生物质高比表面积微孔碳材料的制备方法

文档序号:3434356阅读:844来源:国知局
专利名称:生物质高比表面积微孔碳材料的制备方法
技术领域
本发明属于微孔碳材料制备领域,特别涉及一种利用生物质制备微孔碳材料的方法,具体涉及利用生物质制备出具有高比表面积以及较窄孔分布的微孔碳材料。
背景技术
微孔碳材料由于其特殊的孔道结构和较高的比表面积,使其在日常生活中有着不可忽视的作用。现在,微孔碳材料已经被广泛应用于气体的贮藏与分离、电池或电容的电极材料、多种化学反应的催化剂或催化剂载体、污水处理、贵金属回收等。在市场上,比较常见的微孔碳材料为活性炭,它是利用木炭、各种果壳以及优质煤等为原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。但常规的活性炭存在着孔径分布不均一,比表面积较小等缺点,这些使得活性炭在应用方面受到很大的限制。为了克服活性炭的缺点,人们开发出了活性炭纤维,这虽然在很大程度上克服了活性炭的那些缺点,但是又产生了一系列新的问题——活性炭纤维的制备工艺复杂、成本高以及性能开发得还不够完善,这些都严重制约了活性炭纤维的实际应用,因此,活性炭在生产生活中还占有绝对优势。
在微孔碳材料的制备过程中,最主要的步骤是活化过程,活化方法通常分为物理活化法和化学活化法两大类①物理活化法以水蒸气,二氧化碳等物质作为活化剂在惰性气氛保护下对炭化产物进行活化;②化学活化法以碱金属或碱土金属的氢氧化物如KOH、NaOH、Ca(OH)2以及ZnCl2、CaCl2、H2SO4、H3PO4等化学试剂作为活化剂在惰性气氛保护下对炭化物进行活化。
用物理活化法制得的活性炭主要是微孔碳材料,虽然制得的活性炭的孔分布较窄,在各种应用领域中有较好的使用效果,但是由此方法制备的微孔碳材料的比表面积较低,这些微孔碳材料还达不到理想的应用效果。虽然用化学活化法制备的活性碳的比表面积相对于物理活化法制备的活性炭有了很大的提高,在很多方面的使用效果也比较好,但是化学活化法制备的活性炭的孔分布一般都很宽,这使得化学活化法制备的活性炭在有些方面的应用(如气体分离)受到一定的限制。
本发明以可再生的生物质材料为制备微孔碳的原料,利用化学活化法来活化微孔碳材料,通过将生物质材料的炭化产物在碱性溶液中浸渍,然后在惰性气氛中进行活化处理得到优质的微孔碳材料。目前,国内市场上有很大部分的优质活性炭是利用木材和优质煤炭作为原材料,每年在制备优质活性炭方面就要消耗大量的木材和煤炭,而我国的森林覆盖率并不是很高,虽然我国是煤炭大国,但是煤炭是一种不可再生资源,并且现在世界各国都面临着化石能源的危机。因此,如果寻找到能够替代木材和煤炭来制备优质微孔碳材料的可再生原材料,那么将对我国的森林保护和减少化石能源消耗起到很大的作用。

发明内容
本发明要解决的技术问题是要克服当前背景技术的不足,利用简单的化学活化法制得具有高比表面积、较窄孔分布的微孔碳材料。本发明有很高的实际应用价值。
本发明是利用农村最普遍、廉价的玉米秸秆为原材料,将秸秆在惰性气氛下炭化,然后将炭化产物在碱性溶液中浸渍一段时间,使碱均匀充分地分散到炭化产物中,然后将炭化产物从溶液中取出,并在惰性气氛中进行活化处理,再经过水洗,酸处理,水洗,干燥等过程,最后获得微孔碳材料。
制备微孔碳材料的具体过程如下将秸秆洗净,切割成1~3厘米长的小段,在惰性(氮气或氩气99.9%)气氛保护下于300~500℃炭化3~4小时,在管式炉中部得到炭化产物,在管式炉两端得到焦油。然后将获得的炭化产物浸渍在2~13mol/L的碱性溶液(KOH或NaOH)中(每克炭化产物浸渍在20~25毫升溶液中)20~24小时直至炭化产物完全浸润,利用筛子将炭化产物与溶液分离,之后在惰性气体(氮气或氩气99.9%)保护下700~800℃下活化1.5~3小时,自然降温至室温,将产物用水(或去离子水)洗至洗涤液的pH值为7~8,利用浓度0.05~0.2mol/L稀酸(盐酸或硝酸)浸泡4~5小时,再用水(或去离子水)洗涤至洗涤液pH值为6~7,最后在80~120℃下干燥,得到本专利所述的高比表面积微孔碳材料。
本发明利用普遍的、大量的、可再生的生物质玉米秸秆作为原料,经过简单的化学活化而制得微孔碳材料。这种碳材料具有很大的比表面积(最高达到3247m2/g),并且具有较窄的孔径分布(1~2nm)。这种方法中应用的原料极其廉价,制备过程中,不同于大多数原料的炭化产物,我们制得的炭化产物主要是松散的网状结构,同时我们使用的活化剂是以溶液浸渍形式加入,因此活化剂可以非常均匀充分地分散到炭化产物中,使炭化产物在活化过程中能活化充分和反应均匀。在多数的微孔碳制备过程中,活化剂的加入是先将炭化产物粉碎,然后和固体活化剂直接混合、搅拌均匀,因此,往往会造成活化剂在炭化产物中分布不均匀,进而导致活化反应后的产物孔径分布不均匀。在炭化过程中,秸秆中的主要成分中许多化学键断裂,形成水,焦油等副产物,而在活化过程中主要是发生的是脱氢反应以及活化剂和炭化物之间的化学反应。
本发明中的方法对设备要求低,耗时少,制备过程简单,反应中的主要副产物是焦油,焦油同样是一种有很高利用价值的产品,微孔碳材料的洗涤液是富含钾离子的溶液,经过简单的处理就是很好的农业用钾肥。另外,所用原料来源广泛,不受地区限制,价格低廉,并且原料为可再生资源,这将节约大量的木材和优质煤炭。采用KOH(或NaOH)溶液浸渍的方法溶解掉剩余的焦油,而且KOH(或NaOH)能更好地分散到碳材料中,这比传统的将炭化产物和固体活化剂混合研磨法更均匀,节省工序。我们制备的微孔碳材料具有丰富的孔隙结构,很大的比表面积(高于3000m2/g),较窄的孔径分布(1~2nm),而且微孔碳材料的比表面积还可以通过调节KOH(或NaOH)溶液的浓度来调节。
因此,本发明极其适用于工业大规模生产,对我国节约森林资源和煤炭资源有很重要的意义。特别针对于当前农村,将大部分玉米秸秆应用于取暖,做牲畜饲料,本发明能有效的解决这种浪费现象,为农村开拓一种新的经济收入来源。由于本发明得到的微孔碳材料具有较高的比表面积和较窄的孔径分布,所以其在气体的贮藏与分离,电池或电容的电极材料,多种化学反应中的催化剂或载体,污水处理,贵金属回收等领域都会有实际应用价值。


图1微孔碳材料的氮气吸附/脱附等温线;
图2微孔碳材料的孔径分布曲线;图3微孔碳材料的高分辨透射电镜照片;图4微孔碳材料的比表面积与KOH溶液浓度的关系曲线。
我们对所得的微孔碳材料进行了一些结构和性质的表征(实施例12)。图1所示,为微孔碳材料的氮气吸附/脱附等温线,图中的吸附/脱附等温线是典型的I型,并且没有滞后环,表明这种微孔碳材料含有大量的微孔。图2为微孔碳材料的孔径分布图。孔径分布曲线说明这种微孔碳材料的孔径分布比较窄,主要分布在1~2nm之间。图3是微孔碳材料的高分辨透射电镜照片,在照片中,我们也可以清楚地看到微孔碳材料的孔径主要是分布在1~2nm之间。图4是微孔碳材料的比表面积和所用KOH溶液浓度的关系。从图中可知,当KOH浓度控制在8~13mol/L之间,微孔碳材料的比表面积可以达到3000m2/g,最高可到3247m2/g。
具体实施例方式
下面就实施例对本发明进行进一步阐述实施例1将玉米秸秆洗干净,烘干,然后切成1.5厘米长的小段。在氮气的保护下,400℃下炭化3小时,得到炭化产物和副产品焦油。将得到的炭化产物浸渍在1mol/L的KOH溶液中(25毫升溶液每克炭化产物)24小时。将取出的炭化产物在750℃下活化2小时,然后,依次用去离子水洗涤至洗涤液pH=7,然后用稀盐酸(0.1mol/L)浸泡5小时,再用去离子水洗涤产物直至洗涤液pH=7,在100℃下进行干燥3小时后得到微孔碳材料,材料的比表面积为880m2/g,孔径大小主要为1.4nm。
实施例2实验方法同实施例1,只是将活化剂KOH溶液的浓度变为2mol/L,同样得到微孔碳材料,材料的比表面积为1300m2/g,孔径大小主要为1.4nm。
实施例3
实验方法同实施例1,只是将活化剂KOH溶液的浓度变为3mol/L,同样得到微孔碳材料,材料的比表面积为1412m2/g,孔径大小主要为1.4nm。
实施例4实验方法同实施例1,只是将活化剂KOH溶液的浓度变为4mol/L,同样得到微孔碳材料,材料的比表面积为1526m2/g,孔径大小主要为1.4nm。
实施例5实验方法同实施例1,只是将活化剂KOH溶液的浓度变为5mol/L,同样得到微孔碳材料,材料的比表面积为1580m2/g,孔径大小主要为1.4nm。
实施例6实验方法同实施例1,只是将活化剂KOH溶液的浓度变为6mol/L,同样得到微孔碳材料,材料的比表面积为2201m2/g,孔径大小主要为1.4nm。
实施例7实验方法同实施例1,只是将活化剂KOH溶液的浓度变为7mol/L,同样得到微孔碳材料,材料的比表面积为2645m2/g,孔径大小主要为1.4纳米。
实施例8实验方法同实施例1,只是将活化剂KOH溶液的浓度变为8mol/L,同样得到微孔碳材料,材料的比表面积为2900m2/g,孔径大小主要为1.4nm。
实施例9实验方法同实施例1,只是将活化剂KOH溶液的浓度变为9mol/L,同样得到微孔碳材料,材料的比表面积为2991m2/g,孔径大小主要为1.4nm。
实施例10实验方法同实施例1,只是将活化剂KOH溶液的浓度变为10mol/L,同样得到微孔碳材料,材料的比表面积为3247m2/g,孔径大小主要为1.4nm。
实施例11实验方法同实施例1,只是将活化剂KOH溶液的浓度变为11mol/L,同样得到微孔碳材料,材料的比表面积为3103m2/g,孔径大小主要为1.4nm。
实施例12实验方法同实施例1,只是将活化剂KOH溶液的浓度变为12mol/L,同样得到微孔碳材料,材料的比表面积为3015m2/g,孔径大小主要为1.4nm。
实施例13实验方法同实施例1,只是将活化剂KOH溶液的浓度变为13mol/L,同样得到微孔碳材料,材料的比表面积为2920m2/g,孔径大小主要为1.4nm。
权利要求
1.生物质高比表面积微孔碳材料的制备方法,其包括如下步骤将生物质材料洗净,切割成1~3厘米长的小段,在惰性气氛保护下于300~500℃炭化3~4小时,然后将获得的炭化产物浸渍在碱性溶液中20~24小时直至炭化产物完全浸润,将炭化产物与溶液分离,之后在惰性气体保护下于700~800℃下活化1.5~3小时,自然降温至室温,将产物洗涤至pH值为7~8,利用稀酸浸泡4~5小时,再将洗涤液洗涤至pH值为6~7,最后在80~120℃下干燥得到高比表面积微孔碳材料。
2.如权利要求1所述的生物质高比表面积微孔碳材料的制备方法,其特征在于生物质材料是玉米秸秆。
3.如权利要求1所述的生物质高比表面积微孔碳材料的制备方法,其特征在于惰性气氛是在氮气或氩气气氛下。
4.如权利要求1所述的生物质高比表面积微孔碳材料的制备方法,其特征在于碱性溶液是KOH或NaOH。
5.如权利要求1所述的生物质高比表面积微孔碳材料的制备方法,其特征在于每克炭化产物浸渍在20~25毫升碱性溶液中。
6.如权利要求1所述的生物质高比表面积微孔碳材料的制备方法,其特征在于稀酸是浓度为0.05~0.2mol/L的稀盐酸或稀硝酸。
7.如权利要求1-6任何一项所述的生物质高比表面积微孔碳材料的制备方法,其特征在于碱溶液的浓度为2~13mol/L。
8.如权利要求7所述的生物质高比表面积微孔碳材料的制备方法,其特征在于碱溶液的浓度为8~13mol/L。
全文摘要
本发明属于微孔碳材料制备领域,涉及利用生物质制备具有高比表面积以及较窄孔分布的微孔碳材料,其是将生物质材料洗净,切割成1~3厘米长的小段,在惰性气氛保护下于300~500℃炭化3~4小时,然后将获得的炭化产物浸渍在碱性溶液中20~24小时直至炭化产物完全浸润,将炭化产物与溶液分离,之后在惰性气体保护下于700~800℃下活化1.5~3小时,自然降温至室温,再将产物用水洗至洗涤液的pH值为7~8,利用稀酸浸泡4~5小时,用水洗涤至洗涤液pH值为6~7,再在80~120℃下干燥得到微孔碳材料。本发明所述方法具有制备过程简单,原料廉价丰富,制备条件不受地域限制等优点,适合工业生产。
文档编号C01B31/12GK101054174SQ200710055490
公开日2007年10月17日 申请日期2007年4月5日 优先权日2007年4月5日
发明者陈接胜, 张锋, 李国栋, 张瑜 申请人:吉林大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1