热冲压成形体的制作方法

文档序号:18546773发布日期:2019-08-27 21:44阅读:176来源:国知局
热冲压成形体的制作方法

本发明涉及在需要强度的汽车、结构物的结构构件、增强构件中使用的高强度钢板、特别是耐碰撞特性和耐氢脆特性优异的热冲压成形体。



背景技术:

近年来,从环境保护及节省资源的观点出发,要求汽车车体的轻量化,因此,汽车用构件中的高强度钢板的应用正在加速。但是,由于伴随着钢板的高强度化而成形性劣化,因此在高强度钢板中,对于复杂形状的构件的成形性成为课题。

为了解决这样的课题,将钢板加热至奥氏体区域的高温后实施压制成形的热冲压的应用正在推进。热冲压由于是在压制加工的同时在模具内实施淬火处理,因此能够得到与钢板的c量相应的强度,作为兼顾对于汽车用构件的成形和强度确保的技术而受到关注。

但是,通过压制淬火(加压淬火)而制造的以往的热压部件由于整个板厚区域是由硬质组织(主要是马氏体)形成,因此如果在汽车的碰撞时产生弯曲变形,则会在部件的弯折部引入最大的应变,开裂以钢板的表层附近为起点而进展,最终容易导致断裂。另外,由于钢板的表层的晶格缺陷的密度高,因此氢的侵入被促进,构件的耐氢脆特性变得不足是问题。由于这样的理由,通过压制淬火而制造的热压部件在汽车部件中的应用部位受到限定。

针对上述的问题,提出了提高热压部件的变形能力来抑制开裂的技术。在专利文献1中公开了:通过将热压部件的板厚中央的硬度设定为400hv以上,另一方面,在表层形成厚度为20μm~200μm且硬度为300hv以下的软质层,从而确保抗拉强度为1300mpa以上的强度,并且抑制汽车碰撞时的开裂。进而,在专利文献1中公开了上述的软质层具有回火组织。

在专利文献2中公开了:通过将高强度汽车构件的表层的碳浓度控制在内层钢的碳浓度的1/5以下,从而降低表层的晶格缺陷的密度来改善耐氢脆性。

在专利文献3中公开了:通过将钢组织制成铁素体与马氏体的复相组织,使表层部的铁素体的面积率比内层部提高,从而得到具有高抗拉强度、优异的延展性及弯曲性的热压钢板构件。

但是,就专利文献1及2中记载的构件而言,由于将板厚的表层部制成软质组织、由硬质组织来构成板厚的中央部,从而导致在板厚方向上产生了急剧的硬度梯度。因此,存在下述课题:在受到弯曲变形时,在产生了急剧的硬度梯度的软质组织与硬质组织的边界附近容易产生开裂。另外,就专利文献3中记载的构件而言,通过将板厚的表层部制成软质组织、将板厚的中央部制成硬质组织与软质组织的复合组织,从而降低在板厚方向上急剧的硬度梯度。但是,由于将板厚的中央部制成复合组织,因此抗拉强度的上限成为1300mpa左右,难以确保对热压部件所要求的1500mpa以上的抗拉强度。

现有技术文献

专利文献

专利文献1:日本特开2015-30890号公报

专利文献2:日本特开2006-104546号公报

专利文献3:国际公开第2015/097882号



技术实现要素:

发明所要解决的课题

本发明鉴于以往技术的课题,目的是提供耐碰撞特性和耐氢脆特性优异的热冲压成形体。

用于解决课题的手段

本发明的发明者们对解决上述课题的方法进行了深入研究。首先,为了提高耐氢脆特性,降低板厚的表层的晶格缺陷的密度是有效的,因此,需要在表层形成软质组织。另一方面,为了确保1500mpa以上的抗拉强度,需要仅由硬质组织来构成板厚的中央部。于是,本发明的发明者们认为:在将板厚的表层制成软质组织、由硬质组织来构成板厚的中央部的情况下,如果能够降低在硬质组织与软质组织的边界附近产生的板厚方向的急剧的硬度梯度,则可在担保1500mpa以上的抗拉强度和良好的耐氢脆特性的同时得到良好的弯曲性。具体而言,通过在硬质组织与软质组织的边界形成具有这些组织的中间的硬度的组织(中间层),使得弯曲变形时的应力集中得以缓和,抑制了龟裂的产生。进而发现了:通过控制中间层内部的硬度的梯度,即使产生龟裂,也可得到抑制其进展的效果。其结果是,成功地在担保1500mpa以上的抗拉强度和良好的耐氢脆特性的同时实现优异的弯曲性,成功地得到了耐碰撞特性和耐氢脆特性优异的热冲压成形体。

另外,本发明的发明者们发现:通过将板厚的中央部处的mn的添加量控制为比较高的值、更具体而言控制为1.50%以上且低于3.00%,从而能够提高淬透性而减小成形体中的硬度的不均,即稳定地确保高强度。其结果是,成功地得到了在担保1500mpa以上的抗拉强度和良好的耐氢脆特性的同时不仅从弯曲性而且从强度稳定性(硬度不均)的观点出发耐碰撞特性也优异的热冲压成形体。

进而,本发明的发明者们发现:通过将板厚的中央部处的si的添加量控制为比较高的值、更具体而言控制为超过0.50%且低于3.00%来确保有助于提高变形能力的组织,从而能够提高延展性。其结果是,成功地得到了在担保1500mpa以上的抗拉强度和良好的耐氢脆特性的同时不仅从弯曲性而且从延展性的观点出发耐碰撞特性也优异的热冲压成形体。

此外,本发明的发明者们发现:通过将板厚的中央部处的mn及si的添加量控制为比较高的值、更具体而言分别控制为1.50%以上且低于3.00%及超过0.50%且低于3.00%,从而能够提高淬透性而减小成形体中的硬度的不均即能够稳定地确保高强度,进而通过确保有助于提高变形能力的组织而能够提高延展性。其结果是,成功地得到了在担保1500mpa以上的抗拉强度和良好的耐氢脆特性的同时不仅从弯曲性而且从强度稳定性及延展性的观点出发耐碰撞特性也优异的热冲压成形体。

本发明是基于上述的认识而完成的,其主旨如下所述。

(1)一种热冲压成形体,其特征在于,其是包含板厚中央部和配置于该板厚中央部的两侧或单侧的表层的热冲压成形体,

其中,上述热冲压成形体进一步包含在上述板厚中央部与各表层之间与它们相邻地形成的中间层,

上述板厚中央部以质量%计含有:

c:0.20%以上且低于0.70%

si:低于3.00%、

mn:0.20%以上且低于3.00%

p:0.10%以下、

s:0.10%以下、

sol.al:0.0002%~3.0000%、

n:0.01%以下,

剩余部分由fe及不可避免的杂质构成,

上述板厚中央部的硬度为500hv~800hv,

上述表层中的板厚方向的硬度的变化δh1为100hv以上且低于200hv,

上述中间层中的板厚方向的硬度的变化δh2为10hv以上且低于50hv。

(2)根据上述(1)所述的热冲压成形体,其特征在于,上述板厚中央部处的si含量为0.50%以下,上述板厚中央部处的mn含量为0.20%以上且低于1.50%。

(3)根据上述(1)所述的热冲压成形体,其特征在于,上述板厚中央部处的si含量为0.50%以下,上述板厚中央部处的mn含量为1.50%以上且低于3.00%。

(4)根据上述(1)所述的热冲压成形体,其特征在于,上述板厚中央部处的si含量为超过0.50%且低于3.00%,上述板厚中央部处的mn含量为0.20%以上且低于1.50%,上述板厚中央部以面积分率计包含1.0%以上且低于5.0%的残留奥氏体。

(5)根据上述(1)所述的热冲压成形体,其特征在于,上述板厚中央部处的si含量为超过0.50%且低于3.00%,上述板厚中央部处的mn含量为1.50%以上且低于3.00%,上述板厚中央部以面积分率计包含1.0%以上且低于5.0%的残留奥氏体。

(6)根据上述(1)~(5)中任一项所述的热冲压成形体,其特征在于,上述板厚中央部进一步以质量%计含有ni:0.01%~3.00%。

(7)根据上述(1)~(6)中任一项所述的热冲压成形体,其特征在于,上述板厚中央部进一步以质量%计含有nb:0.010%~0.150%、ti:0.010%~0.150%、mo:0.005%~1.000%及b:0.0005%~0.0100%中的1种或2种以上。

(8)根据上述(1)~(7)中任一项所述的热冲压成形体,其特征在于,在各表层的表面进一步包含镀层。

发明效果

根据本发明,能够实现优异的弯曲性,能够提供耐碰撞特性和耐氢脆特性优异的热冲压成形体。另外,根据本发明,通过将板厚的中央部处的mn的添加量控制为比较高的值,从而不仅从弯曲性而且从强度稳定性(硬度不均)的观点出发也能够进一步改善耐碰撞特性。进而,根据本发明,通过将板厚的中央部处的si的添加量控制为比较高的值,从而不仅从弯曲性而且从延展性的观点出发也能够进一步改善耐碰撞特性。此外,根据本发明,通过将板厚的中央部处的mn及si的添加量控制为比较高的值,从而不仅从弯曲性而且从强度稳定性(硬度不均)及延展性的观点出发也能够进一步改善耐碰撞特性。

附图说明

图1是说明制造本发明的高强度钢板时的c原子的扩散的示意图。

图2是表示与制造本发明的高强度钢板的方法中使用的粗轧有关的轧制道次后的位错密度变化的图表。

具体实施方式

以下,对本发明的热冲压成形体和其制造方法进行说明。

首先,对构成本发明的热冲压成形体的板厚中央部的成分组成的限定理由进行说明。以下,成分组成所涉及的“%”是指“质量%”。

“c:0.20%以上且低于0.70%”

c是为了在板厚中央部处得到500hv~800hv的硬度而言重要的元素。c低于0.20%时,在板厚中央部处确保500hv以上是困难的,因此c设定为0.20%以上。优选为0.30%以上。另一方面,c为0.70%以上时,板厚中央部的硬度超过800hv,弯曲性降低,因此c设定为低于0.70%。优选为0.50%以下。

“si:低于3.00%”

si由于是通过固溶强化而有助于强度的提高的元素,因此从强度提高的观点出发,也可以以0.50%为上限来添加。另一方面,即使添加超过0.50%,强度提高的效果也饱和,因此将0.50%设定为上限。优选为0.30%以下。si还是具有下述效果的元素:在不损害通过表层的组织控制而表现出的耐氢脆特性及弯曲性的情况下提高延展性。特别是在汽车的碰撞时产生了弯曲变形的情况下,因帽形构件发生弯折而导致变形局部存在化,作为构件的耐载荷降低。即构件和最大载荷不仅受到构件强度的影响,还受到弯折的易产生性的影响。如果在构件状态下钢板的延展性高,则变形区域变得难以局部存在化。即,难以弯折。因此,在热冲压构件中延展性也是重要的,一般来说,马氏体的延展性低。从这样的观点出发,通过添加超过0.50%的si,能够以面积分率计确保1.0%以上的残留奥氏体,提高延展性,因此si优选添加超过0.50%。更优选为1.00%以上。另一方面,如果si添加3.00%以上,则残留奥氏体以面积分率计成为5.0%以上,导致弯曲性的劣化,因此将上限设定为低于3.00%。优选低于2.00%。

“mn:0.20%以上且低于3.00%”

mn是通过固溶强化而有助于强度的提高的元素。从强度提高的观点出发,低于0.20%时无法得到效果,因此添加0.20%以上。优选为0.70%以上。另一方面,即使mn添加1.50%以上,强度提高的效果也饱和,因此将低于1.50%设定为上限。mn还是具有下述效果的元素:在不损害通过表层的组织控制而表现出的耐氢脆特性及弯曲性的情况下提高淬透性。在热冲压成形体中,与模具的接触的方式不一定一样,例如在帽形构件的纵壁部等处冷却速度容易降低。因此,有可能在钢板中局部地形成硬度低的区域。局部的软化部在碰撞时变形集中,成为开裂产生的主要原因,因此提高淬透性而减小成形体中的硬度的不均(即确保稳定的强度)在确保耐碰撞特性的方面是重要的。从这样的观点出发,通过添加1.50%以上的mn,能够提高淬透性而稳定地得到高强度,因此mn优选添加1.50%以上。更优选为1.70%以上。另一方面,即使添加3.00%以上,强度稳定性的效果也饱和,因此其上限设定为低于3.00%。优选低于2.00%。

“p:0.10%以下”

p是在晶界偏析、阻碍晶界的强度的元素。如果p超过0.10%,则晶界的强度显著降低,耐氢脆特性、弯曲性降低,因此p设定为0.10%以下。优选为0.05%以下。下限没有特别限定,但如果降低至低于0.0001%,则脱p成本会大幅上升,在经济上变得不利,因此就实用钢板而言,0.0001%为实质性的下限。

“s:0.10%以下”

s是形成夹杂物的元素。如果超过0.10%,则会生成夹杂物从而耐氢脆特性、弯曲性降低,因此s设定为0.10%以下。优选为0.005%以下。下限没有特别限定,但如果降低至低于0.0015%,则脱s成本会大幅上升,在经济上变得不利,因此就实用钢板而言,0.0015%为实质性的下限。

“sol.al:0.0002%~3.0000%”

al是起到将钢液脱氧而使钢健全化的作用的元素。al低于0.0002%时,脱氧不充分,因此sol.al设定为0.0002%以上。优选为0.0010%以上。另一方面,即使添加al超过3.0000%,其效果也饱和,因此设定为3.0000%以下。

“n:0.01%以下”

n是杂质元素,是形成氮化物而阻碍弯曲性的元素。如果n超过0.01%,则会生成粗大的氮化物从而弯曲性显著降低,因此n设定为0.01%以下。优选为0.0075%以下。下限没有特别限定,但如果降低至低于0.0001%,则脱n成本会大幅上升,在经济上变得不利,因此就实用钢板而言,0.0001%为实质性的下限。

“ni:0.01%~3.00%”

ni是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。ni低于0.01%时无法得到效果,因此添加0.01%以上。优选为0.50%以上。另一方面,即使添加超过3.00%,其效果也饱和,因此设定为3.00%以下。优选为2.50%以下。

“nb:0.010%~0.150%”

nb是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。nb低于0.010%时无法得到效果,因此添加0.010%以上。优选为0.035%以上。另一方面,即使添加超过0.150%,其效果也饱和,因此设定为0.150%以下。优选为0.120%以下。

“ti:0.010%~0.150%”

ti是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。ti低于0.010%时无法得到效果,因此设定为0.010%以上。优选为0.020%。另一方面,即使添加超过0.150%,其效果也饱和,因此设定为0.150%以下。优选为0.120%以下。

“mo:0.005%~1.000%”

mo是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。mo低于0.005%时无法得到效果,因此设定为0.005%以上。优选为0.010%以上。另一方面,即使添加超过1.000%,其效果也饱和,因此设定为1.000%以下。优选为0.800%以下。

“b:0.0005%~0.0100%”

b是在晶界偏析而使晶界的强度提高的元素,因此也可以根据需要来添加。b低于0.0005%时无法充分得到添加效果,因此添加0.0005%以上。优选为0.0010%以上。另一方面,即使添加超过0.0100%,其效果也饱和,因此设定为0.0100%以下。优选为0.0075%以下。

板厚中央部的成分组成的剩余部分为fe及不可避免的杂质。不可避免的杂质是从钢原料和/或在炼钢过程中不可避免地混入、在不阻碍本发明的热冲压成形体的特性的范围内被容许的元素。

接下来,对构成本发明的热冲压成形体的表层的成分组成进行说明。

对于表层的成分,优选的是c含量、si含量及mn含量中的任一者或两者以上为板厚中央部的所对应的元素含量的0.6倍以下,对于该情况下的各个成分的优选的范围如下所述。

“c:0.05%以上且低于0.42%”

c是为了提高强度而添加的。c低于0.05%时无法得到效果,因此添加0.05%以上。从提高作为构件的耐载荷而提高冲击特性的观点考虑,优选为0.10%以上。另一方面,为了使表层的硬度比板厚中央部的硬度低,优选比板厚中央部少。为此,表层的优选的c的含量为低于0.42%,优选为0.35%以下。

“si:低于2.00%”

si是通过固溶强化而有助于强度的提高的元素,因此为了提高强度而添加。为了使表层的硬度比板厚中央部的硬度低,优选比板厚中央部少。为此,表层的优选的si的含量为低于2.00%,优选为1.50%以下,更优选为0.30%以下,进一步更优选为0.20%以下。

“mn:0.01%以上且低于1.80%”

mn是通过固溶强化而有助于强度的提高的元素,因此为了提高强度而添加。为了使表层的硬度比板厚中央部的硬度低,优选比板厚中央部少。为此,表层的优选的mn的含量低于1.80%,优选为1.40%以下,更优选低于0.90%,进一步更优选为0.70%以下。

对于表层的其它成分,没有特别限定。一般来说,表层除了c、si及mn以外,还可以任选地包含下述的成分中的1种或2种以上。

“p:0.10%以下”

p是在晶界偏析、阻碍晶界的强度的元素。如果p超过0.10%,则晶界的强度显著降低,耐氢脆特性、弯曲性降低,因此p设定为0.10%以下。优选为0.05%以下。下限没有特别限定,如果降低至低于0.0001%,则脱p成本会大幅上升,在经济上变得不利,因此就实用钢板而言,0.0001%为实质性的下限。

“s:0.10%以下”

s是形成夹杂物的元素。如果s超过0.10%,则会生成夹杂物从而耐氢脆特性、弯曲性降低,因此s设定为0.10%以下。优选为0.005%以下。下限没有特别限定,但如果降低至低于0.0015%,则脱s成本会大幅上升,在经济上变得不利,因此就实用钢板而言,0.0015%为实质性的下限。

“sol.al:0.0002%~3.0000%”

al是起到将钢液脱氧而使钢健全化的作用的元素。al低于0.0002%时,脱氧不充分,因此sol.al设定为0.0002%以上。优选为0.0010%以上。另一方面,即使添加超过3.0000%,其效果也饱和,因此设定为3.0000%以下。

“n:0.01%以下”

n是杂质元素,是形成氮化物而阻碍弯曲性的元素。如果n超过0.01%,则会生成粗大的氮化物从而弯曲性显著降低,因此n设定为0.01%以下。优选为0.0075%以下。下限没有特别限定,但如果降低至低于0.0001%,则脱n成本会大幅上升,在经济上变得不利,因此就实用钢板而言,0.0001%为实质性的下限。

“ni:0.01%~3.00%”

ni是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。ni低于0.010%时无法得到效果,因此添加0.01%以上。优选为0.50%以上。另一方面,即使添加超过3.00%,其效果也饱和,因此设定为3.00%以下。优选为2.50%以下。

“nb:0.010%~0.150%”

nb是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。nb低于0.010%时无法得到效果,因此添加0.010%以上。优选为0.035%以上。另一方面,即使添加超过0.150%,其效果也饱和,因此设定为0.150%以下。优选为0.120%以下。

“ti:0.010%~0.150%”

ti是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。ti低于0.010%时无法得到效果,因此设定为0.010%以上。优选为0.020%。另一方面,即使添加超过0.150%,其效果也饱和,因此设定为0.150%以下。优选为0.120%以下。

“mo:0.005%~1.000%”

mo是通过固溶强化而有助于强度的提高的元素,因此也可以根据需要来添加。mo低于0.005%时无法得到效果,因此设定为0.005%以上。优选为0.010%以上。另一方面,即使添加超过1.000%,其效果也饱和,因此设定为1.000%以下。优选为0.800%以下。

“b:0.0005%~0.0100%”

b是在晶界偏析而使晶界的强度提高的元素,因此也可以根据需要来添加。b低于0.0005%时无法充分得到添加效果,因此添加0.0005%以上。优选为0.0010%以上。另一方面,即使添加超过0.0100%,其效果也饱和,因此设定为0.0100%以下。优选为0.0075%以下。

表层的成分组成的剩余部分为fe及不可避免的杂质。不可避免的杂质是从钢原料和/或在炼钢过程中不可避免地混入、在不阻碍本发明的热冲压成形体的特性的范围内被容许的元素。

接下来,对本发明的热冲压成形体的显微组织进行说明。

“板厚中央部的硬度为500hv~800hv”

如果板厚中央部的硬度为500hv以上,则作为热冲压成形体的抗拉强度能够确保1500mpa以上。优选板厚中央部的硬度为600hv以上。另一方面,如果板厚中央部的硬度超过800hv,则与表层、中间层的硬度之差变得过大,导致弯曲性的劣化,因此将800hv设定为上限。优选为720hv以下。

“板厚中央部以面积分率计包含1.0%以上且低于5.0%的残留奥氏体”

通过将板厚中央部处的si含量控制为超过0.50%且低于3.00%,使该板厚中央部以面积分率计包含1.0%以上且低于5.0%的残留奥氏体作为金属组织,从而能够提高所得到的热冲压成形体的延展性。优选残留奥氏体的面积分率为2.0%以上。另一方面,如果残留奥氏体的面积分率成为5.0%以上,则会导致弯曲性的劣化,因此将上限设定为低于5.0%。优选为低于4.5%。

本发明中,残留奥氏体的面积分率通过以下的方法来测定。从热冲压成形后的构件采集试样,从轧制面法线方向进行面削至板厚的1/4深度为止,供于x射线衍射测定。由通过使用了mo的kα射线的x射线衍射法而得到的图像,利用下式确定残留奥氏体的面积分率vγ。

vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}

其中,α(211)为铁素体的(211)面的反射面强度,γ(220)为奥氏体的(220)面的反射面强度,γ(311)为奥氏体的(311)面的反射面强度。

“表层中的板厚方向的硬度的变化δh1为100hv以上且低于200hv,中间层中的板厚方向的硬度的变化δh2为10hv以上且低于50hv”

在本发明中,所谓表层是指从热冲压成形体的两面或单面至该热冲压成形体的板厚的8%为止的区域,即各表层具有热冲压成形体的板厚的8%的厚度。同样地,本发明中,所谓中间层是指从热冲压成形体的两面或单面至该热冲压成形体的板厚的20%为止的区域中的除上述的表层以外的部分,即各中间层具有热冲压成形体的板厚的12%的厚度。此外,在本发明中,所谓板厚中央部是指从热冲压成形体中除去上述的表层及中间层以外的部分,即就板厚中央部而言,在该板厚中央部的两侧配置有表层及中间层的热冲压成形体的情况下,板厚中央部具有该热冲压成形体的板厚的60%的厚度,在仅在该板厚中央部的单侧配置有表层及中间层的热冲压成形体的情况下,板厚中央部具有该热冲压成形体的板厚的80%的厚度。其中,δh1表示表层中的板厚方向的硬度的变化,δh2表示中间层中的板厚方向的硬度的变化。本发明的发明者们进行了深入研究,结果获知:从弯曲性等效果的观点出发,该区域的硬度变化(δh1、δh2)是重要的,在δh1为100hv以上且低于200hv的情况下,可在担保良好的耐氢脆特性的同时得到优异的弯曲性。通过具有优异的弯曲性,能够缓和因碰撞时的弯曲变形等产生的应力而抑制开裂、龟裂,因此在热冲压成形体中能够达成优异的耐碰撞特性。如果δh1为100hv以上,则可得到这样的缓和弯曲变形时的应力的效果,因此将下限设定为100hv。优选为110hv以上,更优选为120hv以上。另外,δh1为200hv以上时,氢从热冲压成形体表面的侵入被促进,导致耐氢脆性的劣化,因此将上限设定为低于200hv。优选为190hv以下,更优选为180hv以下。

同样地,在δh2为10hv以上且低于50hv的情况下,能够得到优异的弯曲性。由于在δh2低于50hv的情况下,缓和弯曲变形时的应力集中的效果得以提高,能够得到优异的弯曲性,因此将上限设定为低于50hv。优选为45hv以下,更优选为40hv以下。另一方面,δh2低于10hv时,变得难以缓和弯曲变形时的应力集中,弯曲性显著劣化,因此将下限设定为10hv。优选为15hv以上,更优选为20hv以上。

板厚中央部的硬度的测定方法如下所述。采集热冲压成形体的与板面垂直的截面,进行测定面的试样制备,供于硬度试验。测定面的制备方法只要依据jisz2244来实施即可,例如只要使用#600至#1500的碳化硅纸对测定面进行研磨后,使用使粒度为1μm至6μm的金刚石粉末分散到醇等稀释液或纯水中而得到的液体来进行精加工成镜面即可。硬度试验只要通过jisz2244中记载的方法来实施即可,使用显微维氏硬度试验机,在热冲压成形体的板厚的1/2位置以1kgf的载荷、压痕的3倍以上的间隔测定10个点,将其平均值作为板厚中央部的硬度。

接下来,对表层及中间层的硬度的测定方法进行说明。采集热冲压成形体的与板面垂直的截面来进行测定面的试样制备,供于硬度试验。为了准确地测定热冲压成形体的表面附近的硬度,测定面的制备按照凹凸尽量小、在表面附近不产生塌边的方式来实施。例如,使用日本电子制的横截面研磨机(crosssectionpolisher),利用氩离子束对测定面进行溅射。此时,出于抑制在测定面中产生筋状的凹凸的目的,也可以使用日本电子制的试样旋转保持器,从360度方向对测定面照射氩离子束。

在板厚中央部的两侧配置有表层及中间层的热冲压成形体的情况下,对制备了测定面的试样,使用显微维氏硬度试验机实施2次测定。第1次是对从热冲压成形体的第1表面到该热冲压成形体的板厚的20%为止的区域在与板面成直角的方向(板厚方向)上以1kgf载荷、压痕的3倍以上的间隔进行测定。此时,测定点的合计依赖于热冲压成形体的板厚而不同,但为了算出后述的δh1及δh2,只要至少进行2点以上的测定即可。热冲压成形体的最表面侧的测定位置设定为在从板面(在存在镀层的情况下,镀层的正下面或者镀层与母材之间的合金层的正下面)到20μm以内为止的区域进行。第2次的测定是从与第1次相反侧的热冲压成形体的表面实施。即,对从热冲压成形体的第2表面至板厚的20%为止的区域在与板面成直角的方向(板厚方向)上以1kgf载荷、压痕的3倍以上的间隔进行测定。热冲压成形体的最表面侧的测定位置设定为在从板面(在存在镀层的情况下,镀层的正下面或者镀层与母材之间的合金层的正下面)到20μm以内为止的区域进行。

在仅在板厚中央部的单侧配置有表层及中间层的热冲压成形体的情况下,对制备了测定面的试样,使用显微维氏硬度试验机,对从热冲压成形体的表层到该热冲压成形体的板厚的20%为止的区域在与板面成直角的方向(板厚方向)上以1kgf载荷、压痕的3倍以上的间隔进行测定。此时,测定点的合计依赖于热冲压成形体的板厚而不同,但为了算出后述的δh1及δh2,只要至少进行2点以上的测定即可。热冲压成形体的最表面侧的测定位置设定为在从板面(在存在镀层的情况下,镀层的正下面或者镀层与母材之间的合金层的正下面)到20μm以内为止的区域进行。

接下来,对在板厚中央部的两侧配置有表层及中间层的热冲压成形体的情况的δh1的算出方法进行说明。首先,由热冲压成形体的从第1表面到板厚8%为止的区域中所含的全部测定点,通过式(1)算出第1表面侧表层的硬度的梯度δa。其中,ai为第i个测定点处的距第1表面的距离(μm),ci为ai处的维氏硬度(hv),n为从第1表面到板厚8%为止的区域中所含的全部测定点的合计。接着,使用热冲压成形体的从第2表面到板厚8%为止的区域中所含的全部测定点,通过式(2)算出第2表面侧表层的硬度的梯度δb。其中,bi为第i个测定点处的距第2表面的距离(μm),di为bi处的维氏硬度(hv),m为从第2表面到板厚8%为止的区域中所含的全部测定点的合计。算出δa及δb后,使用式(3-1),算出表层中的板厚方向的硬度的变化δh1。其中,t为热冲压成形体的板厚(μm)。

另一方面,在仅在板厚中央部的单侧配置有表层及中间层的热冲压成形体的情况下,使用式(3-2)算出表层中的板厚方向的硬度的变化δh1。

接下来,对在板厚中央部的两侧配置有表层及中间层的热冲压成形体的情况的δh2的算出方法进行说明。首先,由热冲压成形体的第1表面侧的从板厚8%的位置到板厚20%为止的区域中所含的全部测定点,通过式(4)算出第1表面侧中间层的硬度的梯度δa。其中,ai为第i个测定点处的距第1表面的距离(μm),ci为ai处的维氏硬度(hv),n为第1表面侧的从板厚8%的位置到板厚20%为止的区域中所含的全部测定点的合计。接着,由热冲压成形体的第2表面侧的从板厚8%的位置到板厚20%为止的区域中所含的全部测定点,通过式(5)算出第2表面侧中间层的硬度的梯度δb。其中,bi为第i个测定点处的距第2表面的距离(μm),di为bi处的维氏硬度(hv),m为第2表面侧的从板厚的8%到20%为止的区域中所含的全部测定点的合计。算出δa及δb后,使用式(6-1)算出中间层中的板厚方向的硬度的变化δh2。

另一方面,在仅在板厚中央部的单侧配置有表层及中间层的热冲压成形体的情况下,使用式(6-2)算出表层中的板厚方向的硬度的变化δh2。

[数学式1]

δh1=(δa+δb)/2×(t×0.08)式(3-1)

δh1=δa×(t×0.08)式(3-2)

δh2=(δa+δb)/2×(t×0.12)式(6-1)

δh2=δa×(t×0.12)式(6-2)其中,

δh1:表层中的板厚方向的硬度的变化(hv)

δa:第1表面侧表层的硬度的梯度(hv/μm)

ai:第i个测定点处的距第1表面的距离(μm)

ci:ai处的维氏硬度(hv)

n:第1表面侧表层中所含的全部测定点的合计

δb:第2表面侧表层的硬度的梯度(hv/μm)

bi:第i个测定点处的距第2表面的距离(μm)

di:bi处的维氏硬度(hv)

m:第2表面侧表层中所含的全部测定点的合计

δh2:中间层中的板厚方向的硬度的变化(hv)

δa:第1表面侧中间层的硬度的梯度(hv/μm)

ai:第i个测定点处的距第1表面的距离(μm)

ci:ai处的维氏硬度(hv)

n:第1表面侧中间层中所含的全部测定点的合计

δb:第2表面侧中间层的硬度的梯度(hv/μm)

bi:第i个测定点处的距第2表面的距离(μm)

di:bi处的维氏硬度(hv)

m:第2表面侧中间层中所含的全部测定点的合计

t:板厚(μm)。

在热冲压成形体的各表层的表面,以提高耐蚀性等作为目的,也可以形成镀层。镀层可以是电镀层及热浸镀层中的任一者。电镀层例如包含电镀锌层、电镀zn-ni合金层等。

热浸镀层例如包含热浸镀锌层、合金化热浸镀锌层、热浸镀铝层、热浸镀zn-al合金层、热浸镀zn-al-mg合金层、热浸镀zn-al-mg-si合金层等。镀层的附着量没有特别限制,一般的附着量即可。

接下来,对用于得到本发明的热冲压成形体的制法的方式进行说明。以下的说明旨在单纯地例示用于得到本发明的热冲压成形体的制法,并不意图限定于由以下说明的那样的将两个钢板层叠而得到的复层钢板来得到本发明的热冲压成形体的制法。例如,也可以通过下述方式来制造:通过将单层钢板进行脱碳处理而将其表层部分软化,从而得到由表层和板厚中央部构成的高强度钢板,将其与复层钢板的情况同样地进行热处理等。

将满足上述的板厚中央部的成分的母材钢板进行熔炼并对两面或单面进行磨削而除去表面氧化物之后,在其两面或单面通过电弧焊接来粘接表层用钢板。此外,优选的是将c含量、si含量及mn含量中的任一者或两者以上为母材钢板的所对应的元素含量的0.6倍以下的表层用钢板进行层叠。理由虽未必清楚,但对显示出优异的弯曲性的热冲压成形体进行调查的结果是:表层用钢板的c含量、si含量及mn含量中的任一者或两者以上为母材钢板的所对应的元素含量的0.6倍以下。

通过对上述的层叠体(复层钢板)实施热轧、冷轧、热冲压、连续热浸镀等,能够得到基于本发明的高强度钢板、更具体而言热冲压成形体。

例如,在得到热轧钢板的情况下,优选将通过上述的方法制作的复层钢板在1100℃~1350℃的温度下保持60分钟以上。通过实施这样的热处理,能够将热压后的表层中的板厚方向的硬度的变化δh1控制为100hv以上且低于200hv。另外,通过上述的热处理,能够使元素在母材钢板与表层用钢板之间扩散而在两者之间形成中间层、进而将热压后的该中间层中的板厚方向的硬度的变化δh2控制为10hv以上且低于50hv。相对照地,加热温度低于1100℃时,热压后的表层中的板厚方向的硬度的变化δh1变得超过200hv,热压后的中间层中的板厚方向的硬度的变化δh2变得低于10hv。在该情况下,氢从热冲压成形体表面的侵入被促进,导致耐氢脆特性的劣化,进而无法得到良好的弯曲性,因此将下限设定为1100℃。另一方面,如果加热温度超过1350℃,则δh1变得低于10hv,进而,δh2超过200hv,无法得到良好的弯曲性,因此将上限设定为1350℃。加热保持优选进行60分钟以上。上限没有特别限定,但如果保持超过300分钟,则加热成本会大幅上升,在经济上变得不利,因此在实际操作上,300分钟为实质性的上限。

另外,为了进一步促进本发明中的中间层的形成,优选的是,复层钢板的上述热处理后的热轧包含粗轧及精轧,该粗轧在下述条件下进行两次以上:粗轧温度为1100℃以上、每1道次的板厚减少率为5%以上且低于50%以及道次间时间为3秒以上。

具体而言,为了进一步促进本发明中的中间层的形成,需要按照使合金元素、特别是c原子的浓度缓和地分布的方式进行控制。c浓度的分布通过c原子的扩散而得到,c原子的扩散频率越是高温越增加。因此,为了控制c浓度,从热轧加热到粗轧中的控制变得重要。在热轧加热中,为了促进c原子的扩散,需要使加热温度高温化,优选为1100℃~1350℃,更优选为超过1150℃且为1350℃以下。在热轧加热中,会产生图1中所示的(i)及(ii)的变化。(i)为c原子从板厚中央部向表层中的扩散,(ii)为c从表层向外部脱离的脱碳反应。通过该(i)和(ii)的c原子的扩散和脱离反应的平衡而使c浓度产生分布。加热温度低于1100℃时,(i)的反应不足,因此无法得到优选的c浓度分布。另一方面,加热温度超过1350℃时,会过度地产生(ii)的反应,因此同样无法得到优选的浓度分布。

为了通过热轧加热温度的调节来控制成优选的c浓度分布、并且进一步得到最佳的c浓度分布,粗轧中的道次控制变得极为重要。粗轧在下述条件下进行2次以上:粗轧温度为1100℃以上、每1道次的板厚减少率为5%以上且低于50%以及道次间时间为3秒以上。这是由于:通过由粗轧导入的应变来促进图1中的(i)的c原子的扩散。假如如果将通过热轧加热而将c浓度控制为优选的状态的板坯通过常规方法进行粗轧及精轧,则会导致在c原子在表层内无法充分扩散的状态下板厚发生减少。因此,如果由具有超过200mm的厚度的板坯通过常规方法的热轧来制造厚度为数mm的热轧钢板,则会成为在表层中c浓度急剧地变化的钢板,变得无法得到缓和的硬度变化。为了解决该问题而找到的方法是上述的粗轧的道次控制。c原子的扩散不仅受到温度的影响,而且还大大受到应变(位错密度)的影响。特别是与晶格扩散相比,在位错扩散中扩散频率提高到10倍以上,因此变得需要下工夫在使位错密度残留的同时通过轧制减薄板厚。图2的曲线1表示在粗轧的每1道次的板厚减少率小的情况下的轧制道次后的位错密度变化,可知长时间地残存了应变。通过像这样长时间地使应变残存于表层,从而能够充分地引起表层内的c原子的扩散、得到最佳的c浓度分布。另一方面,曲线2是板厚减少率大的情况下的位错密度的变化,如果通过轧制而导入的应变量提高,则恢复变得容易被促进,位错密度急剧降低。因此,为了得到最佳的c浓度分布,需要不产生曲线2那样的位错密度的变化。从这样的观点出发,每1道次的板厚减少率的上限为低于50%。此外,为了促进表层中的c原子的扩散,需要确保一定量的位错密度和保持时间,因此板厚减少率的下限为5%,作为道次间时间,需要确保3秒以上。

精轧为在通常的条件下实施的精轧即可。例如,精轧温度也只要在810℃以上的温度区域中实施即可,之后接下来的冷却条件也没有必要特别规定,在750℃以下的温度区域实施卷取。另外,也可以实施以热轧钢板的软质化为目的的再加热处理。

热冲压时的加热、成型、冷却工序也只要在通常的条件下实施即可。例如,对下述钢板通过通常的热冲压而成形为所需要的形状:将在热轧工序中卷取的热轧钢板开卷而得到的热轧钢板;或将卷取的热轧钢板开卷后实施冷轧而得到的冷轧钢板;或者对冷轧钢板实施镀覆,以0.1℃/秒~200℃/秒的加热速度加热至810℃~1000℃的温度,在该温度下进行保持而得到的钢板。保持时间由于只要根据成形方式来设定即可,因此没有特别限定,只要是30秒~600秒即可,将热冲压后的成形体冷却至室温。冷却速度也只要设定为通常的条件即可,例如只要从加热温度到400℃为止的温度区域中的平均冷却速度为50℃/秒以上即可。在板厚中央部处的si含量为超过0.50%且低于3.00%、板厚中央部处的mn含量为0.20%以上且低于1.50%的钢板以及板厚中央部处的si含量为超过0.50%且低于3.00%、板厚中央部处的mn含量为1.50%以上且低于3.00%的钢板的情况下,以增加残留奥氏体的生成量而使延展性提高为目的,优选的是在加热保持后的冷却中,将200℃~400℃的温度区域中的平均冷却速度控制为低于50℃/秒。另外,以调整强度等为目的,也可以对冷却至室温的成形体在150℃~600℃的范围内实施回火处理。

冷轧是以通常的压下率例如30~90%而进行的冷轧即可。对于热轧钢板及冷轧钢板,除了保持热轧及冷轧的状态的钢板以外,还包含对热轧钢板或冷轧钢板在通常的条件下实施了再结晶退火而得到的钢板、在通常的条件下实施了调质轧制而得到的钢板。镀覆的条件没有特别限定,通常的条件即可。对热轧钢板、冷轧钢板或者对冷轧钢板实施了再结晶退火和/或调质轧制而得到的钢板,根据需要在通常的镀覆条件下实施镀覆。

实施例

接下来,对本发明的实施例进行说明,实施例中的条件是为了确认本发明的可实施性及效果而采用的一个条件例,本发明并不限于该一个条件例。只要不脱离本发明的主旨、并达成本发明的目的,则本发明可以采用各种条件。

在本实施例中,通过上述的方法来测定热冲压后的钢板的硬度,算出了板厚中央部的硬度、表层中的板厚方向的硬度的变化δh1、中间层中的板厚方向的硬度的变化δh2。

另外,进行了热冲压后的钢板的拉伸试验。拉伸试验是制作jisz2201中记载的5号试验片,按照jisz2241中记载的试验方法来实施。

热冲压成形体的耐氢脆特性使用从成形体中切取出的试验片进行了评价。一般来说,热冲压成形体采用点焊等接合方法来接合其它部件,根据部件形状精度在热冲压成形体中施加扭转而附加应力。应力根据部件的位置而有所不同,难以将其准确地算出,但认为只要不会因屈服应力而发生延迟断裂则在实用上没有问题。于是,从成形体中切取出板厚1.2mm×宽度6mm×长度68mm的试验片,利用四点弯曲试验赋予相当于屈服应力的应变后,在ph为3的盐酸中浸渍100小时,通过有无产生开裂对耐氢脆特性进行了评价。将无断裂的情况设定为合格(○),将有断裂的情况设定为不合格(×)。

热冲压成形体的耐碰撞特性是通过基于德国汽车工业会所规定的vda基准(vda238-100)在以下的测定条件下对热冲压成形体的弯曲性进行评价而进行。本发明中,将弯曲试验中得到的最大载荷时的位移按照vda基准转换成角度,求出最大弯曲角度。

试验片尺寸:60mm(轧制方向)×60mm(与轧制垂直的方向)、或30mm(轧制方向)×60mm(与轧制垂直的方向)

弯曲棱线:与轧制成直角的方向

试验方法:辊支撑、冲头压入

辊直径:φ30mm

冲头形状:前端r=0.4mm

辊间距离:2.0×板厚(mm)+0.5mm

压入速度:20mm/分钟

试验机:simazuautograph20kn

[实施例a]

对具有表1中所示的化学组成的母材钢板的表面进行磨削而除去了表面氧化物后,在其两面或单面通过电弧焊接而层叠了具有表2中所示的化学组成的表层用钢板。此外,电弧焊接后的表层用钢板与母材钢板的合计的板厚设定为200mm~300mm,表层用钢板的厚度设定为母材钢板的厚度的1/3左右(单侧的情况下为1/4左右)。制造no.1~36及38~40是在两面焊接有表层用钢板的钢,制造no.37是仅在单面焊接有表层用钢板的钢。对该层叠钢板实施表3中所示的热轧和/或冷轧,对所得到的钢板实施表3中所示的热处理,进行热冲压,制造了成形体。表4中示出了热冲压后的钢板(热冲压成形体)的显微组织和机械特性。需要说明的是,对从热冲压后的钢板中采集的样品的板厚1/2的位置及距离表面为20μm的位置(表层内的位置)进行分析而得到的成分组成分别与表1及2中所示的母材钢板及表层用钢板的成分组成同等。

[表1-1]

[表1-2]

[表2-1]

[表2-2]

[表3-1]

[表3-2]

[表4-1]

[表4-2]

将抗拉强度为1500mpa以上、最大弯曲角度(°)为90(°)以上、并且耐氢脆特性为合格的情况评价为耐碰撞特性和耐氢脆特性优异的热冲压成形体(表4中的实施例)。另一方面,在上述3个性能当中只要任一个不满足的情况下,设定为比较例。

[实施例b(mn:1.50%以上且低于3.00%)]

对具有表5中所示的化学组成的母材钢板的表面进行磨削而除去了表面氧化物后,在其两面或单面通过电弧焊接而层叠了具有表6中所示的化学组成的表层用钢板。此外,电弧焊接后的表层用钢板与母材钢板的合计的板厚设定为200mm~300mm,表层用钢板的厚度设定为母材钢板的厚度的1/3左右(单侧的情况下为1/4左右)。制造no.101~136及138~140是在两面焊接有表层用钢板的钢,制造no.137是仅在单面焊接有表层用钢板的钢。对该层叠钢板实施表7中所示的热轧和/或冷轧,对所得到的钢板实施表7中所示的热处理,进行热冲压,制造了成形体。表8中示出了热冲压后的钢板(热冲压成形体)的显微组织和机械特性。需要说明的是,对从热冲压后的钢板中采集的样品的板厚1/2的位置及距离表面为20μm的位置(表层内的位置)进行分析而得到的成分组成分别与表5及6中所示的母材钢板及表层用钢板的成分组成同等。

[表5-1]

[表5-2]

[表6-1]

[表6-2]

[表7-1]

[表7-2]

[表8-1]

[表8-2]

由于局部的软化部在碰撞时变形集中,成为开裂产生的主要原因,因此成形体中的硬度的不均小(即确保稳定的强度)在确保耐碰撞特性的方面是重要的。因此,本实施例中,对热冲压成形体的耐碰撞特性从硬度不均的观点出发也进行了评价。对长条状的热冲压成形体的与长度方向垂直的截面在该长度方向上的任意的位置进行采集,对包含纵壁的全部截面区域的板厚中心位置的硬度进行了测定。测定中使用维氏试验机,测定载荷设定为1kgf,测定间隔设定为1mm。将没有比全部测定点的平均值降低超过100hv的测定点的情况作为硬度不均小即强度稳定性优异、其结果是耐碰撞特性优异而设定为合格(○),将有降低超过100hv的测定点的情况设定为不合格(×)。更具体而言,将全部测定点的硬度平均值(表8中的平均截面硬度)与全部测定点中的最小硬度的值之差为100hv以下的情况设定为合格,将超过100hv的情况设定为不合格。

与实施例a的情况同样地,将抗拉强度为1500mpa以上、最大弯曲角度(°)为90(°)以上、并且耐氢脆特性为合格的情况评价为耐碰撞特性和耐氢脆特性优异的热冲压成形体(表8中的实施例)。此外,将平均截面硬度-最少硬度为100hv以下的情况评价为不仅从弯曲性而且从强度稳定性的观点来看耐碰撞特性也得以改善的热冲压成形体(表8中的实施例112以外的实施例)。另一方面,在“抗拉强度”、“最大弯曲角度”及“耐氢脆特性”的必要条件当中只要任一个不满足的情况下,设定为比较例。

[实施例c(si:超过0.50%且低于3.00%)]

对具有表9中所示的化学组成的母材钢板的表面进行磨削而除去了表面氧化物后,在其两面或单面通过电弧焊接而层叠了具有表10中所示的化学组成的表层用钢板。此外,电弧焊接后的表层用钢板与母材钢板的合计的板厚设定为200mm~300mm,表层用钢板的厚度设定为母材钢板的厚度的1/3左右(单侧的情况下为1/4左右)。制造no.201~236及238~240是在两面焊接有表层用钢板的钢,制造no.237是仅在单面焊接有表层用钢板的钢。对该层叠钢板实施表11中所示的热轧和/或冷轧,对所得到的钢板实施表11中所示的热处理,进行热冲压,制造了成形体。表12中示出了热冲压后的钢板(热冲压成形体)的显微组织和机械特性。需要说明的是,对从热冲压后的钢板中采集的样品的板厚1/2的位置及距离表面为20μm的位置(表层内的位置)进行分析而得到的成分组成分别与表9及10中所示的母材钢板及表层用钢板的成分组成同等。

[表9-1]

[表9-2]

[表10-1]

[表10-2]

[表11-1]

[表11-2]

[表12-1]

[表12-2]

本实施例中,对热冲压成形体的耐碰撞特性从延展性的观点出发也进行了评价。具体而言,通过热冲压后的钢板的拉伸试验求出该钢板的均匀伸长率而对耐碰撞特性进行了评价。拉伸试验是制作jisz2201中记载的5号试验片,按照jisz2241中记载的试验方法来实施,将得到最大拉伸载荷的伸长率设定为均匀伸长率。

与实施例a的情况同样地,将抗拉强度为1500mpa以上、最大弯曲角度(°)为90(°)以上、并且耐氢脆特性为合格的情况评价为耐碰撞特性和耐氢脆特性优异的热冲压成形体(表12中的实施例)。此外,将均匀伸长率为5%以上的情况评价为不仅从弯曲性而且从延展性的观点来看耐碰撞特性也得以改善的热冲压成形体(表12中的实施例210及211以外的实施例)。另一方面,在“抗拉强度”、“最大弯曲角度”及“耐氢脆特性”的必要条件当中只要任一个不满足的情况下,设定为比较例。

[实施例d(mn:1.50%以上且低于3.00%及si:超过0.50%且低于3.00%)]

对具有表13中所示的化学组成的母材钢板的表面进行磨削而除去了表面氧化物后,在其两面或单面通过电弧焊接而层叠了具有表14中所示的化学组成的表层用钢板。此外,电弧焊接后的表层用钢板与母材钢板的合计的板厚设定为200mm~300mm,表层用钢板的厚度设定为母材钢板的厚度的1/3左右(单侧的情况下为1/4左右)。制造no.301~339及341~343是在两面焊接有表层用钢板的钢,制造no.340是仅在单面焊接有表层用钢板的钢。对该层叠钢板实施表15中所示的热轧和/或冷轧,对所得到的钢板实施表15中所示的热处理,进行热冲压,制造了成形体。表16中示出了热冲压后的钢板(热冲压成形体)的显微组织和机械特性。需要说明的是,对从热冲压后的钢板中采集的样品的板厚1/2的位置及距离表面为20μm的位置(表层内的位置)进行分析而得到的成分组成分别与表13及14中所示的母材钢板及表层用钢板的成分组成同等。

[表13-1]

[表13-2]

[表14-1]

[表14-2]

[表15-1]

[表15-2]

[表16-1]

[表16-2]

本实施例中,与实施例b的情况同样地,对热冲压成形体的耐碰撞特性从硬度不均的观点出发也进行了评价。对长条状的热冲压成形体的与长度方向垂直的截面在该长度方向上的任意的位置进行采集,对包含纵壁的全部截面区域的板厚中心位置的硬度进行了测定。测定中使用维氏试验机,测定载荷设定为1kgf,测定间隔设定为1mm。将没有比全部测定点的平均值降低超过100hv的测定点的情况作为硬度不均小即强度稳定性优异、其结果是耐碰撞特性优异而设定为合格(○),将有降低超过100hv的测定点的情况设定为不合格(×)。更具体而言,将全部测定点的硬度平均值(表16中的平均截面硬度)与全部测定点中的最小硬度的值之差为100hv以下的情况设定为合格,将超过100hv的情况设定为不合格。

进而,在本实施例中,与实施例c的情况同样地,对热冲压成形体的耐碰撞特性从延展性的观点出发也进行了评价。具体而言,通过热冲压后的钢板的拉伸试验求出该钢板的均匀伸长率而对耐碰撞特性进行了评价。拉伸试验是制作jisz2201中记载的5号试验片,按照jisz2241中记载的试验方法来实施,将得到最大拉伸载荷的伸长率设定为均匀伸长率。

与实施例a的情况同样地,将抗拉强度为1500mpa以上、最大弯曲角度(°)为90(°)以上、并且耐氢脆特性为合格的情况评价为耐碰撞特性和耐氢脆特性优异的热冲压成形体(表16中的实施例)。此外,将均匀伸长率为5%以上并且平均截面硬度-最少硬度为100hv以下的情况评价为不仅从弯曲性而且从延展性及强度稳定性的观点来看耐碰撞特性也得以改善的热冲压成形体(表16中的实施例310、311及313~315以外的实施例)。另一方面,在“抗拉强度”、“最大弯曲角度”及“耐氢脆特性”的必要条件当中只要任一个不满足的情况下,设定为比较例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1