574945阅读:221来源:国知局
专利名称:D·t·r·m数据定时恢复组件的制作方法
技术领域
本发明涉及用于时钟脉冲恢复,特别是时钟脉冲提取的数据定时恢复组件。
有关技术的叙述时钟脉冲恢复是众所周知的用来在信令连接设备上恢复定时方法,在串联电路上传送数据的最简单的方法是用两条不同的连接线,一条用于数据,一条用于定时时钟脉冲。经专门的编码,例如CMI,HDB3,AMI等等,从数据可提取定时信息,可以免除一条连线。使用这些传输编码中的一种,正常的数据带宽将有不同的分布,一些高频分量将产生。这些分量被用于提取定时信息。这个过程被称作“时钟脉冲恢复”。
使用上述编码的一种,数据的带宽将扩大。由此需要提高传输媒体的性能,从而使之更昂贵。应用保持带宽特征的编码,这个问题已得到解决,但是定时恢复的运作更困难了。常用的时钟脉冲提取电路每隔几个位组需要一个或多个数据转移,或者时钟脉冲将不能提取。被采用的编码必须保证这个条件,即不返回到零(NRZ)量化数据。时钟脉冲提取问题被方便的解决了,特别是假如使用的数据模型转移很差时。
从NRZ量化数据电路实现时钟脉冲提取的方法有两种第一种方法包括窄带相位锁定环路(PLL)电路,其具有数字相位比较器,该比较器连续测量正的(或负的)数据转移处和由本地振荡器产生的时钟脉冲边缘之间的相位差。该振荡器的频率将被调节到对消数据转移处和时钟脉冲边缘之间的相位差。这是一个昂贵的解决办法,因为通常用标准的分立元件实现是很困难的。此外,使用这个方法的灵活性受到限制,因为所有的物理参数,例如频率、模型等不能为适应其他的可能要求而改变。
提取定时信息的第二个方法包括应用Q回路,回路后面有高增益选择放大阶段。该Q回路由简单的LC电路或者采用SAW谐振器实现,受数据边缘转移处的连续激励。如果应用LC谐振器,则必需一个专门的电感,以便有足够大的Q值,在长的“0”和“1”时序期间保持定时信息。这是一个较灵活的解决办法,但是与上面所述的一个相比性能差一些。例如恢复时钟脉冲受信号不稳定性的影响,因为在Q回路的输出端上S/N比很低,特别是假如使用的模型的转移很差时。
由Masushita等人所提供的JP88-174442中有自由运行模式的振荡器,保证在输出XXX上的定时时钟脉冲。本发明经自动超前振荡得到的所要求的定时时钟脉冲,抑制在周期再现输出端上所呈现的噪声和跳动。
摘要本发明解决的一个问题是提取高速率时钟脉冲信号。
本发明解决的另一个问题是在长的“0”或“1”时序期间保持定时信息。
本发明通过原来用于其他目的的已知效应按新的途径解决时钟脉冲恢复问题。上述其他目的是指频率调制接收机、载频调制系统和对时钟脉冲频率的整数倍频或分频。
本发明是数据定时恢复系统即数据定时恢复组件(DTRM),其基于注频锁定振荡器ILO。该发明从高比特速率数据信号,例如从光或电接口进入的被量化的NRZ提取定时信息。与NRZ相比的不同的数据模型亦可应用。该定时恢复系统应用ILO中的锁定现象。即使数据流由长序列位逻辑电平“1”或长序列位逻辑电平“0”重复组成,定时信息亦将被提取出来。在每一个数据转移时,零交叉电路产生一个脉冲被用于对振荡器产生的频率进行相位锁定。
本发明有至少两个部分脉冲发生器电路和注频锁定振荡器。可以应用的其他部分是包含ILO的时钟脉冲提取电路,相位校准器电路和时钟脉冲熄灭器电路。
一个优点是DTRM可以低的成本从高的每秒M位信号中提取定时信息。
另外的优点是DTRM可以非常小的尺寸来制作。
另外的优点是DTRM可以容易地与不同的比特速率运转相配合。
现在借助于对优选实施例和附图的详细说明来对本发明作进一步的介绍。
附图简述

图1为数据定时恢复组合DTRM的方框图。
图2为脉冲发生器电路(PG)。
图3为时钟脉冲提取器电路(CE)。
图4为相位校准器电路(PA)。
图5为时钟脉冲熄灭器电路(CK)。
图6a为ILO的方框图。
图6b为ILO的工作原理。
图7为输入数据的时间关系流程图,该信号进入DTRM,DTRM产生相位校准数据和恢复的时钟脉冲信号。
图8为DTRM中各个不同信号的图形。
图9为一个DTRM实施例。
实施例的详细说明此处将提供本发明的较为详细的说明。
本发明涉及用于无线电通讯设备中的时钟脉冲恢复电路。该电路也可作其他用途,这些用途中对于高速传输电路时钟脉冲恢复是必需的。
附图的简要说明将被提供。
图1示出了数据定时恢复组件100,DTRM的方框图。四个方框包括时钟脉冲提取器电路102,CE,即脉冲控制振荡器电路(PCO),相位校准器电路104,PA,脉冲发生器电路106,PG和时钟脉冲熄灭电路108,CK。这些方框用线路相互连接。数据定时恢复组件100具有两条输入数据线;第一条输入线是传送输入数据的输入数据线110,连接到输入数据线输入端124,第二条输入线是传送外部时钟脉冲禁止信号的允许/禁止线114,连接到输入时钟脉冲禁止输入端160。DTRM100也具有三条输出线;第一条输出线是传送相位校准数据的输出数据线122,连接到输出数据线输出端126,第二条输出线是传送第一条恢复时钟脉冲的输出时钟脉冲线120,连接到输出时钟脉冲线输出端128,以及第三条输出线是传送数据丢失信号的信号丢失线156,连接到信号丢失输出端158。
脉冲发生器106具有输入线,即输入数据线110,通过DTRM100的输入数据线输入端124连接到输入数据线输入端130。脉冲发生器106也具有两条输出线;第一条输出线是传送脉冲的脉冲线116,连接到脉冲线输出端132与时钟脉冲提取器102的脉冲线输入端136之间,第二条输出线是传送数据的数据线112,连接到数据线输出端134和时钟脉冲熄灭器108的数据线输入端152。数据线112还连接到相位校准器104的数据线输入端148。
时钟脉冲提取器102具有两条输入线;第一条输入线是允许/禁止线114,通过DTRM100的输入时钟脉冲禁止输入端160连接到允许/禁止线输入端138,第二条线是脉冲线116,连接到脉冲线输入端136。时钟脉冲提取器102还有两条输出线;第一条输出线是传送第二恢复时钟脉冲的恢复时钟脉冲线118,第二恢复时钟脉冲对在输出时钟脉冲线120上的第一恢复时钟脉冲反向,时钟脉冲线118连接到时钟脉冲线输出端142和相位校准器104的时钟脉冲线输入端144,第二条输出线是输出时钟脉冲线120,通过DTRM 100的输出时钟脉冲线输出端128连接到输出时钟脉冲线输出端140。
相位校准器104具有两条输入线;第一条输入线是恢复时钟脉冲线118,连接到时钟脉冲线输入端144,第二条输入线是数据线112,连接到数据线输入端148。相位校准器104具有一条输出线,它是输出数据线122,通过DTRM100的输出数据线输出端126连接到相位校准器输出端150。
时钟脉冲熄灭器108具有一条输入线,它是数据线112。该电路也有一条输出线,它是信号丢失线156,通过DTRM100的信号丢失输出端158连接到信号丢失输出端154。
数据定时恢复组件100,DTRM中的每个方框的较为详细的说明将在下面各节中叙述。只在每个电路中起重要作用的元件将被示出。该实施例用差分数据输入和输出线工作,输入数据线110,数据线112和输出数据线122实际上可以是两种线,一种常规的和一种差分的线。本发明不要求这个,但它们在解决问题中被使用。
图2中,脉冲发生器电路106接收输入数据线110上的输入数据,输入数据线110通过DTRM100的输入数据线输入端124连接到输入数据线输入端130。脉冲发生器106在连接到脉冲线输出端132和时钟脉冲提取器102的脉冲线输入端136之间的脉冲线116上发出脉冲。脉冲发生器106中包括了两部分零交叉电路200和差分分配器202。差分分配器202接收在输入数据线110上的输入数据。给零交叉电路200。零交叉电路200在脉冲线116上发出脉冲。差分分配器202也在数据线112上发出与输入数据相等的数据,数据线112连接在数据线输出端134和时钟脉冲熄灭器108的数据线输入端。数据线112还连接到脉冲校准器104的数据线输入端。
图3中,时钟脉冲提取电路102在连接到脉冲线输入端136和脉冲发生器106的脉冲线输出端132之间的脉冲线116上接收脉冲。时钟脉冲提取器102还包括了带有振荡器输入端308和振荡器输出端304的注频锁定振荡器(ILO)306。脉冲线116通过脉冲线输入端136连接到振荡器输入端308。时钟脉冲提取器的缓冲器300具有两条输入线;第一是恢复时钟脉冲线302,连接到作为缓冲器输入端312的第一缓冲器输入端以及ILO306的振荡器输出端304,第二是允许/禁止线114,通过作为缓冲输入端310的第二缓冲输入端以及允许/禁止输入端138连接到时钟脉冲提取器的缓冲器300。随意地,允许/禁止线114可外接到数据丢失信号线156以便在输入数据线110上在没有数据时禁止时钟脉冲,见图1。时钟脉冲提取器的缓冲器300有两条输出线第一输出线作为恢复时钟脉冲线118,通过时钟脉冲线输出端142连接到第一输出缓冲器输出端314,第二输出缓冲器输出端是输出时钟脉冲线120,通过输出时钟脉冲线输出端140连接到第二输出缓冲器输出端316。
ILO306是一个例如为BFR92三极管的基极接地Colpitts式结构,Q1三极管Q1的偏置点由三个电阻R1,R2和R3来设定。电阻R1和R2决定了基板电压极化。而电阻R3决定了三极管集电极电流。去耦电容C2直接连接在三极管Q1基极和地之间,以获得动态接地基极结构。连接在三极管Q1的集电极和正电源之间的无源网络决定了这种型式结构的所有动态特性,这种形式结构称之谓“基极接地Colpitts振荡器”。特别是电容C3,C4,C5和电感L1决定了振荡器306的固有频率,而电阻R4用作设定三极管动态增益和增大ILO 306的锁定带宽。反馈矢量Xr取决于C3、C4两个电容的值。注频矢量Xt经使用去耦电容C1直接连到三极管发射极管脚。ILO306的动态稳定性参数也取决于三极管的型式和ILO输入,输出端的电耦合。为了避免在整个温度工作范围内的频率漂移,应确定这些的最佳特性。
图4示出了相位校准器电路104,它在数据线112上得到来自脉冲发生器106的数据,数据线112连接在相位校准器104的数据线输入端148和脉冲发生器106的数据线输出端134之间。相位校准器104还从时钟脉冲提取器102接收第二恢复时钟脉冲,它被连接在时钟脉冲提取器102的时钟脉冲线输出端142与相位校准器104的时钟脉冲线输入端114之间。相位校准器104从相位校准器输出端150向连接在DTRM100的输出数据线输出端126的输出数据线122上发送相位校准数据。
D触发器电路400具有两个输入端第一个输入端402通过相位校准器106的数据线输入端148连接到数据线112,第二个输入端404通过相位校准器106的时钟脉冲线输入端144连接到恢复时钟脉冲线118。触发器400具有一个通过相位校准器106的相位校准器输出端150连接到输出数据线122的输出端406。
在图5中,时钟脉冲熄灭电路108从连接在时钟脉冲熄灭器108的数据线输入端152和脉冲发生器106的数据线输出端134之间的数据线112接收数据。时钟脉冲熄灭器108在连接到时钟脉冲熄灭器108的信号丢失输出端154和DTRM100的信号丢失输出端158的数据丢失线156上发出数据丢失信号。时钟脉冲熄灭器108具有三个方框峰值检波器(PD)500,电压比较器(VC)502和电压基准(VR)504。这些方框(500-504)用连接线相互连接。数据从连接到峰值检波器500的数据线112进入。它按其顺序连接到电压比较器502。VC 502按顺序通过信号丢失输出端154连接到数据丢失线156。电压基准504连接到电压比较器502。
图6a示出了注频锁定振荡器306的方框图。ILO306具有一条传送脉冲的脉冲线116作为输入线,一个注频Xt信号622,连接在ILO306的振荡器输入端308和加法器结点318的加法器结点输入端602之间。ILO306具有一个输出线作为传送第三恢复时钟脉冲的恢复时钟脉冲线302,它输出矢量Xu信号626,连接到ILO306的振荡器输出端304和选择放大器612上的选择放大器输出端608之间。传送合成Xi信号624的加法器结点线620连接在加法器结点318的加法器结点输出线604和选择放大器612的选择放大器输入端632之间。此外,恢复时钟脉冲线302连接到衰减器614上的衰减器输入端618。因此,由图1和图3可见,恢复时钟脉冲线302上的信号与恢复时钟脉冲线118以及输出时钟脉冲线120上的信号相同。传送反馈Xr信号628的衰减线616连接到衰减器614的衰减器输出端630和加法器结点318的加法器结点输入端606之间。
图6b示出了注频Xt信号622、反馈Xr信号628和合成Xi信号624的矢量图以及它们之间的相互关系。
图7示出了方法的时间关系图,该方法用以从组合时钟脉冲和数据信号,输入数据802中提取和校准时钟脉冲信号和数据。
时钟脉冲恢复方法以脉冲发生阶段700开始。然后在702输入“数据”702被接收。接着在704脉冲发生器电路106产生脉冲。随后脉冲发生器106分离(706)输入数据。之后在708“脉冲”被分配到时钟脉冲提取阶段714,继之以在710分配“数据”到相位校准阶段742和时钟脉冲熄灭阶段754。作为最后一个步骤,脉冲发生阶段712返回到与方框712相同的700。
时钟脉冲提取阶段714有三个不同的时序。第一个时序是时钟脉冲恢复时序,它随着从脉冲发生阶段700接收“脉冲”716开始。然后时钟脉冲提取阶段700借助脉冲的帮助在ILO306中接收718定时信息。之后在720第二恢复“时钟脉冲”被分配到相位校准阶段742的“时钟脉冲”746,在722第一恢复“时钟脉冲”也被分配到输出时钟脉冲线120。作为最后一个步骤的时钟脉冲提取阶段724返回到与724相同的方框714。第二个时序是断开时钟脉冲时序,它从时钟脉冲提取阶段714开始,在726也能接收在允许/禁止线114上的外部时钟脉冲禁止信号“OFF”。然后在728时钟脉冲提取器102断开时钟脉冲提取器的缓冲器300和在730断开发送第一及第二恢复时钟脉冲。作为最后一个步骤的时钟脉冲提取阶段732返回到与方框732相同的方框714。第三个时钟脉冲时序是接通时钟脉冲时序,它随着接通时钟脉冲提取阶段开始,在734能接收在允许/禁止线114上的外部时钟脉冲禁止信号“ON”。然后在736时钟脉冲提取器102接通时钟脉冲提取器的缓冲器300和在738接通发送第一及第二恢复时钟脉冲。在738作为最后的步骤时钟脉冲提取阶段返回到与方框738相同的方框714。
在744相位校准阶段742接收来自脉冲发生阶段700“数据”,在746还接受来自时钟脉冲提取阶段714的“时钟脉冲”720的第二恢复“时钟脉冲”。然后这两个信号在“校准”748被校准。此后,在750相位校准的“数据”发送到输出数据线122上。作为最后一个步骤,在752相位校准阶段返回到与方框752相同的方框742。
时钟脉冲熄灭阶段754从脉冲发生阶段700接收“数据”756。然后在758询问此处是否存在任何“数据?”。如果在758中回答是“YES”,则在760数据丢失信号ON发送在信号丢失线156上。如果方框758上回答是NO,则在762发出“报警”。进而,在764数据丢失信号OFF发送在信号丢失线156上。作为最后一个步骤,从方框760和764,该阶段返回到与754相同的时钟脉冲熄灭阶段766。
图8示出了DTRM100中不同点上的各个信号波形。这是一个在DTRM100中信号会怎样出现的例子。首先时间刻度尺800示出了在不同时间间隔上的信号。在输入数据线110上的输入数据802可以具有下面的数据图形。时间间隔被定义成在逻辑电平“1”上正导数边沿的中点到负导数边沿的中点,或者对逻辑电平“0”用相反的方式。借助于零交叉电路200在每个数据传输逻辑电平“1”的每个时间间隔上,在脉冲线116上产生了来自脉冲发生器106的负脉冲。数据806被载在数据线112上。首先在允许/禁止线114上外部时钟脉冲禁止信号808为ON,例如逻辑电平1。这意味着第一恢复时钟脉冲814被载在输出锁定线120上。如果外部时钟脉冲禁止信号808为OFF,例如逻辑电平0,则第一恢复时钟脉冲814不再载在输出锁定线120上。在这种场合下,第二恢复时钟脉冲810不再载在恢复时钟脉冲线118上,并且没有相位校准数据出现在输出数据线122上。ON/OFF可以是逻辑电平“1”/“0”或者逻辑电平“0”/“1”。当外部时钟脉冲禁止信号808是ON,则时钟脉冲提取器102已经被从脉冲信号源106经过脉冲线116发送到时钟脉冲提取器102的脉冲804锁定。因此当第一个正向第二恢复时钟脉冲边沿出现在恢复时钟脉冲线118上时,相位校准器106能使数据重新校准。进入数据线112的数据806将被延时一个因数ψ。相位校准数据812加载于输出数据线122上。用作重新采样数据806的第二恢复时钟脉冲810能被相对于输出时钟脉冲线120上的第一恢复时钟脉冲814倒向。τ是出现在输入数据线110上的起始位与输出时钟脉冲线120上同前述同样位相关的上升时钟脉冲沿之间的延时。
DTRM的详细说明下面将详细叙述DTRM,它是混合的SIL电路,有下列尺寸(41.2×10.6×0.6mm)。使用四层阻抗受控的PCB(印刷电路板),所有的元件分布在外边两层上。应用外部金属屏蔽防止电磁辐射。它用去耦电容虚接地。本发明已对两个时钟脉冲恢复工作频率184.320MHz和155.520MHz完成研究。它能用来按10Mbit/s到500Mbit/s的不同比特率从NR2被量化的数据提取时钟脉冲。该DTRM设计得适用USI4接口,从适当编码的串行数据线提取定时信息。该DTRM至少能对每隔24位组的一次数据转移提取时钟脉冲信息。使用另外数值的可变电感,DTRM100亦可用来从适当编码的155.520MHz串行数据线提取定时信息,以便有至少每隔24位组的一次数据转移。
数据和时钟脉冲I/O接口是差分的发射极耦合逻辑(ECL)。在电源电压是正的时,使用差分的虚拟发射极耦合逻辑(PECL)。该输入接口可以是串行或并行的。用PECL模式,输出接口必须不要直接短接到地,否则输出器件将被损坏。
脉冲的极性是最重要的参数之一。因为它决定时钟脉冲边缘的极性。从数据建立和保持时间着眼,这个实施例用负脉冲,但是正脉冲也是可以使用的。
图2所示的脉冲发生器电路106经ECL差分分配器器件202得以实现。两个差分输入端中的一个被短路。在每一次数据转移时,零交叉电路200产生一个脉冲,该脉冲注入ILO306,对时钟脉冲信号,第一个恢复的时钟脉冲814和第二个恢复的时钟脉冲810进行相位锁定。该脉冲的特性取决于ECL差分分配器202的反应时间。在这种情况,为简化电路结构和减少功耗脉冲波形形成相同上升和下降时间,但是为提高这方面应用的实际时钟脉冲提取的特性,建议使用其他类型的波形。这个波形的上升时间比实际选择的要慢一些,以便加速ILO306的相位锁定和增加锁定带宽。数据线112被用来驱动相位校准器电路104。
图3的相位提取器102应用注频锁定振荡器电路306,ILO以提取时间信息。ILO306仅由每次数据转移时的脉冲注入振荡器来实现。该脉冲804由每次数据转移时产生和同步经振荡器产生的边缘波形。该脉冲的极性确定ILO306的锁定相位。这个实施例使用负脉冲804以便使用负时钟脉冲同步数据的负边缘。数据信息被重复取样以便产生正确的建立和保持时间。振荡器是基极接地经晶体管Q1,例如BFR92和电压调节器供电(没有示出)实现的Colplitts结构,避免频率漂移。利用去耦电容C1,脉冲804经晶体管Q1的发射极被直接注入到加法器的结点318。见图3。在校准振荡器时,中心频率通过利用模拟时钟脉冲恢复运作时的最坏情况的数据模型,在时钟脉冲提取器102提供的高性能可变电感的作用下被调节。振荡器输出端304是经过ECL线接收机-驱动器,例如时钟脉冲提取器的缓冲器300被缓冲(300),以便自动的调节时钟脉冲的工作周期。
图4是相位校准器电路104,提供数据/时钟脉冲的相位校准以便保持负的第二个恢复时钟脉冲810和数据804边缘之间的准确的相位关系。这由ECL差分触发器来完成,该触发器接收来自脉冲发生器106的数据线112上的数据806信息,同时也接收来自时钟脉冲提取器102的恢复时钟脉冲线118上的第二被恢复时钟脉冲810。
图5是时钟脉冲熄灭器电路108,在数据线112上没有接收数据806时可给出警报。这由连接到电压比较器502的峰值检波器500来完成,电压比较器有集电极开路的输出线。假如数据丢失线156被连到允许/禁止线114,当数据806的信息在数据112上被遗漏时时钟脉冲熄灭器108能断开时钟脉冲提取器的缓冲器300,见图3。该时钟脉冲熄灭器电路108亦能用在数据丢失报警。对时钟脉冲提取器的缓冲器的连接在外部,如果时钟脉冲提取器102必须被保留在自由运行模式,该连线可以撤除。在这种情况下,允许/禁止线114,见图1,必须接到负的电源电压。时钟脉冲熄灭器电路108还可以用作信息丢失报警发生器。该时钟脉冲熄灭器108可以接通时钟脉冲提取器的缓冲器300,当输入数据802存在时,既使允许/禁止线114不连接到数据丢失线156而连接到某个其他的外部单元(实施例中未示出),该时钟脉冲提取器的缓冲器仍能接通和断开。
图6a是ILO306对提取时钟脉冲信号的振荡条件由下面两式来描述|αβ|≥1,∠αβ≌0第一式示出了选择放大器增益612和反馈网络的衰减器614之间的关系。第二式示出为启动ILO306振荡所需的相位关系。在这种情况下,ILO306可被看作自由运行振荡器,它的频率仅取决于选择放大器的物理参数,自由可变电感L1起调节作用,见图3。为了实现注频锁定效应,加法器结点318被需要。它由模拟混合器组成模拟混合器用于将同步脉冲注频Xt信号622同振荡器的反馈Xr信号628相混合。
这些公式可以从这些结构的变换函数获得α-=Xu-Xi-;β-=Xr-Xu-→Xu-=α-Xi-;Xr-=β-Xu-]]>butXt-=Xi--Xr-andAr-=Xu-Xt-→Ar-=α-Xi-Xi--Xr-]]>

此处Ar是ILO306的函数。条件(1)仅在假设|αβ|<1时才能适用。在其他情况下,极坐标分析必须用传递函数(1)来考虑。有三种可能的条件|αβ|<1,|αβ|=1,|αβ|>1。条件|αβ|=1亦被称为巴克好森(Barkhansen)条件,它代表稳定性极限。在此极限以上(|αβ|>1),ILO306用满足(2)中的条件的振荡周期开始振荡。
图6b示出在加法器结点318上两个输入信号振荡条件的矢量图600。脉冲的极性确定振荡器的被锁定的相位。在这种情况,重建数据和在输出时间上第二个已恢复时钟脉冲之间的正确相位校准被需要。这个实施例中,负脉冲804被应用,以使数据的负边沿同时钟脉冲的负边缘同步。反馈的Xr信号628是同输出矢量Xu信号626有相同相位的周期矢量,见图6a。假如另外的反馈矢量被注入到加法器结点318,则情况将在图6b中呈现。反馈的Xr信号628用一个旋转矢量来代表,它有旋转周期T1,T1是振荡器频率的倒数。合成的Xi信号624取决于另外两个信号-反馈Xr信号628和注入的Xt信号622的幅度和相位参数。
通常,在振荡器的方框图中注入的Xt信号622不出现,因为缺少它振荡可以开始。加法器结点318亦不出现,因为反馈的Xr信号628和合成的Xi信号624是同一参数。通过利用加法器结点318产生反馈的Xr信号628同脉冲804以及经脉冲线116输入的注入的Xt信号622的矢量和,本发明期望用每个数据转移时产生的脉冲804锁定振荡器。
假如注入的Xt信号622被加到加法器结点318,我们可获得图6b的情况。由于瞬时的相位跳动,合成的Xi信号624将受影响同时它的幅度也将变化。假如注入的Xt信号622由周期T2大约为振荡器固有周期T1的m倍的脉冲804构成,同时假如这些脉冲的幅度同反馈的Xr信号628是可比较的,则振荡器将被锁定到与T2周期同相。注入的Xt信号622可由输入数据802组成,将按脉冲804一样的进行相位锁定。
假如|Xr|>|Xt|,合成Xi信号624受反馈的Xr信号628的参数的影响较大。这也意味着注入的Xt信号622对输出矢量Xu信号626不产生相关的影响。所以,如果注入的Xt信号622的频率与振荡器的额定频率不一样的话,它仅能引起振荡器输出的跳动。这意味着IL0306的锁定带宽取决于注入的Xt信号622的幅度|Xt|。注入的Xt信号622越强,锁定带宽越大。
如果矢量|Xt|=|Xr|,这两个分量对合成的Xi信号624有相同的影响。如果注入的Xt信号622和反馈的Xr信号628有相同的频率,且它们的矢量和-合成的Xi信号624有足够的能量,则振荡条件将重建。如果振荡器的额定频率与注入的Xt信号的频率十分接近但不准确相同,这种情况亦成立因为ILO306是闭环的,则反馈的Xr信号628亦取决于注入的Xt信号622。如果注入的Xt信号622的频率保持在放大器的带宽以内,合成的Xi信号624将跟随注入的Xt信号622同时振荡器的周期将被注入的Xt信号622的频率锁定。
如果注入的Xt信号622被断开大于一个周期的时间,则振荡器仍运行,因为该振荡器由反馈的Xr信号628保证。经过这些周期,反馈的Xr信号628和脱开的注入Xt信号622之间的相位差将增大,但当注入的Xt信号622再一次被接通时,合成Xi信号624将受相位突变的影响。只要相位突变不是很大以致以产生的内调制分量分布在放大器的带宽之外,上述的锁定情况将被重建。如果注入的Xt信号622是瞬时矢量脉冲,它不时地插入到加法器结点输入端602,但是它的幅度必须大于反馈的Xr信号628(|Xt|>|Xr|),是图6b,以便产生相关的在放大器带宽之内的谐波分量,则相同的情况可以被获得。如果这个情况发生,则振荡器将产生与两个矢量中任一个都不相关的信号。
锁定脉冲的频率极限取决于振荡器提供的注入的Xt信号622和反馈的Xr信号628的幅度,以及它们之间的频率关系和LC谐振器的Q系数,见图3。反馈的Xr信号628和注入的Xt信号622之间的频率关系必须是整数,且可以随时间而变化。数据转移同样也随时间变化,故它们可以同步振荡器。
方法的详细叙述现在叙述应用这种类型电路的方法。外部输入的信号彼此无关可在任何时间输入,同时内部信号在任何时间可独立地被接收。这个实施例中必须有时钟脉冲提取阶段714。如果需要,脉冲发生阶段700,相位校准阶段742,时钟脉冲熄灭阶段754被采用。
时钟脉冲恢复的方法从脉冲发生阶段700开始,见图7。输入数据802经过脉冲发生器106的输入数据线的输入端130在输入数据线110上被接收(702)到脉冲发生器106。然后在每个数据转移时零交叉电路200产生(704)负脉冲804。然后,差分分配器202在706将输入数据802分配706成数据806和脉冲804。其后,脉冲发生阶段700在脉冲线116上分配(708)脉冲804到时钟脉冲提取器102。然后,阶段700将数据线112上的数据806又分配(710)到相位校准器104。该脉冲发生器106亦将数据线112上的数据806分配(710)到时钟脉冲熄灭器电路108。
在时钟脉冲提取阶段714中,时钟脉冲恢复时序从接收(716)来自脉冲发生阶段(700)的负脉冲804开始。这个时钟脉冲恢复时序恢复(718)来自脉冲发生器106产生的脉冲804的定时信息,见图6a-b。其后,时钟脉冲恢复时序将第二被恢复时钟脉冲810分配(720)到相位校准阶段742。时钟脉冲提取器102亦将第一恢复时钟脉冲814分配(722)到输出时钟脉冲线120。
时钟脉冲提取阶段714可以处于禁止模式或正常模式。如果信号丢失线156和允许/禁止线114彼此连接,将导致外部时钟脉冲禁止信号808与数据丢失信号彼此相等。
禁止模式等于断开时钟脉冲提取阶段714中的时序。在外部报警,即来自时钟脉冲熄灭阶段754的报警时,当接收(726)到在外部允许/禁止线上外部时钟脉冲禁止信号808 OFF时,时钟脉冲提取器的缓冲器300能被禁止。这将断开时钟脉冲时序,断开时钟脉冲提取器的缓冲器300以到禁止模式。这个时序可以接通(728)时钟脉冲提取器的缓冲器300同时断开(730)将第一恢复时钟脉冲814向输出时钟脉冲线120和第二恢复时钟脉冲814向相位校准器742的发送。然后,被断开的时钟脉冲时序返回到时钟脉冲提取阶段714。在时钟脉冲提取阶段714中,正常模式等于接通时序。在此时报警被断开,时钟脉冲熄灭阶段754能使时钟脉冲提取器的缓冲器300返回到正常模式。当接收(734)到在外部允许/禁止线114上的外部时钟脉冲禁止信号808“ON”时,上述过程被完成。这将接通时钟脉冲时序,开启时钟脉冲提取器的缓冲器300,到正常模式。经过开启时钟脉冲提取器的缓冲器300,第二恢复时钟脉冲810被接通(736)。这个时序亦能接通738,送第一恢复时钟脉冲814到输出时钟脉冲线120,同时送第二恢复时钟脉冲810到相位校准阶段742。其后,接通时钟脉冲时序返回到时钟脉冲提取阶段714。
相位校准阶段742接收744来自脉冲发生器700的数据806,同时接收(746)来自时钟脉冲提取阶段714的第二恢复时钟脉冲810。然后,这两个信号被校准(748)。当校准完成,相位校准数据812被送出(750)到数据线122上。接着是相位校准阶段752,它与方框742是等同的。
对本发明而言,时钟脉冲熄灭阶段754是不需要的,但当不提供输入数据802时它用作报警装置。这个阶段754接收(756)来自脉冲发生阶段700的数据806。然后,询问是否有任何“数据?”(758)。在758中如果回答是YES,外部时钟脉冲禁止信号ON被送出(760)。在758中如果回答是NO,则报警被发送(762)。此外,外部时钟脉冲禁止信号OFF被送出(764)。从方框760和764,这个阶段以时钟脉冲熄灭阶段760结束,时钟脉冲熄灭阶段760与方框754是等同的。
可供选择的实施例图9示出另一个时间恢复系统900,其包括脉冲发生器电路106和注频锁定振荡器306。输入的数据线110被连到脉冲发生器电路106。这个电路必须仅连到脉冲线116。该脉冲线116被连到注频锁定振荡器306的振荡器输入端308上。恢复的时钟脉冲线302被连到注入锁定振荡器的振荡器的输出端304和输出时钟脉冲线输出端128之间。已恢复时钟脉冲线302与输出时钟脉冲线120(见图1)是等同的。
另外的可供选择的时间恢复系统是插入时钟脉冲提取器电路102,用来代替注频锁定振荡器306。脉冲线116和恢复时钟脉冲线118按图1中同样的方式连接。
一个可供选择的时间恢复系统不需要有在时钟脉冲提取器电路中的时钟脉冲提取器的缓冲器300。因此,该可选择的系统不需要有允许/禁止线114和输出数据线120以及属于这些线的内部、外部连接。
可供选择的实施例将存在有相同的按排,从脉冲发生器电路106和注频锁定振荡器306到所有的电路、部件和元件,都在图1中被叙述。
可供选择的方法遵循时间恢复系统的实际情况。假如仅应用注频锁定振荡器306和脉冲发生器106,该方法仅包括脉冲发生阶段700和时钟脉冲提取阶段714部分。这些级将接收到脉冲发生器106的输入数据802。然后,发送已产生的脉冲804到ILO306。接着是接收第一恢复时钟脉冲,其后将第一恢复时钟脉冲814送到输出时钟脉冲线120上。
在另外的方法中时钟脉冲熄灭器电路108不存在,于是时钟脉冲熄灭阶段754亦不存在。假如仅仅注频锁定振荡器306是存在的,于是时钟脉冲提取阶段714没有726到740的诸步骤。
所有的方法将遵循上面叙述的实际情况。如果没有时钟脉冲熄灭器电路则没有时钟脉冲熄灭阶段754等等。
上述的本发明在不脱离其精神和实质性特征的情况下可用其他的具体形式实施。如是,现有的实施例在所有方面按举例说明考虑,但不受其限制。本发明的范围由附加的权利要求说明而不仅限于前面所述的内容。来自该权利要求相当的含意和范围内的所有变化都意味着包括在其中。
权利要求
1.一个时钟脉冲恢复的数据定时恢复系统,其特征在于,数据定时恢复系统(100)包括一个脉冲发生器电路(106)和一个注频锁定振荡器(306);该系统被连接到一条输入数据线(110)和一条输出时钟脉冲线(120);该脉冲发生器被连接到输入数据线和注频锁定振荡器,在该处脉冲发生器在每个数据转移时产生脉冲,由此对注频锁定振荡器形成脉冲流804;该注频锁定振荡器利用脉冲对其频率进行相位锁定,所说的振荡器被连接到发送第一恢复时钟脉冲(814)的输出线上。
2.按权利要求1的时钟脉冲恢复的数据定时恢复系统,其特征在于数据定时恢复系统(100)组成如下包含一个零交叉电路(200)的脉冲发生器电路(106)和一个差分分配器(202),这两个部件彼此互相连接,该差分分配器被连接到输入数据线(110)同时也被连到脉冲线(116),所说的脉冲线被连到注频锁定振荡器(306)。
3.按权利要求2的时钟脉冲恢复的数据定时恢复系统,其特征在于差分分配器被连到数据线(112)
4.按权利要求2或3的时钟脉冲恢复的数据定时恢复系统,其特征在于数据定时恢复系统(100)组成如下一个包含注频锁定振荡器(306)的时钟脉冲提取器(102)和一个时钟脉冲提取器缓冲器(300),这两部件经恢复时钟脉冲线(302)彼此相连;该时钟脉冲提取器缓冲器(300)被连到输出时钟脉冲线(120)。
5.按权利要求4的时钟脉冲恢复的数据定时恢复系统,其特征在于时钟脉冲提取器的缓冲器(300)被连到允许/禁止线(114)。
6.按权利要求3的时钟脉冲恢复的数据定时恢复系统,其特征在于数据定时恢复系统(100)组成如下一个相位校准器电路(104)经恢复时钟脉冲线(118)被连到时钟脉冲提取器(102),相位校准器经数据线(112)被连到脉冲发生器电路(106)上,所说的相位校准器电路连到输出数据线(122)。
7.按权利要求3的时钟脉冲恢复的数据定时恢复系统,其特征在于数据定时恢复系统(100)组成如下一个时钟脉冲熄灭器电路(108)经数据线(112)被连到脉冲发生器电路(106)同时该时钟脉冲熄灭器电路被连到信号丢失线(156)。
8.按权利要求5和7的时钟脉冲恢复的数据定时恢复系统,其特征在于信号丢失线(156)被连到允许/禁止线(114)。
9.一种在数据定时恢复系统中时钟脉冲恢复的方法,其特征在于首先,脉冲发生阶段700包括下列步骤接收(702)输入数据(802),在每个数据转移时产生(704)脉冲(804),发送(708)脉冲到时钟脉冲提取阶段(714),返回(712)到脉冲发生阶段(700);其次,时钟脉冲提取阶段(714)为时钟脉冲恢复时序,包括的步骤有接收(716)来自脉冲发生阶段(700)的脉冲,在该脉冲的帮助下恢复(718)第二恢复时钟脉冲信号(810),发送(722)第一恢复时钟脉冲(814)到输出时钟脉冲线(120),返回(724)到时钟脉冲提取阶段(714)。
10.按权利要求9的方法,其特征在于脉冲发生阶段还包括下列步骤分配(706)输入数据(802)成脉冲(804)和数据(806),发送(710)该数据(806)到相位校准阶段(742)。
11.按权利要求10的方法,其特征在于脉冲发生阶段(700)更进一步包括发送(710)数据(806)到时钟脉冲熄灭阶段(754)的步骤。
12.按权利要求9的方法,其特征在于时钟脉冲提取阶段(714)更进一步包括分配(720)第二恢复时钟脉冲(810)到相位校准阶段(742)的步骤。
13.按权利要求10和12的方法,其特征在于相位校准阶段(742)包括下列步骤接收来自脉冲发生阶段(700)的数据(806),接收(764)来自时钟脉冲提取阶段(714)的第二恢复时钟脉冲(810),校准(748)数据和第二恢复时钟脉冲,得到相位校准数据(812),发送出(750)在输出数据线(122)上的相位校准数据,返回(754)到相位校准阶段(742)。
14.按权利要求11的方法,其特征在于一个时钟脉冲熄灭阶段(754)包括下列步骤当接收(756)到来自脉冲发生阶段(700)的数据(806)时,发送(760)出在信号丢失线(156)上的数据丢失信号ON,返回(766)到时钟脉冲熄灭阶段(754)。
15.按权利要求11的方法,其特征在于一个时钟脉冲熄灭阶段(754)包括下列步骤当没有接收(756)到来自脉冲发生阶段(700)的数据(806)时,设置报警,送出在信号丢失线(156)上的数据丢失信号OFF,同时返回(766)到时钟脉冲熄灭阶段(754)。
16.按权利要求9的方法,其特征在于时钟脉冲提取阶段(714)是进行断开时序,其包括下列步骤接收(726)在外部允许/禁止线(114)上的外部时钟脉冲禁止信号(808)OFF,转换(728)时钟脉冲提取器的缓冲器(300)到禁止模式,闭合时钟脉冲提取器的缓冲器,断开(730)时钟脉冲提取器的缓冲器,从而断开从输出时钟脉冲线(120)的第一恢复时钟脉冲(814)发送,返回(732)到时钟脉冲提取阶段(714)。
17.按照权利要求12和16的方法,其特征在于时钟脉冲提取阶段(714)还包括断开(730)向相位校准阶段(742)发送第二恢复时钟脉冲(810)的步骤。
18.按权利要求9的方法,其特征在于时钟脉冲提取阶段(714)在进行接通序列时序包括下列步骤接收(734)在外部允许/禁止线(114)上的外部时钟脉冲禁止信号(808)ON,转换(736)时钟脉冲提取器的缓冲器(300)到正常模式,开启时钟脉冲提取器的缓冲器,接通(738)时钟脉冲提取器的缓冲器(300),从而,从输出时钟脉冲线(120)接通第一恢复时钟脉冲(814)的初始发送,返回(740)到时钟脉冲提取阶段(714)。
19.按权利要求12和18的方法,其特征在于时钟脉冲提取阶段(714)还包括接通(738)向相位校准阶段(742)发送第二恢复时钟脉冲(810)的步骤。
全文摘要
时钟脉冲恢复的数据定时恢复系数基于脉冲发生器电路(106)和注频锁定振荡器(306)ILO,它提取高速率时钟脉冲信号并且在长的“0”或“1”时序期间保持定时信息。这个系统亦可以包括含有ILO的时钟脉冲提取电路(102),相位校准器电路(104)和时钟脉冲熄灭电路(108)。连到系统和从系统发出的连接线是输入数据线(110),输出数据线(122),输出时钟脉冲线(120),允许/禁止线(114),信号丢失数据线(156)。被接在脉冲发生器电路和相位校准器电路之间的数据线(112)同时被接到时钟脉冲熄灭器电路。脉冲线(116)连接到ILO。恢复时钟脉冲线(118)被接到时钟脉冲提取器电路和相位校准器电路之间。
文档编号H04L7/027GK1217113SQ9719419
公开日1999年5月19日 申请日期1997年4月18日 优先权日1996年4月29日
发明者C·莫泽蒂斯, F·特斯塔 申请人:艾利森电话股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1