一种镁铝尖晶石‑氮化硅基蜂窝陶瓷吸热体及其制备方法与流程

文档序号:11890982阅读:288来源:国知局
一种镁铝尖晶石‑氮化硅基蜂窝陶瓷吸热体及其制备方法与流程

本发明属于能源新材料领域,具体涉及一种镁铝尖晶石-氮化硅基蜂窝陶瓷吸热体及其制备方法。



背景技术:

塔式太阳能热发电(Solar tower power generation)是采用可以跟踪太阳运动的定日镜将太阳光汇聚至吸收塔顶的吸热器中,利用吸热体材料将太阳辐射能转换为传热工质的热能,再通过热力循环转换成电能的太阳能热发电系统。吸热体材料是吸热器的核心,也是整个系统中工作温度最高的部件,一般达1000~1300℃。稳定可靠的吸热体材料是决定塔式太阳能热发电效率的关键。由于吸热体材料需长期在不稳定的太阳辐照下和高温空气中工作,因此其必须同时具有高的太阳光吸收率、良好的高温抗氧化性能和抗热震性能。

目前最常见的吸热体是碳化硅和氮化硅基材料。中国发明专利《用于太阳能热发电站的固体粒子空气吸热器》(CN102818379B)公开了一种由碳化硅、石墨和炭黑等耐高温材料组成的固体粒子吸热体材料;中国发明专利《一种新型碳化硅泡沫陶瓷太阳能空气吸热器》(CN102650469A)公开了一种用于太阳能空气吸热器的碳化硅泡沫陶瓷吸热体材料;美国专利《Heat-absorbing material》(US4067743)公开了一种以碳化硼、碳化硅、二硼化钛、铜粉和碳粉为原料的吸热体材料;《Fabrication and properties of in-situ mullite-bonded Si3N4/SiCcomposites for solar heat absorber》一文介绍了一种氮化硅-碳化硅复合吸热体材料,其在1100℃氧化100h后的增重率为10~20mg/cm2;《In-situ synthesized mullitebondedsiliconcarbide ceramics used in solar heat receiver》一文介绍了用于塔式太阳能热发电的莫来石-碳化硅陶瓷吸热体材料,其在1300℃氧化100h后的增重率≥25mg/cm2;《In-situ synthesis and thermal shock resistance of cordierite/siliconcarbide composites used for solar absorber coating》一文介绍了一种用于塔式太阳能热发电的堇青石/碳化硅陶瓷吸热体材料,其太阳光吸收率为73%。尽管碳化硅和氮化硅基吸热体材料使用较普遍,但其存在抗氧化性能差和太阳光吸收率低等不足。



技术实现要素:

本发明的目的是提供一种新型高性能铝尖晶石-氮化硅蜂窝陶瓷吸热体,它具有抗氧化性能好、太阳光吸收率高等特点,同时具有良好的抗热震性能,且涉及的烧结温度低,可有效减低烧结能耗和制造成本,适合推广应用。

为了实现上述目的,本发明采用的技术方案为:

一种铝尖晶石-氮化硅基蜂窝陶瓷吸热体的制备方法,它包括如下步骤:

1)原料混合:以Si3N4、Al2O3、MgO和TiO2粉体为原料,进行烘干、球磨混合均匀得混合粉料,然后加入塑化剂,采用捏合机混合得可塑泥料;

2)练泥和陈腐:将所得可塑泥料置于真空练泥机中进行练泥,将所得产物切成泥断,进行陈腐;

3)挤出成型:将步骤2)中进行陈腐后的泥断置于挤出机中挤出蜂窝陶瓷坯体;

4)定型和干燥:将所得蜂窝陶瓷坯体置于微波炉中进行分段定型;将所得产物放入红外干燥箱进行干燥;

5)烧成:将步骤4)所得产物埋入装有石墨粉和氮化硅粉的匣钵中,加盖、放入电炉中以3~5℃/min的升温速率加热至1600~1640℃保温烧结2~3h,得所述镁铝尖晶石-氮化硅基蜂窝陶瓷吸热体(MgAl2O4-Si3N4基抗氧化蜂窝陶瓷吸热体)。

上述方案中,所述Si3N4、Al2O3、MgO和TiO2粉体的粒径为40~60μm。

上述方案中,所述Si3N4、Al2O3、MgO和TiO2粉体的添加量按质量百分数计为:Si3N460~75%、Al2O314~28%、MgO6~12%、TiO2 1~5%。

上述方案中,所述塑化剂的添加量占混合粉料质量得36~45%。

上述方案中,所述塑化剂由粘结剂、润滑剂和水混合而成,所述粘结剂为羧甲基纤维素和聚乙烯醇中的一种或二者按任意比例混合;润滑剂为桐油、豆油中的一种或二者按任意比例混合。

上述方案中,所述塑化剂中各组分按质量百分比计为:粘结剂8~11%,润滑剂8~11%,水78~84%。

上述方案中,步骤1)中所述球磨混合时间为1~2h,捏合机混合时间为20~30min。

上述方案中,步骤1)中所述烘干温度为90~110℃。

上述方案中,所述练泥次数为3~5遍,采用的真空度为0.07~0.09MPa。

上述方案中,步骤2)中所述陈腐时间为48~60h。

上述方案中,步骤3)中所述挤出压力为2~4MPa。

上述方案中,所述分段定型总时间为5~8min,每个分段时间为20~30s,微波功率为5kW,频率为2450±50MHz。

上述方案中,步骤4)中所述干燥温度为90~110℃,时间为2~3h。

上述方案中,步骤5)中所述步骤4)所得产物的埋入方式为:用氮化硅粉将蜂窝陶瓷坯体包裹,外层加盖石墨粉,压实。

根据上述方案制备的铝尖晶石-氮化硅基蜂窝陶瓷吸热体,它以Si3N4和MgAl2O4为主要成分,同时含有少量烧结过程中产生的TiN;所得MgAl2O4-Si3N4基蜂窝陶瓷吸热体在1300℃高温空气中使用100h后的氧化增重率≤5mg/cm2,其太阳光吸收率≥92%,且其氧化增重率随使用时间的延长而趋于稳定;且经过30次热冲击后形貌完好(测试条件为:1100℃~室温,风冷)。所得蜂窝陶瓷吸热体的物理性能超过了《蜂窝陶瓷》国家标准(GB/T 25994-2010)的要求。

本发明的有益效果为:

1)本发明所述铝尖晶石-氮化硅基陶瓷吸热体材料的抗氧化性能好,在高温空气中使用时能形成致密的表面抗氧化保护层,使用寿命比常见吸热体材料(如碳化硅材质、莫来石-碳化硅材质、堇青石-碳化硅材质等)延长2~3倍。

2)本发明通过添加TiO2可有效提高铝尖晶石-氮化硅陶瓷吸热体材料的太阳光吸收率和抗氧化性能。TiO2能与Al2O3形成置换型固溶体,在材料内部留下阳离子空位,增加所得产物对光的吸收;TiO2在高温下与Si3N4反应产生Ti3+(TiN),有利于提高所得产物对蓝绿光的吸收效果;同时,TiO2的引入能够促进材料中晶粒的生长、规则化排列和致密度的提高,也使所得材料在高温空气中更容易形成保护层,提高所得产物的抗氧化性能,延长其使用寿命。

3)本发明所述MgAl2O4-Si3N4基陶瓷吸热体材料对于降低我国塔式太阳能热发电站的运行成本,提高工作效率具有重要意义。

附图说明

图1为实施例1所得铝尖晶石-氮化硅基抗氧化蜂窝陶瓷的结构示意图。

图2为实施例1所得铝尖晶石-氮化硅基抗氧化蜂窝陶瓷的XRD图谱。

图3为实施例1所得铝尖晶石-氮化硅基抗氧化蜂窝陶瓷经100h氧化后的显微形貌图。

具体实施方式

为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。

实施例1

一种铝尖晶石-氮化硅基蜂窝陶瓷吸热体材料,其制备方法包括以下步骤:

1)原料处理:将Si3N4、Al2O3、MgO和TiO2粉料在100℃条件下进行烘干备用,四种粉料的粒径为40μm;

2)原料混合:按比例称取各原料,各原料所占质量百分数为:Si3N4 60%、Al2O326%、MgO 12%、TiO2 2%,称取后的粉料用球磨机混合1h,得混合粉料;然后加入占混合粉料质量36%的塑化剂,用捏合机混合20min,得可塑泥料;

其中塑化剂由羧甲基纤维素、桐油和水组成,各组分按质量百分比计为:羧甲基纤维素8%,桐油8%,水84%;

3)练泥和陈腐:将所得可塑泥料置于真空练泥机中练泥三遍(真空度为0.09MPa),将所得产物切成泥断,陈腐48h;

4)挤出成型:将步骤3)中进行陈腐后的泥断置于立式挤出机中挤出蜂窝陶瓷坯体,挤出压力为3MPa;

5)定型和干燥:将所得蜂窝陶瓷坯体置于微波炉(功率为5kW,频率为2450MHz)中进行分段定型共计5min,每段30s;定型后所得产物放入红外干燥箱中经90℃干燥2h;

6)烧成:将步骤5)所得产物埋入装有石墨粉和氮化硅粉的匣钵中,埋入方式为用氮化硅粉将蜂窝陶瓷坯体包裹,外层加盖石墨粉,压实,加盖,放入电炉中经1600℃烧成,升温速率3℃/min,烧成温度点保温3h,即得所述铝尖晶石-氮化硅基蜂窝陶瓷吸热体。

本实施例所得铝尖晶石-氮化硅基蜂窝陶瓷吸热体进行X射线衍射分析,结果见图2,材料按预期合成了目标晶相氮化硅和镁铝尖晶石,从而赋予其优良的物理性能和高温热稳定性;同时含有部分氮化钛,对于提高材料的太阳光吸收率及抗氧化性能具有重要促进作用。其中本实施例所得铝尖晶石-氮化硅基陶瓷吸热体材料在1300℃条件下经100h氧化后的显微形貌如图3所示,可以看出,所得陶瓷吸热体材料经过高温氧化后在其表面形成了致密的保护层,能有效将基体与空气隔绝,从而防止材料进一步氧化。

经测试,本实施例所得铝尖晶石-氮化硅基蜂窝陶瓷吸热体的太阳光吸收率为92%,在1300℃高温空气中使用100h后的氧化增重率为5mg/cm2。经过30次热冲击后形貌完好(测试条件为:1100℃~室温,风冷)。所得蜂窝陶瓷吸热体的物理性能超过《蜂窝陶瓷》国家标准(GB/T 25994-2010)要求。

实施例2

一种铝尖晶石-氮化硅基蜂窝陶瓷吸热体,其制备方法包括以下步骤:

1)原料处理:将Si3N4、Al2O3、MgO和TiO2粉料在100℃条件下进行烘干备用,四种粉料的粒径为60μm;

2)原料混合:按比例称取各原料,各原料所占质量百分数为:Si3N470%、Al2O318%、MgO8%、TiO2 4%,称取后的粉料用球磨机混合2h,得混合粉料;然后加入占混合粉料质量40%的塑化剂,用捏合机混合30min,得可塑泥料;

其中塑化剂由粘结剂、润滑剂和水组成,其中粘结剂由羧甲基纤维素和聚乙烯醇按1:1的质量比混合而成,润滑剂由桐油和豆油按1:1的质量比混合而成;各组分按质量百分比计为:粘结剂11%,润滑剂11%,水78%;

3)练泥和陈腐:将所得可塑泥料置于真空练泥机中练泥三遍(真空度为0.09MPa),将所得产物切成泥断,陈腐60h;

4)挤出成型:将步骤3)中进行陈腐后的泥断置于立式挤出机中挤出蜂窝陶瓷坯体,挤出压力为4MPa;

5)定型和干燥:将所得蜂窝陶瓷坯体置于微波炉(功率为5kW,频率为2450MHz)中进行分段定型共计5min,每段30s;定型后所得产物放入红外干燥箱中经100℃干燥3h;

6)烧成:将步骤5)所得产物埋入装有石墨粉和氮化硅粉的匣钵中,埋入方式为用氮化硅粉将蜂窝陶瓷坯体包裹,外层加盖石墨粉,压实,加盖,放入电炉中经1640℃烧成,升温速率3℃/min,烧成温度点保温2h,即得所述铝尖晶石-氮化硅基蜂窝陶瓷吸热体。

经测试,本实施例所得铝尖晶石-氮化硅基蜂窝陶瓷吸热体的太阳光吸收率为93%,在1300℃高温空气中使用100h后的氧化增重率为3.5mg/cm2。经过30次热冲击后形貌完好(测试条件为:1100℃~室温,风冷)。蜂窝陶瓷的物理性能超过《蜂窝陶瓷》国家标准(GB/T25994-2010)要求。

实施例3

一种铝尖晶石-氮化硅基蜂窝陶瓷吸热体,其制备方法包括以下步骤:

1)原料处理:将Si3N4、Al2O3、MgO和TiO2粉料在100℃条件下进行烘干备用,四种粉料的粒径为50μm;

2)原料混合:按比例称取各原料,各原料所占质量百分数为:Si3N465%、Al2O322%、MgO8%、TiO2 5%,称取后的粉料用球磨机混合1.5h,得混合粉料;然后加入占混合粉料质量45%的塑化剂,用捏合机混合25min,得可塑泥料;

其中塑化剂由聚乙烯醇、豆油和水组成,各组分按质量百分比计为聚乙烯醇9%,豆油10%,水81%;

3)练泥和陈腐:将所得可塑泥料置于真空练泥机中练泥三遍(真空度为0.09MPa),将所得产物切成泥断,陈腐55h;

4)挤出成型:将步骤3)中进行陈腐后的泥断置于立式挤出机中挤出蜂窝陶瓷坯体,挤出压力为3MPa;

5)定型和干燥:将所得蜂窝陶瓷坯体置于微波炉(功率为5kW,频率为2450MHz)中进行分段定型共计5min,每段30s;定型后所得产物放入红外干燥箱中经110℃干燥2.5h;

6)烧成:将步骤5)所得产物埋入装有石墨粉和氮化硅粉的匣钵中,埋入方式为用氮化硅粉将蜂窝陶瓷坯体包裹,外层加盖石墨粉,压实,加盖,放入电炉中经1620℃烧成,升温速率5℃/min,烧成温度点保温3h,即得所述铝尖晶石-氮化硅基蜂窝陶瓷吸热体。

经测试,本实施例所得铝尖晶石-氮化硅基蜂窝陶瓷吸热体的太阳光吸收率为94%,在1300℃高温空气中使用100h后的氧化增重率3mg/cm2。经过30次热冲击后形貌完好(测试条件为:1100℃~室温,风冷)。蜂窝陶瓷的物理性能超过《蜂窝陶瓷》国家标准(GB/T 25994-2010)要求。

对比例

一种铝尖晶石-氮化硅蜂窝陶瓷吸热体,其制备方法与实施例1大致相同,不同之处在于步骤1)中不加入TiO2粉料。

经测试,本对比例所得铝尖晶石-氮化硅蜂窝陶瓷吸热体的太阳光吸收率为89%,在1300℃高温空气中使用100h后的氧化增重率11mg/cm2

以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。以上所述仅为本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,做出若干改进和变换,这些都属于本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1