使用异极象结晶体的x射线发生装置及使用其的臭氧发生装置的制作方法

文档序号:8032611阅读:564来源:国知局
专利名称:使用异极象结晶体的x射线发生装置及使用其的臭氧发生装置的制作方法
技术领域
本发明涉及使用异极象结晶体的X射线发生装置及使用其的臭氧发生装置。
背景技术
目前,作为X射线发生源,电子枪X射线发生装置已被熟知。在电子枪X射线发生装置中,向目标射入的电子能量几乎都转化成热,转化成X射线的效率极低为0.1%,提高该转化效率至今为止是非常重要的课题。
因此,解决该课题而获得的使用异极象结晶体的X射线发生源最近正被关注(例如,参照非专利文献1)。异极象结晶具有如下特性,也被称为焦电结晶体,通过反复进行加热以及冷却使其温度升降,产生结晶内部的自发分极变动,而表面吸附电荷随其变化,从而电中和被破坏。作为具有代表性的异极象结晶体有LiNbO3单晶,由于在该结晶体内正电荷(Li+、Nb5+)的重心和负电荷(O2-)的重心不一致,即使在稳态进行分极,为将与该电荷量等量的异性电荷吸附在结晶表面,通常进行电中和。
在图8中,表示使用异极象结晶体的现有X射线发生装置的一例的构成示意图。如图8所示,在被维持在低气压环境的外壳51内的底面上,设置有作为台座的加热器/冷却器板52,被放置在其上表面的异极象结晶体53被其带正电表面支撑,而朝上露出的带负电表面与作为外壳51上部的铜制外壳54相向。在外壳54的上表面,装配有对于X射线来说透明地能够保持气密性的铍窗55。在外壳51上连接地线56来维持接地电位,而且还连接加向加热器/冷却器板52的直流电压加载线57以及温度控制信号线58,生成进行室温的温度升降的加热循环(例如,参照非专利文献2)。
根据该现有X射线发生装置,主要由于温度升降时带负电表面以及带正电表面的电荷变动而产生电场变化,从而从带负电表面解放的带电粒子、电子分离并激发外壳内的气体(尤其是O2分子),因此使电离后的电子撞击外壳,而激发X射线。
但是,在该构成中,由装置发生的X射线的强度弱,不适于实用,而且在异极象结晶体的上升以及下降时,出现X射线不连续地发生的问题。
而且,作为臭氧发生装置,提出使用将含有氧气的气体用紫外线、激光激发的方式,通过被称为无声放电的高压放电方式等(参照专利文献1)。
但是,这些现有臭氧发生方式必须使用数十万伏的高压电力电源装置,适用于这些方式的臭氧发生装置占据很大的放置空间,且消耗的电力也很大,不便于在食品店、饭店、宾馆、厨房中使用。
专利文献1特开平8-33886号公报非专利文献1科学杂志“Nature”(1992、vol.358、P.278)
非专利文献2互联网URL,www.amptek.com主页中销售AMPTEK INC的商品目录“AMPTEK X-RAY GENERATOR WITHPYROELECTRIC CRYSTAL COOL-X”发明内容因此,本发明的课题是提供能够发生比现有技术中的强度更强的X射线,而且能够连续地发生X射线的使用异极象结晶体的X射线发生装置。
而且,本发明的课题是提供不使用X射线管球、高压电源,连续地且有效地使用通过异极象结晶体的反复加热/冷却而发生的面状发散的X射线的小型简便的臭氧发生装置。
为解决上述课题,第一发明的X射线发生装置,其特征在于由以下部分构成,维持内部低气压环境的容器;在上述容器的内部设置的异极象结晶体支撑装置;在上述容器内部中,被上述异极象结晶体支撑装置支撑、相互留有间隔相向设置的至少一对的异极象结晶体;使上述异极象结晶体的温度升降的温度升降装置;通过上述装置,随着上述异极象结晶体的温度的升降,从上述容器放射X射线。
在第一发明的构成中优选为,上述容器壁由X射线不能透过的材料形成,上述容器壁上至少具有一个X射线透过窗。
还有选为,上述至少一对的异极象结晶体正负不同带电表面相互相向设置的,上述温度升降装置使上述至少一对异极象结晶体在相互间产生相同温度倾向且相同周期的温度升降。
还有选为,上述至少一对异极象结晶体优选正负不同带电表面相互间相向设置,在上述至少一对异极象结晶体之间,设置有金属目标,并由设置在上述容器内部的外壳支撑装置支撑。
还优选为,上述至少一对异极象结晶体采用相同带正电表面或相同带负电表面相互相向设置,上述温度升降装置使上述至少一对异极象结晶体在相互间产生相同温度且相同周期的温度升降。
还优选为,上述至少一对的异极象结晶体由相同带正电表面或相同带负电表面相互相向设置,上述温度升降装置使上述至少一对异极象结晶体在相互间产生相反的温度倾向且相同周期的温度升降。
而且,为解决上述课题,第二发明的X射线发生装置,其特征在于由以下部分构成,维持内部低气压环境的容器;在上述容器的内部设置的异极象结晶体支撑装置;在上述容器内部,由上述异极象结晶体支撑装置支撑、相互留有间隔相向设置的一对异极象结晶体,上述一对异极象结晶体,采用相同带正电表面或相同带负电表面相互相向设置;在上述容器内部,围绕上述一对异极象结晶体之间的间隙周围设置,支撑上述容器内部设置的外壳支撑装置的金属目标;使上述异极象结晶体的温度升降的温度升降装置。通过上述装置,随着上述异极象结晶体的温度的升降,从上述容器放射的X射线。
在第二发明的构成中,优选为,上述容器壁由X射线不能透过的材料形成的,上述容器壁上至少具有一个X射线透过窗。
而且,在第一以及第二发明的构成中,优选为,上述温度升降装置由以下部分构成分别测定上述至少一对异极象结晶体温度的温度传感器;可以进行反复加热以及冷却上述异极象结晶体的加热/冷却装置;根据上述温度传感器的温度检测信号,控制上述加热/冷却装置动作的控制装置。
而且,为解决上述课题,第三发明的X射线发生装置,其特征在于由以下部分构成维持内部低气压环境的容器;在上述容器的内部设置的异极象结晶体支撑装置;在上述容器内部,由上述异极象结晶体支撑装置支撑、相互留有间隔相向设置的一对异极象结晶集合体;使上述异极象结晶集合体的温度升降的温度升降装置;上述一对异极象结晶集合体为,分别在基座上将多个异极象结晶体排列成凹面,并固定而成;其中一侧的异极象结晶集合体为,将构成其的全部异极象结晶体的带正电表面朝向表面一侧设置;另一侧的异极象结晶集合体为,将构成其的全部异极象结晶体将带负电表面朝向表面一侧设置。上述一对异极象结晶集合体,将形成的上述凹面的表面相互相向设置,而且在上述一对异极象结晶集合体之间设置金属目标,由设置在上述容器内部的目标支撑装置支撑。
在第三发明的构成中,优选为,上述容器壁由不能透过X射线的材料形成,在上述容器壁上,具有位于同一平面的至少一个细长切口状的X射线透过窗;上述基座为半圆筒状;将上述多个异极象结晶体排列并固定在上述基座的凹面上;将上述一对异极象结晶集合体的轴向间隙与上述至少一个细长切口状的X射线透过窗对准,使其与上述容器的内部相向设置。
而且,为解决上述课题,第四发明的X射线发生装置,其特征在于由以下部分构成,由不能透过X射线的材料形成,维持内部低气压环境的容器;在上述容器的内部设置的异极象结晶体支撑装置;通过电介质在相互接合状态下相向设置,且在上述容器的内部被上述异极象结晶体支撑装置支撑的一对异极象结晶集合体;使上述异极象结晶集合体的温度升降的温度升降装置;上述一对异极象结晶集合体为,分别在半球壳状的基座凹面上固定多个异极象结晶体;其中一侧的异极象结晶集合体为,将构成其的全部异极象结晶体带正电表面朝向表面一侧设置;另一侧的异极象结晶集合体为,将构成其的全部异极象结晶体将带负电表面朝向表面一侧设置;上述一对异极象结晶集合体,通过环状电介质相互接合形成球壳,在上述球壳内部,在包含其中心的位置上设置有金属目标,由上述异极象结晶集合体所具有的目标支撑装置支撑;在上述一对异极象结晶集合体的至少一个上,形成至少一个在半径方向伸出的贯通孔;上述容器壁上,形成有与上述贯通孔对准的X射线透过窗。
为解决上述课题,第五发明的臭氧发生装置,其特征在于在低气压密封箱体内设置有异极象结晶体和,反复对该异极象结晶体进行加热、冷却的温度升降装置;在上述箱体的外侧或内侧邻接并列设置有臭氧生成用原料气体容器,使由上述异极象结晶体发生的软X射线通过X射线透过窗照射上述臭氧生成用原料气体容器。
在第五发明的构成中,优选为,在低气压密封箱体内设置X射线目标,将上述异极象结晶体发生的软X射线以及带电粒子线投射到该X射线目标,从而将目标发生的2次X射线照射到臭氧生成用原料气体容器。
还优选为,在异极象结晶体的周围设置空心阴极。或者,在低气压密封箱体内,使至少2个的异极象结晶体间隔一定空间相向设置,在各结晶体上设置温度升降装置的同时,在各结晶体的相向空间一侧设置环状的臭氧化室,使各个结晶体进行同相或逆相循环的热激发。
而且,在第五发明的构成中,优选为,多个异极象结晶体沿圆弧面设置,在上述圆弧的中心部设置臭氧化室。
为解决上述课题,第六发明的臭氧发生方法,其特征在于在低气压密封箱体内设置异极象结晶体,对该结晶体按规定的时间循环反复进行热激发,由此使结晶体连续地发生软X射线,将该X射线向臭氧生成用原料气体照射,生成臭氧。
在第六发明的构成中,优选为,将设置在密封的低气压箱体内的异极象结晶体进行热激发,通过由此引发的强电场,使该结晶体发出的带电粒子以及X射线投射到X射线目标上,从该目标激发的2次X射线照射臭氧生成用原料气体而生成臭氧。
还优选为,多个异极象结晶体相向设置,同相或反相地控制各结晶体的热激发循环。


图1为根据本发明的1实施例使用异极象结晶体的X射线发生装置的结构简图;图2为根据本发明的另一个实施例使用异极象结晶体的X射线发生装置的结构简图;图3为根据本发明的再一个实施例使用异极象结晶体的X射线发生装置的主要部分立体图;图4为根据本发明的再一个实施例使用异极象结晶体的X射线发生装置的结构简图;
图5为根据本发明的再一个实施例使用异极象结晶体的X射线发生装置的结构简图;图6为图1的X射线发生装置的X射线发生过程说明图;图7为图2的X射线发生装置的X射线发生过程说明图;图8为使用异极象结晶体的现有X射线发生装置的截面简图;图9为本发明的臭氧发生方法以及装置的基本概念说明图,将关于臭氧化室的2个热激发X射线发生源相向设置的示例;图10为将由异极象结晶体的热激发产生的X射线以及带电粒子向X射线目标以及空心阴极照射,通过从此处发出的2次X射线而产生臭氧的示例;图11为在低气压密封箱体内相向设置2个异极象结晶体,将由双方发出的热激发X射线倍增地生成臭氧的臭氧发生装置截面图;图12为图11的臭氧发生装置的动作原理说明用立体图;图13为将复数个异极象结晶板沿圆弧面设置的臭氧发生装置的示例动作说明图;图14为能够对异极象结晶体进行热循环激发和电致伸缩循环激发并用或交替使用的实施例的原理说明图。
符号说明1、容器2、X射线透过窗3a、3b、珀耳帖单元
4、O形环5a、5b、异极象结晶体6a、6b、温度传感器7a、7b、电源部8a、8b、控制部71、真空(低气压)箱体72、异极象结晶73、温度升降平台74、活性层75、热循环激发用控制部76、臭氧生成用原料气体容器(臭氧发生部)77、X射线目标78、空心阴极管79、珀耳帖电流控制电路80、为附加电致伸缩用电位的电极膜81、电致伸缩循环激发用控制部具体实施方式
以下,参照附图对本发明的优选实施例进行说明。图1为根据本发明的1实施例使用异极象结晶体的X射线发生装置的结构简图。如图1所示,本发明的X射线发生装置具有维持内部低气压环境(3~6Pa)的容器1。在该实施例中,容器1由不能透过X射线的材料(例如金属)形成,具有两端开口封闭的圆筒状。在容器1的壁上,例如侧壁上,具有由,例如Be或X射线透过性塑料,形成的至少一个的X射线透过窗2。
而且,在容器1的上壁以及底壁上,通过O形环等密封部件4在气密状态下接合珀耳帖(Peltier)单元3a、3b。在本实施例中,珀耳帖单元3a、3b不只是具有作为对异极象结晶体进行反复加热以及冷却的加热/冷却装置的功能,还有作为异极象结晶体支撑装置的功能。而且,向位于珀耳帖单元3a、3b的容器1内部一侧的基板上,接合并支撑异极象结晶体5a、5b,该一对异极象结晶体5a、5b在容器1的内部相互留有间隔相向设置。并且,在本实施例中,一对异极象结晶体5a、5b分别具有同样的圆盘形,而且珀耳帖单元3a、3b也具有相应的圆柱形。
在本发明中,可以全部使用例如LiNbO3、LiTaO3等公知的异极象结晶体。而且,异极象结晶体的尺寸没有特别的限定,但在本实施例中,一对的异极象结晶体,为直径约12mm、厚度约1~10mm,隔开间隔小于等于20mm相向设置。
在一对异极象结晶体5a、5b中,分别在适当的位置安装测定温度的温度传感器6a、6b。而且,在容器1的外部设置有例如电池等构成的电源部7a、7b,向珀耳帖单元3a、3b供给电力,和控制部8a、8b,根据温度传感器6a、6b发出的温度检测信号,控制从电源部7a、7b而来的电力供给从而控制珀耳帖单元3a、3b的动作。
然后,由该珀耳帖单元3a、3b、温度传感器6a、6b、电源部7a、7b以及控制部8a、8b构成使异极象结晶体5a、5b温度升降的温度升降装置。温度升降装置3a、3b;5a、5b;6a、6b;7a、7b;8a、8b可以使异极象结晶体5a、5b的温度分别独立地、按各种温度配比、按各种周期或非周期升降。在此,在每个各温度升降过程中,优选温度的上升时间和下降时间相同,而且优选在室温和上述异极象结晶体小于等于居里(Curie)点的适当温度之间反复进行温度升降。
在该构成中,作为一对异极象结晶体5a、5b的设置方法可以选择带正负的不同表面相互面对着设置、以及相同带正电表面之间或相同带负电表面之间相互面对设置之间的任一种。
然后,在一对异极象结晶体5a、5b为带正负电不同表面相互面对设置的情况下,优选为,温度升降装置3a、3b;5a、5b;6a、6b;7a、7b;8a、8b使一对异极象结晶体5a、5b的温度升降发生在相互间相同温度配比且同周期。
而且,在一对异极象结晶体5a、5b为相同带正电表面之间或相同带负电表面之间相互面对设置的情况下,温度升降装置3a、3b;5a、5b;6a、6b;7a、7b;8a、8b优选使一对异极象结晶体5a、5b的温度升降发生在相互间相同温度配比且同周期,或者在相互间相反的温度配比且同周期。
图6为在一对异极象结晶体为带正负电不同表面相互面对设置的情况下,其温度的升降发生在相互间相同温度配比且同周期的构成中,X射线的发生过程说明图。如图6所示,一对异极象结晶体为,将上侧异极象结晶体的带负电表面面向下侧异极象结晶体、下侧异极象结晶体的带正电表面面向上侧异极象结晶体而相向的方式设置。
首先,如图6中A所示,使一对异极象结晶体的温度以相同温度配比上升时,在下侧异极象结晶体上与上侧异极象结晶体相向的表面产生的正电荷的表面电荷密度减少,比吸附在上述晶体表面的负电量减少得更多,表面实际上带负电。另外,在上侧异极象结晶体上与下侧异极象结晶体相向的表面产生的负电荷的表面电荷密度减少,比吸附在上述晶体表面的正电量减少得更多,表面实际上带正电。
其结果是,在一对异极象结晶体之间的空间中,从上侧晶体向下侧晶体方向产生强电场。这时,在一对异极象结晶体之间的空间中存在低气压气体(例如氧气),但通过该强电场,一部分气体被电离,产生具有正电荷的离子和电子,从而形成等离子。而且,在一对异极象结晶体之间,由于强电场而产生放电,就更促进气体的电离。
如上所述,产生的电子以及离子,通过一对异极象结晶体之间产生的强电场,分别在与电场相反的方向以及相同的方向上加速。结果,被认为能产生X射线的电子撞击上侧异极象结晶体的表面,通过制动辐射机构,从上侧异极象结晶体产生构成上述晶体的所有元素所固有特性的X射线以及构成连续光谱的白色X射线。
其次,如图6中B所示,使一对异极象结晶体的温度以相同温度配比下降时,在下侧异极象结晶体上与上侧异极象结晶体相向的表面产生的正电荷的表面电荷密度增加,比吸附在上述晶体表面的负电量增加得更多,表面实际上带正电。另外,在上侧异极象结晶体上与下侧异极象结晶体相向的表面产生的负电荷的表面电荷密度增加,比吸附在上述晶体表面的正电量增加得更多,表面实际上带负电。
其结果是,在一对异极象结晶体之间的空间中,从下侧晶体向上侧晶体方向产生强电场。然后,被认为能产生X射线的电子撞击下侧异极象结晶体的表面,通过制动辐射机构,从下侧异极象结晶体产生构成上述结晶体的所有元素所固有特性的X射线以及构成连续光谱的白色X射线。
如上所述,在使一对异极象结晶体温度同时上升时从上侧异极象结晶体(带负电表面),或者下降时从下侧异极象结晶体,分别放射相同光谱的X射线。即,在该构成中,通过一对异极象结晶体的温度升降在相互间相同温度配比且同周期下反复进行,从上侧以及下侧异极象结晶体交互地不间断地放射X射线。
如上所述,在本发明的X射线发生装置中,通过相向设置的一对异极象结晶体的温度反复升降而发生X射线,通过容器1所具有的X射线透过窗2向外部放射。这种情况下,如果容器1全部由具有X射线透过性材料形成,则从容器1向2π的方向放射X射线。
另外,在本实施例中,容器内只将一对异极象结晶体相向设置,也可以将多对异极象结晶体分别在容器内相向设置,在这种情况下,可以连续地得到强度更高的X射线。
而且,在本实施例中,作为异极象结晶体的加热/冷却装置使用珀耳帖单元,但本发明的构成不限于此,也可以将反复进行发热以及吸热作用的适当的公知装置作为异极象结晶体的加热/冷却装置使用。这种情况下,如果需要,可以另外在容器内设置用于支撑异极象结晶体的异极象结晶体支撑装置。
与现有技术使用高压电源、大型的效率低的电子枪方式的X射线发生装置不同,根据本发明的X射线发生装置,通过使用小型的异极象结晶体并通过使用电池级电源,采用非常紧凑的结构,产生数10kV/mm的强电场,可以连续地产生与电子枪方式相比单位面积的X射线强度更大更显著的X射线。即,本发明的X射线发生装置可以取代现有X射线发生装置并具备显著的实用性。
而且,根据本发明,能够提供一种X射线发生装置,相向设置一对异极象结晶体,由于通过对它们进行加热/冷却而发生X射线,相对于使用现有的异极象结晶体的X射线发生装置中,只能不连续发生强度小的X射线,可以连续地发生强度更大的X射线,并具有实用性。
而且,异极象结晶体和加热/冷却装置之间,设置氧化镁(MgO)、氧化钙(CaO)等具有较低功系数的活性板(活性层),通过对异极象结晶体进行反复加热/冷却而产生的强电场,放出来自活性板的电子等带电粒子,由此可以显著增大发生X射线的强度。
图2为根据本发明的另一个实施例使用异极象结晶体的X射线发生装置的结构简图。本实施例与图1所示的实施例不同之处在于,只是在一对异极象结晶体之间设置金属目标。因此,在图2中,关于与图1中的构成要素相同的构成使用同一序号并省略说明。
如图2所示,在一对异极象结晶体5a、5b之间,设置平板状的金属目标9,并由在容器1的内侧壁表面突出设置的目标支撑部10支撑。
在本实施例中,一对异极象结晶体5a、5b优选为,正负不同带电表面相互相向设置。因此,异极象结晶体5a、5b的温度升降时,在一对异极象结晶体之间产生平行的电力线,从异极象结晶体发出的电子、以及由于一对异极象结晶体之间的空间内存在气体的电离而产生的离子和电子,有效地撞击目标9。
图7为在本实施例情况下的X射线发生过程说明图。在图7中,一对异极象结晶体中,上侧异极象结晶体将带负电表面朝向目标、下侧异极象结晶体将带正电表面朝向目标并相向设置。
使一对异极象结晶体的温度以相同温度配比上升时,在下侧异极象结晶体的朝向目标的面上产生的正电荷的表面电荷密度减少,比吸附在同一结晶体表面的负电量减少得更多,表面实际上带负电。另外,在上侧异极象结晶体的朝向目标的面上产生的负电荷的表面电荷密度减少,比吸附在同一结晶体表面的正电量减少得更多,表面实际上带正电。
其结果是,在一对异极象结晶体之间的空间中,从上侧晶体向下侧晶体方向产生强电场。这时,在一对异极象结晶体之间的空间中存在低气压气体(例如氧气),但通过该强电场,一部分气体被电离,产生具有正电荷的离子和电子,从而形成等离子。而且,在一对异极象结晶体之间,由于强电场而产生放电,就更促进气体的电离。
如上所述,产生的电子以及离子,通过一对异极象结晶体之间产生的强电场,分别在与电场相反的方向以及相同的方向上加速。结果,对于被认为能产生X射线的电子,目标以及下侧异极象结晶体之间存在的电子撞击目标,通过制动辐射机构,从目标产生该目标所固有特性的X射线以及构成连续光谱的白色X射线。而且,上侧异极象结晶体以及目标之间存在的电子撞击上侧异极象结晶体的表面,通过制动辐射机构,从上侧异极象结晶体产生构成上述结晶体的所有元素所固有特性的X射线以及构成连续光谱的白色X射线。
在这种情况下,在目标为厚度1~5μm间的箔时,X射线向空间的各个方向放射,但目标的厚度增加时,X射线主要向目标的下部空间放射。
使一对异极象结晶体的温度以相同的温度配比下降时,在面向下侧异极象结晶体目标的表面上产生的正电荷的表面电荷密度增加,比同一结晶体的表面上吸附的负电量增加得更多,则表面实际上带正电。另外,在面向上侧异极象结晶体目标的表面上产生的负电荷的表面电荷密度增加,比同一结晶体的表面上吸附的正电量增加得更多,则表面实际上带负电。
在一对异极象结晶体之间的空间中,从下侧晶体向上侧晶体方向产生强电场。然后,关于被认为能产生X射线的电子,存在于目标与下侧异极象结晶体之间的电子撞击下侧异极象结晶体的表面,通过制动辐射机构,从下侧异极象结晶体产生构成上述结晶体的所有元素所固有特性的X射线以及构成连续光谱的白色X射线。而且,存在于上侧异极象结晶体与目标之间的电子撞击目标,通过制动辐射机构,在上述目标上产生所固有特性的X射线以及构成连续光谱的白色X射线。
根据本实施例,能够产生构成异极象结晶体元素的固有特性X射线以及构成连续光谱的白色X射线。
图3为根据本发明的再一个实施例使用异极象结晶体的X射线发生装置的主要部分立体图。本实施例中,只有目标的构造以及设置与图2所示实施例不同。因此,在图3中,与图2的构成要素相同的使用同一序号,而且,省略容器、且电源部以及控制部,并省略对它们的说明。
如图3所示,金属目标11为圆筒形,围绕一对异极象结晶体5a、5b之间的间隙13的周围设置,由容器内侧壁上突出设置的目标支撑部12支撑。
在本实施例中,一对异极象结晶体5a、5b,相同带正电表面之间或相同带负电表面之间相互相向设置。并且,在前者的情况下,异极象结晶体5a、5b分别发出的电力线从异极象结晶体5a、5b之间的间隙向无限远处以放射状发散;在后者的情况下,电力线与前者相反方向生成。结果,从各异极象结晶体5a、5b发生的电子、以及通过存在于异极象结晶体5a、5b之间空间内气体的电离而产生的离子和电子有效地撞击目标11,因此,高强度连续地从容器的X射线透过窗放射出构成异极象结晶体5a、5b元素所固有特性的X射线以及构成连续光谱的白色X射线,和目标所固有特性X射线以及构成连续光谱的白色X射线,。
图4为根据本发明的再一个实施例使用异极象结晶体的X射线发生装置的结构简图。如图4所示,本发明的X射线发生装置具有维持内部低气压环境(3~6Pa)的容器20。在本实施例中,容器20是由不能透过X射线的材料(例如金属)形成的,具有封闭圆筒形的两端开口;容器20的壁,例如侧壁,具有由,例如Be或X射线透过性塑料,形成的至少一个X射线透过窗21。在这种情况下,X射线透过窗为在容器侧壁的大致中央位置定位在与容器的轴相垂直的面上的细长切口状。
而且,在容器20的上壁内表面以及底壁内表面上,设置有异极象结晶支撑部26a、26b。然后,在容器20内部,一对异极象结晶集合体31a、31b由异极象结晶支撑部26a、26b支撑,并相互以一定间隔相向设置。
一对异极象结晶集合体31a、31b分别在半圆筒状的底座22a、22b的凹面一侧上固定排列多个异极象结晶体23,其中一侧的异极象结晶集合体31a为,将构成其的全部异极象结晶体23的带正电表面朝向异极象结晶集合体31a的表面设置;另一侧异极象结晶集合体31b为,将构成其的全部异极象结晶体23的带负电表面朝向异极象结晶集合体31b的表面设置。而且,一对异极象结晶集合体31a、31b的凹面状表面相互相向设置,且在一对异极象结晶集合体31a、31b之间轴向伸长的间隙25对准X射线透过窗21设置。
在一对异极象结晶集合体31a、31b之间,设置平板状金属目标27,由设置在其中一侧的异极象结晶集合体31b的基座22b上的目标支撑部28支撑。目标27优选两面分别与异极象结晶集合体31a、31b相向设置。
在各个异极象结晶集合体31a、31b的基座22a、22b的凸出面上,与固定在其凹面一侧的异极象结晶体23相对应,安装有珀耳帖单元24。基座22a、22b具有导热性,由于珀耳帖单元24的放热以及吸热作用,可使相应的异极象结晶体23有效率地加热以及冷却。珀耳帖单元24与每个异极象结晶集合体31a、31b分别串联或并联连接,接受来自设置在容器20外部,例如由电池组成的电源部29a、29b的电力供给。
而且,虽然未图示,但在各异极象结晶集合体31a、31b上,设置有为检测构成其的异极象结晶体的温度的温度传感器。而且,在容器20外部,具有控制部30a、30b,根据温度传感器发出的温度检测信号,通过控制电源部29a、29b提供的电力供给,来控制珀耳帖单元24动作。
由上述珀耳帖单元24、温度传感器、电源部29a、29b以及控制部30a、30b构成升降异极象结晶集合体31a、31b温度的温度升降装置。温度升降装置24;29a、29b;30a、30b可以对异极象结晶集合体31a、31b的温度分别独立地在各种温度配比下按各种周期或非周期进行升降。在这种情况下,优选为,一对异极象结晶集合体31a、31b温度的升降相互按相同的温度配比且按相同周期发生,而且,优选每个各自温度升降过程中,温度上升时间和下降时间相等,而且优选在温室和小于等于上述异极象结晶体23居里点的适当的高温之间,反复升降温度。在本实施例的情况下,X射线的发生过程与图2所示实施例相同。
在本实施的情况下,将多个异极象结晶体23组合成为异极象结晶集合体31a、31b,并通过将一对异极象结晶集合体31a、31b作为凹面(半圆筒面)相向设置,与将单一的异极象结晶体相互相向设置的结构相比,可以产生大量电子以及离子,且可以使更大量的电子撞击目标。因此,可以连续地产生更高强度的X射线。而且,在本实施例中,在一对异极象结晶集合体31a、31b之间的空间中产生的X射线,从一对异极象结晶集合体31a、31b轴向伸长的间隙,通过环形的X射线透过窗21向容器外部放射,因此能够得到强度适于实用的直线状X射线。
图5为根据本发明的再一个实施例使用异极象结晶体的X射线发生装置的结构简图。如图5所示,本发明的X射线发生装置具有维持内部低气压环境(3~6Pa)的容器32。容器32由不能透过X射线的材料(例如金属)形成,具有封闭的圆筒形两端开口,在容器32侧壁的一部分具有由,例如Be或X射线透过性塑料,形成的圆形X射线透过窗33。
在容器32的上壁内表面设置有异极象结晶支撑部34。而且,在容器32内部,一对异极象结晶集合体35a、35b由异极象结晶支撑部34支撑,并相向设置。一对异极象结晶集合体35a、35b分别在半球壳形的基座36a、36b的凹面一侧上,排列并固定多个异极象结晶体37,其中一侧的异极象结晶集合体35a为,将构成其的全部异极象结晶体37的带正电表面朝向异极象结晶集合体35a的表面设置;另一侧的异极象结晶集合体35b为,将构成其的全部异极象结晶体37的带负电表面朝向异极象结晶集合体35b的表面设置。
而且,在另一个异极象结晶体35b上,形成有沿径向伸长的贯通孔42。
一对异极象结晶集合体35a、35b,将形成凹面的表面相互相向设置,且通过由电介质形成的环39相互连接,作为整体形成球壳的同时,贯通孔42对准容器32的X射线透过窗33设置。
在一对异极象结晶集合体35a、35b之间设置金属目标41,设置在其中一个异极象结晶集合体35a的基座36a目标支撑部40支撑。这种情况下,目标41优选设置在包含球壳中心的位置。
在各个异极象结晶集合体35a、35b的基座36a、36b的凸面一侧上,与固定在其凹面一侧的各异极象结晶体37相对应,安装有珀耳帖单元38。基座36a、36b具有导热性,由于珀耳帖单元38的放热以及吸热作用,可使相应的异极象结晶体37有效地加热以及冷却。珀耳帖单元38与在每个异极象结晶集合体35a、35b分别串联或并联连接,接受来自设置在容器32外部,例如由电池组成的电源部43a、43b的电力供给。
而且,虽然未图示,但在各异极象结晶集合体35a、35b上,设置有为检测构成其的异极象结晶体37的温度的温度传感器。而且,在容器32外部,具有控制部44a、44b,根据温度传感器发出的温度检测信号,通过控制电源部43a、43b提供的电力供给,来控制珀耳帖单元38动作。
由上述珀耳帖单元38、温度传感器、电源部43a、43b以及控制部44a、44b构成升降异极象结晶集合体35a、35b温度的温度升降装置。并且,根据温度升降装置,异极象结晶集合体的温度升降动作与图4所示实施例相同,而且X射线的发生过程也与图4所示实施例相同。
根据本实施例,由于在一对异极象结晶集合体35a、35b之间产生的电力线在球壳中心附近相当密集,从目标41发出的特性X射线的强度比图4所示实施例中的更强。而且,在球壳内部(一对异极象结晶集合体35a、35b的内部)产生的X射线,从贯通孔42通过圆形X射线通过窗33向容器外部放射。这样,根据本实施例,能够得到适于实用的高强度点状X射线。
另外,在本发明中,通过使相向设置的异极象结晶体的温度升降,而产生X射线,但向异极象结晶体使用交流电压,通过电致异极象结晶体,可以与温度升降时同样地发生X射线。
图9为本发明的臭氧发生方法以及装置的基本概念说明图,71为围绕3~6Pa范围的低气压区域的箱体;72为在异极象结晶体上使用铌酸锂(LiNbO3)等单结晶板,将带正电表面作为上部(与臭氧室相对的方向)设置;73为在对结晶板72在规定周期内进行加热/冷却的温度升降平台中,H为加热用加热器线、P为冷却水循环管道。75为控制该加热器的接通/断开、冷却水的供给/断开的控制部;76为构成臭氧化室的容器,从图9的左侧导入含有氧气(O2)的气体,在容器76内进行臭氧化反应,从右侧放出含有氧气(O3)的气体。74为设置在结晶板72和温度升降平台73之间的具有低功系数的活性层,适合使用氧化镁(MgO)或氧化钙(CaO)等。该活性层74通过银膏等连接层与温度升降平台73的印模(Block)的上表面导电连接。
温度升降平台73反复进行如下动作通过加热器H升温至例如约200℃,然后切断加热器电源,同时使冷却水在管道P中循环,例如急剧冷却至常温。该升温/降温循环通过温度控制部75进行程序控制。
因此,异极象结晶板72通过活性层74反复进行从200℃到常温的升温/降温,致使结晶板72内的自发分极,从而结晶的上表面以及下表面交互地成为高电位面。因此在结晶的周围产生强电场,通过该强电场的激发作用,从结晶表面产生来自构成该结晶的元素本身特性的X射线。这时的温度循环优选按5分钟至10分钟间隔的周期反复进行加热/冷却。根据本案发明人的实验,采用LiNbO3结晶时,在降温过程中产生结晶的构成元素,即铌(Nb)、锂(Li)、氧(O)特性的X射线的同时,还产生具有连续能量的白色X射线。该低能量的X射线从结晶表面如图9中的X所示向各个方向以放射状发生,由于箱体71内为低气压环境,通过箱体71上部的X射线透过窗71a(例如,只有该部分形成铍膜),到达臭氧化室76。而且,根据随着结晶板72的热激发产生的强电场,也从活性层74放出电子等带电粒子,由于该电子通过上述电场被加速,与箱体71内的微量气体分子相撞击而产生X射线,该X射线也有助于臭氧化室中的臭氧化反应。
而且,在结晶周边放出的电子,根据随着结晶的温度变化而变化的电位,也撞击结晶自身,因此从结晶产生特性X射线。
像这样,通过对结晶板施加升温/降温的温度循环,由于从其表面、侧面或下表面发生连续地特性X射线、白色X射线,并将该射线通过X射线透过窗照射到臭氧化室,从而可以连续地进行臭氧反应。另外,臭氧化室76的X射线入射面76a由X射线透过性薄膜构成,或全部室76构成部材都使用X射线透过性塑料也可以。
而且,如上所述发生的X射线为3~6KeV的低能量的软X射线,因此,在臭氧化室中参加臭氧反应后,直接衰减,几乎不会到达反应室外。因此,没有必要考虑放射线伤害和放射线防护。
另外,图9的示例通过71、72、73、74表示,将根据异极象结晶板的周期性反复加热/冷却(热激发)的一个X射线发生部设置在臭氧化室76的上方,向臭氧化室照射2倍的X射线,因此臭氧化效率提高。这时其中一侧的结晶板72在升温循环时,另一侧的结晶板72`进行降温循环,如果相逆地控制加热/冷却循环(热激发循环),从而X射线交互地投射到臭氧生成部,因此可以有效率地连续地产生X射线。当然也可以2个结晶体的热激发循环同相控制,这种情况下在同一时刻2倍的X射线间歇地照射臭氧生成部。臭氧化室更大时,如果在四边、六边设置该X射线发生部,可以连续地产生更多的臭氧,这是众所周知的。这种情况下即使活性化层74没有特别设置,也能实现本发明的目的。
图10所示为将臭氧化室76导入低气压箱体71内,在异极象结晶板72与臭氧化室76之间设置铜(Cu)铝(Al)镁(Mg)钒(V)等金属的X射线目标77的示例。通过结晶板72周期性热激发的面X射线发生机构与图9的情况大致相同,但使从结晶自身放射的X射线再次撞击X射线目标77,同时也使在结晶的周围放出的电子(e-)撞击该目标77,因此从该目标77发生构成其元素的、例如来自铜等的更高能量的2次特性X射线的同时,还发生具有连续能量白色X射线,使用该高能量的特性X射线进行臭氧化。图10与图9相同的部分用相同序号表示。根据这样设置的目标,由于其材质可以任意选择Al、Ti等,与臭氧化原料的特性相对应,可以从该目标有选择地发生最适合其臭氧化的波长范围的X射线,能够在最适合条件下进行臭氧化。该目标也可以使用薄膜材料,或者也可以向结晶板(接地电位)与目标之间附加电位,但臭氧化的情况下一般不附加电位。
而且,78为石墨(绝缘体)等空心阴极管,从结晶放出的带电粒子通过由空心阴极78产生地电场平滑地向目标指向引导,通过由结晶产生的电子射线、X射线加强2次X射线的发生。该空心阴极管也可以使用其他绝缘性材料、半导体物质、或金属。
图11、12为在低气压密封箱体71内相向设置2个异极象结晶体72、72`,由于在其基面设置对各结晶体进行周期性加热/冷却的平台73、73`,使在箱体71外侧的侧面部分围绕箱体设置矩形截面的环状臭氧化室76`的示例。在本示例中,温度升降平台73、73`由珀耳帖单元构成,其加载电流根据控制电路79周期性地切换正反方向,从而对结晶体进行反复加热/冷却。这种情况下,相向结晶体的其中一侧的结晶体72进行冷却循环时,另一侧的结晶体72`进行加热循环,如此以反相位地控制珀耳帖电流。即,结晶体72处在冷却过程时从该结晶体72以放射状产生特性X射线、具有连续能量的白色X射线,它们通过X射线透过窗76a`向臭氧化室76`内投射,有助于室内气体的臭氧化反应。而且由于因此产生的X射线的一部分也撞击相向的结晶体72`,从相向结晶体72`也激发X射线。如此从结晶体72直接产生的X射线和从相向结晶体72`产生的2次X射线都同时向臭氧化室76`投射,因此向臭氧化室投射的X射线变得更多。
在接下来的循环中,结晶体72处于升温过程、72`处于降温过程时,从结晶体72`以放射状产生软X射线,并向臭氧化室76`投射,同时与上述同样该X射线也撞击相向的另一侧结晶体72,而且由于还从该结晶体72放射2次X射线,所以它们合并能促进臭氧化。
如果以上述反相位地控制其中一侧结晶体的加热/冷却循环和另一侧结晶体的冷却/加热循环,根据相乘作用可以连续地产生大量的X射线,因此臭氧生成效率进一步提高。而且如果同相控制两个结晶体的热激发循环,可以间歇地产生大约2倍能量的软X射线。且,在图12的立体图中,省略温度升降平台73、73`、真空(低气压)箱体71以及控制电路79的图示,在各结晶体上设置由珀耳帖单元构成的温度升降平台,分别被控制部79控制其加热/冷却循环。这种情况下箱体71形成油桶状。
图13为将2个异极象结晶体72b、72b`沿着以点O为中心的圆弧面相向设置,在中心附近设置臭氧化室76”的示例。各结晶体的热循环激发使用较好的加热器线h、h`来实施的示例。这种情况下,从各结晶体发出的X射线用折线箭头X表示,由于集中指向中心O方向,可以向臭氧化室76”投射密度更高的X射线。这种情况下,臭氧化室中按垂直于纸面的方向导入/排出臭氧原料气体。而且,管状的臭氧化室管材可以选择X射线透过性的塑料或铝等X射线透过性材料。
这种情况下,在图中2个结晶板沿圆弧面相向设置,也可以4个按大致90°间沿隔圆弧面相向设置,或沿圆弧面设置更多数的异极象结晶体板。而且相向的一对结晶板由铌酸锂单结晶板构成,其他的一对由钽酸锂的单结晶板构成,各个结晶板的热激发循环的周期按同相、反相或不同相位加热/冷却等,综合臭氧室的容量、原料气体的组成/流量等在最适合的条件下激发X射线。当然,结晶板可以是如图11所示平行平板状,将小平板结晶沿多个圆弧面或球面设置,可以使产生的X射线指向中心方向。且臭氧化室设置在真空或低气压箱体内,从箱体外通过导管连续地供给原料气体,产生的臭氧气体通过排气管供给灭菌室或消毒室。
在上述实施例中,作为形成X射线发生源的异极象结晶体可以使用LiNbO3、LiTaO3、硫酸三甘氨酸(TGS),但也可以使用其他异极象结晶体(焦电结晶体)。
而且其大小优选以尽量大的面积制造,但因为制造成本等因素,使用直径30~60mm范围的圆板状或角状的结晶板就足够了,由于在热激发时是有热传播效率的面,其厚度优选薄的、在1~5mm范围内。如果使用上述材料可以比较方便地在市场上购买,因此提高了使用的广泛性。
然后,作为本发明关键部分的温度升降平台广泛使用组装通常的热射线加热器或夹套加热器和冷却水或冷却介质气体循环装置的装置,但使用珀耳帖单元的加热冷却装置也有效。因此而进行的热激发优选,例如将结晶板从常温升温至小于等于居里点(使用LiNbO3时为1200℃)的适当温度例如200℃需要约5~10分钟,然后在相同时刻降温至常温,然后再次升温至200℃,反复进行上述操作。使用珀耳帖单元时,通过程序控制其加载电压以及电流,可以简便地进行上述规定周期的热循环。且,该上限、下限温度以及循环时间根据结晶板的组成、大小等选择最佳的条件。
然后,容纳该结晶板的低气压箱体的真空度为3~6Pa范围的低压即可,没有必要使用比这更高程度的真空。如图9所示臭氧生成部设置在X射线发生箱体71外侧的情况下,该箱体的大小最好比结晶板的大小略大,箱体的大小也可以为100mm的小型箱体。
而且,结晶板自身维持接地电位,在相向设置的情况下也没有必要向它们之间附加电位,因此高压设备等完全没有必要。因此在商店、医院、畜舍、饭店、宾馆等也能简单地设置。当然为了热循环激发结晶板,使用珀耳帖单元的情况下,也没有必要使用大型电源设备。
而且,由于臭氧生成用原料气体容器通常在接近大气压使用,不使用耐久好的材质也可以,但优选随着X射线刺激、臭氧反应不产生杂质分子的化学稳定材料。
而且如本实施例所说明的,X射线入射位置通常使用X射线透过性材料,但在其他状态时在容器的X射线入射位置使用X射线目标相应性质的材料。这种情况下,臭氧容器整体或X射线碰撞的部分使用薄的铜膜、铝膜等,从该部分向内侧发出的2次射线有助于臭氧反应。
以上,主要叙述关于将根据异极象结晶体的热激发而产生的X射线用于臭氧化反应的方式,但作为X射线激发的方法可以对异极象结晶进行电、机械刺激而激发X射线。图14为向设置在真空(低气压)箱体内的异极象结晶体72的上表面(带正电表面)贴附铌、钽等导电性膜80,根据其与结晶的带负电表面(接地侧)之间的控制电路81,而附加交变电压,由于结晶自身上的电致现象而产生周期性的应变,将根据该应变产生的自发分极而激发的X射线用于臭氧的发生。用于按周期提供电致的交变电压的极性周期变向为60周、其电位在1kV,电流可以几乎不流动。当然使用其他机构/加压装置等也可以产生周期性的应变。臭氧生成容器、X射线目标、空心阴极管、电源控制部等与上述实施例相同较好。
图14的示例为温度升降平台73和该电致循环激发装置80、81并用更高效率地产生臭氧的示例,也可以同时地或切换地驱动两者,而且还可以只使用任何一个发生的X射线来发生臭氧,此时可以省略一个装置。
根据上述本发明制造臭氧发生装置的实验机,进行实验。结果,确认可以产生一定浓度的臭氧。
如上所述,本发明的臭氧发生方法以及装置将小形的异极象结晶体只以规定热循环进行反复加热冷却,以面状或按三维空间方向产生连续的软X射线,由于使用该面状放射X射线进行臭氧化,所以没有必要都使用高压高电位的电源装置,可以简便地在家庭、医院、商店以及厨房等处使用以外,由于所使用的X射线也包括低能量的软X射线,在大气中被直接吸收而消灭,所以完全没有对人体等的放射性伤害等影响。
而且如实施例所示,将多个小形的异极象结晶进行组合将产生的软X射线集中地向臭氧化室投射,可以使臭氧化效率进一步提高,并可以连续地产生大量臭氧。
而且,如图10所示,在异极象结晶体与臭氧化室之间,设置铜、铝、镁、钒等金属对阴极板或由其薄膜形成的X射线目标,将根据异极象结晶体的热激发而产生的带电粒子线以及X射线向该目标照射,并将因此得到的2次X射线(特性X射线)以及具有连续能量的白色X射线向臭氧化室投射,选择性地产生最适合臭氧化的特有波长的特性X射线,从而可以有效率地促进臭氧反应。
本发明使用X射线(软X射线)来产生臭氧,提供在现有技术中前所未有的独创思想,对现有的臭氧发射装置领域作出了巨大贡献。
产业易用性根据本发明,与现有的大型效率低的电子枪方式的X射线发生装置不同,使用小型的异极象结晶体,以电池等作为电源,来产生数10kV/mm的高电场,与电子枪方式相比可以连续地产生在单位面积上的X射线强度更高的X射线。因此,根据本发明置换现有的电子枪方式的X射线发生装置,提供一种紧密的X射线发生装置,可以用于X射线显微镜、元素分析、结晶解析及非破坏性检查、或者各种医疗检查等。
而且,根据本发明,可以不需要使用如现有臭氧发生装置的交流高压电源,而将小型的异极象结晶体在规定热循环子阿反复加热、冷却而产生所需的臭氧。而且,所使用的X射线为低能量的软X射线,在大气中被直接吸收而消灭,所以完全没有对人体等的放射性伤害等。因此,根据本发明,提供一种用一般家庭电源等可以驱动的小型臭氧发生装置,处理可以对饮料、食品、医疗器具以及其他各种生活用品的灭菌处理和消毒之外,还可以在医院、学校、动物饲养场以及工厂等需要空气净化、脱臭脱色、除菌、品质管理、以及各种使用臭氧的处理过程等使用。
权利要求
1.一种X射线发生装置,其特征在于包括,维持内部低气压环境的容器、在上述容器的内部设置的异极象结晶体支撑装置、在上述容器内部,由上述异极象结晶体支撑装置支撑,相互留有间隔相向设置的至少一对异极象结晶体、使上述异极象结晶体的温度升降的温度升降装置并通过上述装置,随着上述异极象结晶体的温度升降,从上述容器放射X射线。
2.如权利要求1所述的X射线发生装置,其特征在于上述容器壁由X射线不能透过的材料形成的,上述容器壁上至少具有一个X射线透过窗。
3.如权利要求1或2所述的X射线发生装置,其特征在于上述至少一对的异极象结晶体由正负不同带电表面相互相向设置,上述温度升降装置使上述至少一对异极象结晶体在相互间产生相同温度倾向且相同周期的温度升降。
4.如权利要求1或2所述的X射线发生装置,其特征在于上述至少一对的异极象结晶体由正负不同带电表面相互相向设置,在上述至少一对异极象结晶体之间,设置有金属目标,并由设置在上述容器内部的目标支撑装置支撑。
5.如权利要求1或2所述的X射线发生装置,其特征在于上述至少一对的异极象结晶体由相同带正电表面或相同带负电表面相互相向设置,上述温度升降装置使上述至少一对异极象结晶体在相互间产生相同温度倾向且相同周期的温度升降。
6.如权利要求1或2所述的X射线发生装置,其特征在于上述至少一对的异极象结晶体由相同带正电表面或相同带负电表面相互相向设置,上述温度升降装置使上述至少一对异极象结晶体在相互间产生相反的温度倾向且相同周期的温度升降。
7.一种X射线发生装置,其特征在于包括,维持内部低气压环境的容器、在上述容器的内部设置的异极象结晶体支撑装置、在上述容器内部,由上述异极象结晶体支撑装置支撑,相互留有间隔相向设置的一对异极象结晶体;上述一对异极象结晶体,采用相同带正电表面或相同带负电表面相互相向设置,以及在上述容器内部,围绕上述一对异极象结晶体之间的间隙周围设置的、由上述容器内部设置的外壳支撑装置支撑的金属目标;使上述异极象结晶体的温度升降的温度升降装置;通过上述装置,随着上述异极象结晶体的温度的升降,从上述容器放射X射线。
8.如权利要求7所述的X射线发生装置,其特征在于上述容器壁由X射线不能透过的材料形成,上述容器壁上至少具有一个X射线透过窗。
9.如权利要求1~8的任一项所述的X射线发生装置,其特征在于,上述温度升降装置包括分别测定上述至少一对异极象结晶体温度的温度传感器;反复加热以及冷却上述异极象结晶体的加热/冷却装置;根据上述温度传感器的温度检测信号,控制上述加热/冷却装置动作的控制装置。
10.一种X射线发生装置,其特征在于包括,维持内部低气压环境的容器、在上述容器的内部设置的异极象结晶体支撑装置、在上述容器内部,由上述异极象结晶体支撑装置支撑、相互留有间隔相向设置的一对异极象结晶集合体、使上述异极象结晶集合体的温度升降的温度升降装置;上述一对异极象结晶集合体为,分别在基座上将多个异极象结晶体排列成凹面,并固定而成;其中一侧的异极象结晶集合体为,将构成其的全部异极象结晶体的带正电表面朝向表面一侧设置;另一侧的异极象结晶集合体为,将构成其的全部异极象结晶体的带负电表面表面一侧设置;上述一对异极象结晶集合体,将形成的上述凹面的表面相互相向设置,而且在上述一对异极象结晶集合体之间设置有金属目标,由设置在上述容器内部的目标支撑装置支撑。
11.如权利要求1所述的X射线发生装置,其特征在于上述容器壁由不能透过X射线的材料形成,在上述容器壁上,具有位于同一平面的至少一个细长切口状的X射线透过窗;上述基座为半圆筒状;将上述多个异极象结晶体排列并固定在上述基座的凹面上;将上述一对异极象结晶集合体,其轴向间隙与上述至少一个细长切口状的X射线透过窗对准,使其与上述容器的内部相向设置。
12.一种X射线发生装置,其特征在于包括由不能透过X射线的材料形成,维持内部低气压环境的容器,在上述容器的内部设置的异极象结晶体支撑装置,通过电介质在相互接合状态下相向设置、且在上述容器的内部被上述异极象结晶体支撑装置支撑的一对异极象结晶集合体,使上述异极象结晶集合体的温度升降的温度升降装置;上述一对异极象结晶集合体为,分别在半球壳状的基座凹面上固定多个异极象结晶体;其中一侧的异极象结晶集合体为,将构成其的全部异极象结晶体将带正电面向表面一侧设置、另一侧的异极象结晶集合体为,将构成其的全部异极象结晶体将带负电面向表面一侧设置;上述一对异极象结晶集合体,通过环状电介质相互接合形成球壳,在上述球壳内部,在包含其中心的位置上设置有金属目标,由上述异极象结晶集合体所具有的目标支撑装置支撑;在上述一对异极象结晶集合体的至少一个上,形成至少一个贯通孔;上述容器壁上,形成有与上述贯通孔对准的X射线透过窗。
13.一种臭氧发生装置,其特征在于在低气压密封箱体内,设置有异极象结晶体和,反复对该异极象结晶体进行加热、冷却的温度升降装置;在上述箱体的外侧或内侧邻接并列设置有臭氧生成用原料气体容器;使由上述异极象结晶体发生的软X射线通过X射线透过窗照射上述臭氧生成用原料气体容器。
14.如权利要求13所述的臭氧发生装置,其特征在于在低气压密封箱体内设置X射线目标,将上述异极象结晶体发生的软X射线以及带电粒子线投射到该X射线目标,从而将目标发生的2次X射线照射到臭氧生成用原料气体容器。
15.如权利要求13或14所述的臭氧发生装置,其特征在于在异极象结晶体的周围设置空心阴极。
16.如权利要求13或14所述的臭氧发生装置,其特征在于在低气压密封箱体内,使至少2个的异极象结晶体间隔一定空间相向设置,在各结晶体上设置温度升降装置的同时,在各结晶体的相向空间一侧设置环状的臭氧化室,使各个结晶体进行同相或逆相循环的热激发。
17.如权利要求13所述的臭氧发生装置,其特征在于多个异极象结晶体沿圆弧面设置,在上述圆弧的中心部设置臭氧化室。
18.一种臭氧发生方法,其特征在于在低气压密封箱体内设置异极象结晶体,对该结晶体按规定的时间循环反复进行热激发,由此使结晶体连续地发生软X射线,将该X射线向臭氧生成用原料气体照射,生成臭氧。
19.一种臭氧发生方法,其特征在于,将设置在密封的低气压箱体内的异极象结晶体进行热激发,通过由此引发的强电场,使该结晶体发出的带电粒子以及X射线投射到X射线目标上,从该目标激发的2次X射线照射臭氧生成用原料气体而生成臭氧。
20.如权利要求18或19所述的臭氧发生方法,其特征在于多个异极象结晶体相向设置,同相或反相地控制各结晶体的热激发循环。
全文摘要
维持内部低气压环境的容器(1);设置在上述容器的内部的异极象结晶体支撑装置(3a、3b);在上述容器内部具有,被上述异极象结晶体支撑装置支撑、相互留有间隔相向设置的至少一对异极象结晶体(5a、5b)和使上述异极象结晶体的温度升降的温度升降装置(3a、3b;6a、6b~8a、8b),通过上述装置,随着上述异极象结晶体的温度的升降,从上述容器放射的X射线。
文档编号H05G2/00GK1778150SQ20048000179
公开日2006年5月24日 申请日期2004年9月15日 优先权日2004年3月30日
发明者中西义一, 吉门进三, 伊藤嘉昭, 深尾真司, 福岛整 申请人:关西Tlo株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1