Bi<sub>2</sub>Te<sub>3</sub>薄片/石墨烯复合材料及其制备方法和应用的制作方法

文档序号:3446784阅读:413来源:国知局
专利名称:Bi<sub>2</sub>Te<sub>3</sub>薄片/石墨烯复合材料及其制备方法和应用的制作方法
技术领域
本发明涉及热电用复合材料领域,具体涉及一种Bi2Te3薄片/石墨烯复合材料及其制备方法和应用。
背景技术
热电材料是一种通过载流子(电子或空穴)的运动实现电能和热能直接相互转换的半导体材料。当热电材料两端存在温差时,热电材料能将热能转化为电能输出;或反之在热电材料中通以电流时,热电材料能将电能转化成热能,在一端吸热而在另一端放热。热电材料在发电或制冷领域有着广泛的应用前景。使用热电材料的热电发电装置可作为空间探测器、野外作业、海洋灯塔等使用的移动电源,或用于工业余热、废热发电。用热电材料的制冷器件可应用于小型冷藏箱、计算机芯片和激光探测器的局部冷却、医用便携式超低温冰 館坐不 0 O热电材料的性能用“热电优值”Z表征a = ( α 2 σ / K )。这里的α材料的塞贝克系数,σ是电导率,K是热导率。Bi2Te3基化合物是目前性能最好的室温热电材料,但其热电性能仍有待进一步提闻。现有的改进方法有掺杂金属法,如中国专利申请CN 200910186513. 5中公开了一种稀土掺杂的Bi2Te3基热电薄膜材料,在真空熔炼时加入稀土元素,得到Bi2_xTe3REx块体热电材料,其中RE表示稀土元素,X = O. 002-0. 01,所掺入的稀土元素为轻稀土元素La、Ce,然后将熔炼好的材料研磨成200-300μπι的粉末颗粒作为闪蒸法的原材料,采用闪蒸法来实现薄膜的制备,对沉积的薄膜进行退火处理,得到稀土掺杂的Bi2_xTe3REx热电薄膜材料;该热电薄膜材料的热电性能优于未掺杂的Bi2Te3热电薄膜材料,其掺杂机理是稀土兀素具有碱土金属类似的性质,当稀土元素加入后,容易取代Bi位置,作为施主掺杂,提高载流子浓度,从而提高Bi2Te3基薄膜材料的热电性能。另外,细化Bi2Te3晶粒是提高其热电性能的一种有效方法。这是因为通过细化晶粒,增加的晶界能有效地对声子进行散射,从而降低其热导率K。如中国专利ZL200310109130. O中公开了一种高性能Bi2Te3基纳米复合热电材料,该材料是在Bi2Te3基热电材料粉末中添加Bi2Te3基纳米结构粉末,通过压制烧结复合而成;该Bi2Te3基纳米复合热电材料的热电性能优于不复合纳米结构粉末的基体Bi2Te3基热电材料,其机理在于Bi2Te3基纳米结构粉末具有独特微观结构,能够产生独特的物理、化学特性,从而使材料具备特殊的载流子输运特性,因此可以显著提高热电材料的热电势系数或电导率,从而提高材料的热电功率因子。中国专利申请CN200510130794. 4中公开了一种纳米SiC/Bi2Te3基热电材料的制备方法,以高纯Bi粉、Te粉和纳米SiC为原料,通过机械合金化合成Bi2Te3化合物微细粉末,再利用放电等离子烧结工艺将掺杂纳米SiC颗粒的Bi2Te3前驱微细粉烧结成块体;获得高致密度、高机械性能、高热电性能的热电材料。但细晶粒在热处理过程中易团聚、烧结,从而弱化对声子的散射机制。

发明内容
本发明提供了一种热电性能良好的Bi2Te3薄片/石墨烯复合材料。本发明还提供了一种Bi2Te3薄片/石墨烯复合材料的一步制备方法,该方法工艺简单,能耗低、成本低,所得产物颗粒尺寸细小且分布均匀。一种Bi2Te3薄片/石墨烯复合材料,由微米级Bi2Te3薄片和石墨烯(G)组成。即所述的复合材料具有Bi2Te3/G的组成。为了进一步提高复合材料的应用性能,所述的复合材料中石墨烯的重量百分含量优选为O. 1% 2%,进一步优选为O. 16% I. 9%。薄片尺寸越小,越易覆载于石墨烯上,复合材料的导电性性能越好,另外薄片尺寸 越小,晶界越多,对声子的散射越强,热导越低,热电性能就越好,因此本发明选用微米级Bi2Te3薄片,优选,所述的微米级Bi2Te3薄片的尺寸为I微米 2微米。优选,所述的复合材料中微米级Bi2Te3薄片呈均匀分散。所述的Bi2Te3薄片/石墨烯复合材料的制备方法,为一步水热法或一步溶剂热法。为了达到更好的发明效果,优选所述的Bi2Te3薄片/石墨烯复合材料的制备方法,包括以下步骤I)以单质碲(Te)或含碲的化合物与含铋(Bi)的化合物为原料,按照Bi2Te3的化学计量比(即Bi与Te的原子比2 3)混合于去离子水或有机溶剂中,得到以Bi2Te3计浓度为O. 015mol/L O. 15mol/L的混合溶液;2)在步骤I)的混合液中加入氧化石墨烯(GO)经充分超声分散后再加入还原剂和碱性调节剂调节pH值至8 12,然后于密封环境中在100°C 250°C反应12小时 72小时后冷却,收集固体产物,经去离子水和无水乙醇交替反复洗涤,干燥,得到Bi2Te3薄片/石墨烯复合材料。所述的氧化石墨烯的加入量为Bi2Te3理论重量的O. 4% 5% ;所述的还原剂的加入量由两部分核算,按以下方法确定每摩尔Bi2Te3WA 10摩尔 20摩尔还原剂,每克氧化石墨烯再加入O. 2摩尔 I摩尔还原剂。所述的含碲的化合物可选用Na2TeO3或K2TeO3。所述的含铋的化合物可选用氯化铋、氟化铋、硝酸铋、硫酸铋、草酸铋或醋酸铋。所述的有机溶剂可选用乙醇、甲醇、乙二醇、丙酮、N,N-二甲基甲酰胺、卩比唆、乙二胺、苯或甲苯。所述的还原剂是碱金属的硼氢化物,优选NaBH4或KBH4。所述的碱性调节剂主要用来调节pH值至8 12,添加量视所需pH而定,浓度无严格限定,作用有两方面(I)促进金属离子还原及Bi2Te3化合物的形成;(2)促进氧化石墨烯的还原,氧化石墨烯还原成石墨烯后可使电导率显著提高,可选用氢氧化钠水溶液或氢氧化钾水溶液。步骤2)中,进一步优选在160°C 220°C反应24小时 72小时后冷却;反应温度高,时间长,Bi2Te3易形成,氧化石墨烯易还原成石墨烯,但对颗粒尺寸影响不大。所述的冷却的温度并没有严格的限定,以适宜操作为主,一般可冷却至15°C 30°C的环境温度。所述的Bi2Te3薄片/石墨烯复合材料可用作热电材料。
与现有技术相比,本发明具有如下优点I、本发明复合材料中微米级Bi2Tej^片由于石墨烯的分散、承载及隔离作用能够达到均匀分布,可有效阻止Bi2Te3小颗粒在热处理过程中的团聚及烧结,以维持众多晶界对声子的有效散射,从而提高Bi2Te3材料的热电性能。并且少量的引入石墨烯不会对电导σ及塞贝克系数α产生负面影响。2、本发明采用一步水热或溶剂热法制备微米尺寸的Bi2Te3薄片/石墨烯复合材料,在水热或溶剂热合成Bi2Te3过程中原位引入石墨烯,具有工艺简单、成本低、周期短、能耗低等优点。由于石墨烯的分散和承载作用,所得Bi2Te3纯度高、粒度小,直径约为I微米 2微米,且分布比较均匀。


图I为实施例I所得Bi2Te3/G复合材料的X射线衍射图谱; 图2为实施例I所得Bi2Te3/G复合材料的扫描电镜照片。
具体实施例方式实施例II)将分析纯BiCl3和Te粉,按Bi : Te原子比2 3的比例配料后混合于无水乙醇中,制得以Bi2Te3计浓度为O. 015mol/L的混合液,混合液体积为80毫升。2)在步骤I)的混合液中加入48晕克GO并充分超声分散然后置于容量为100晕升的高压反应釜中(填充度80%,体积百分比),再在溶液中加入I. 2克还原剂NaBH4,再加入6M的NaOH水溶液调节pH值至10,然后立即密封。3)将反应釜加热至180°C,并反应24小时。4)反应完后自然冷却至室温,收集釜底的粉末状反应产物,依次用去离子水,无水乙醇交替反复清洗数次后,将粉末在110°c下真空干燥12小时,得到复合材料粉末O. 98克,复合材料中石墨烯的重量百分比为1.9%。所得的复合材料粉末的X射线衍射图谱和扫描电镜照片分别如图I和图2,图I中所有的衍射峰均可归为Bi2Te3的衍射峰,图I中没有发现石墨烯的衍射峰,表明石墨烯层已被Bi2Te3颗粒均匀分散,可看出所得的复合材料粉末为铋碲化合物/石墨烯(Bi2Te3/G)复合材料,其中Bi2Te3薄片尺寸呈微米级,直径为I微米 2微米,且分布比较均匀。在25°C 450°C下进行的热电性能测试表明,该复合材料在此温度范围内最高热电优值(ZT值)可达到O. 85,可用作热电材料。实施例2I)将分析纯Bi (NO3) 3·5Η20和Na2TeO3,按Bi Te原子比2 3的比例配料后混合于去离子水中,制得以Bi2Te3计浓度为O. 03mol/L的混合液,混合液体积为80毫升。2)在步骤I)的混合液中加入58毫克GO并充分超声分散然后置于容量为100毫升的高压反应釜中(填充度80%,体积百分比),并在溶液中加入3. 2克还原剂KBH4,再加入6M的KOH水溶液调节pH值至11,然后立即密封。3)将反应釜加热至160°C,并反应48小时。4)反应完后自然冷却至室温,收集釜底的粉末状反应产物,依次用去离子水,无水乙醇交替反复清洗数次后,将粉末在110°C下真空干燥12小时,得到复合材料粉末I. 9克,复合材料中石墨烯的重量百分比为I. 1%。所得的复合材料粉末经X射线衍射图谱和扫描电镜照片分析,可看出所得的复合材料粉末为铋碲化合物/石墨烯(Bi2Te3/G)复合材料,其中Bi2Te3薄片尺寸呈微米级,直径为I微米 2微米,且分布比较均匀。在25°C 450°C下进行的热电性能测试表明,该复合材料在此温度范围内最高热电优值(ZT值)可达到O. 82,可用作热电材料。实施例3I)将分析纯BiF3和K2TeO3按Bi Te原子比2 3的比例配料后混合于无水乙二醇中,制得以Bi2Te3计浓度为O. 09mol/L的混合液,混合液体积为80毫升。2)在步骤I)的混合液中加入57毫克GO并充分超声分散然后置于容量为100毫 升的高压反应釜中(填充度80%,体积百分比),并在溶液中加入6. 9克还原剂NaBH4,再加入6M的NaOH水溶液调节pH值至11然后立即密封。3)将反应釜加热至200°C,并反应36小时。4)反应完后自然冷却至室温,收集釜底的粉末状反应产物,依次用去离子水,无水乙醇交替反复清洗数次后,将粉末在110°C下真空干燥12小时,得到复合材料粉末5. 8克,复合材料中石墨烯的重量百分比为O. 4%。所得的复合材料粉末经X射线衍射图谱和扫描电镜照片分析,可看出所得的复合材料粉末为铋碲化合物/石墨烯(Bi2Te3/G)复合材料,其中Bi2Te3薄片尺寸呈微米级,直径为I微米 2微米,且分布比较均匀。在25°C 450°C下进行的热电性能测试表明,该复合材料在此温度范围内最高热电优值(ZT值)可达到O. 80,可用作热电材料。实施例4 I)将分析纯Bi2 (C2O4) 3 · 7H20和Te粉按Bi Te原子比2 3的比例配料后混合于甲苯中,制得以Bi2Te3计浓度为O. 15mol/L的混合液,混合液体积为80毫升。2)、在步骤I)的混合液中加入38毫克GO并充分超声分散然后置于容量为100毫升的高压反应釜中(填充度80%,体积百分比),并在溶液中加入8. I克还原剂KBH4,再加入6M的KOH水溶液调节pH值至12然后立即密封。3)、将反应釜加热至220°C,并反应72小时。4)、反应完后自然冷却至室温,收集釜底的粉末状反应产物,依次用去离子水,无水乙醇交替反复清洗数次后,将粉末在110°c下真空干燥12小时,得到复合材料粉末9. 6克,复合材料中石墨烯的重量百分比为O. 16%。所得的复合材料粉末经X射线衍射图谱和透射电镜照片分析,可看出所得的复合材料粉末为铋碲化合物/石墨烯(Bi2Te3/G)复合材料,其中Bi2Te3薄片尺寸呈微米级,直径为I微米 2微米,且分布比较均匀。在25°C 450°C下进行的热电性能测试表明,该复合材料在此温度范围内最高热电优值(ZT值)可达到O. 86,可用作热电材料。
权利要求
1.一种Bi2Te3薄片/石墨烯复合材料,其特征在于,由微米级Bi2Te3薄片和石墨烯组成。
2.根据权利要求I所述的Bi2Te3薄片/石墨烯复合材料,其特征在于,所述的复合材料中石墨烯的重量百分含量为O. 1% 2%。
3.根据权利要求I所述的Bi2Te3薄片/石墨烯复合材料,其特征在于,所述的微米级Bi2Te3薄片的尺寸为I微米 2微米。
4.根据权利要求I所述的Bi2Te3薄片/石墨烯复合材料,其特征在于,所述的复合材料中微米级Bi2Te3薄片呈均匀分散。
5.根据权利要求I 4任一项所述的Bi2Te3薄片/石墨烯复合材料的制备方法,其特征在于,包括以下步骤 1)以单质碲或含碲的化合物与含铋的化合物为原料,按照Bi2Te3的化学计量比混合于去离子水或有机溶剂中,得到以Bi2Te3计浓度为O. 015mol/L O. 15mol/L的混合溶液; 2)在步骤I)的混合液中加入氧化石墨烯经充分超声分散后再加入还原剂和碱性调节剂调节pH值至8 12,然后于密封环境中在100°C 250°C反应12小时 72小时后冷却,收集固体产物,经去离子水和无水乙醇交替反复洗涤,干燥,得到Bi2Te3薄片/石墨烯复合材料; 所述的氧化石墨烯的加入量为Bi2Te3理论重量的O. 4% 5% ; 所述的还原剂的加入量由两部分核算,按以下方法确定每摩尔Bi2Te3加入10摩尔 20摩尔还原剂,每克氧化石墨烯再加入O. 2摩尔 I摩尔还原剂。
6.根据权利要求5所述的制备方法,其特征在于,所述的含碲的化合物是Na2TeO3或K2TeO3 ; 所述的含铋的化合物是氯化铋、氟化铋、硝酸铋、硫酸铋、草酸铋或醋酸铋。
7.根据权利要求5所述的制备方法,其特征在于,所述的有机溶剂是乙醇、甲醇、乙二醇、丙酮、N,N-二甲基甲酰胺、吡啶、乙二胺、苯或甲苯。
8.根据权利要求5所述的制备方法,其特征在于,所述的还原剂是碱金属的硼氢化物。
9.根据权利要求5所述的制备方法,其特征在于,所述的碱性调节剂是氢氧化钠水溶液或氢氧化钾水溶液。
10.根据权利要求1、2、3或4所述的Bi2Te3薄片/石墨烯复合材料在作为热电材料中应用。
全文摘要
本发明公开了一种Bi2Te3薄片/石墨烯复合材料,由微米级Bi2Te3薄片和石墨烯组成。由于石墨烯的分散、承载及隔离作用,可有效阻止微米Bi2Te3薄片在热处理过程中的烧结,以保持晶界对声子的有效散射,对提高Bi2Te3材料的热电性能具有重大意义。该复合材料可作为热电材料。本发明还公开了该复合材料的一步水热法或一步溶剂热法的制备方法,具有工艺简单、成本低、周期短、能耗低等优点。
文档编号C01B31/04GK102760827SQ20121025483
公开日2012年10月31日 申请日期2012年7月23日 优先权日2012年7月23日
发明者刘双宇, 屠芳芳, 曹高劭, 朱铁军, 谢健, 赵新兵 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1