一种用于中温烧结的钛酸锶基储能介质材料的制作方法

文档序号:11890886阅读:347来源:国知局

本发明涉及电子信息材料与元器件技术领域,尤其涉及一种用于中温烧结的钛酸锶基储能介质材料,该材料可用于银-钯内电极中温烧结的MLCC生产。



背景技术:

高储能密度、高耐压MLCC是电子设备中常见的电子元器件之一,其具有充放电速度快、抗循环老化能力强、高温和高压等极端环境下性能稳定等优点,在混合动力汽车、脉冲功率电源、雷达和航空航天等领域具有广阔的应用前景。

高储能密度和小型化是储能瓷介电容器的发展趋势,为应对其发展趋势主要采取的措施:(1)优化电容器结构,采用多层瓷介电容器结构;(2)改进介质材料性能,如提高介电常数、提高击穿强度和降低损耗。目前,由于设备和工艺水平的限制,很难使多层瓷介电容器结构得到进一步提高。而开发高介电常数、高击穿强度和低损耗且能够满足目前MLCC生产工艺要求的介质材料是实现高储能密度和小型化行之有效的路径。

目前,常用作高压陶瓷电容器的介质材料有:钛酸钡系、反铁电介质陶瓷、二氧化钛系和钛酸锶系。其中,钛酸钡系陶瓷具有介电常数高的优点,但其介电损耗偏大(1%~2%)、击穿电压低(<100kV/cm)以及其存在电致伸缩现象限制了该体系在高压电容器领域的应用;反铁电介质陶瓷主要是锆钛酸铅体系,具有介电常数高、施加电压后介电常数升等优点,但其为含铅材料,生产和使用过程中会造成环境污染,随着对含铅材料的限用或禁用相关法规的实施,该体系难以得到广泛的应用;二氧化钛系具有击穿电压高(≈350kV/cm)、介电损耗低(≈0.05%)等优点,但介电常数低(≈110)难以生产高储能密度的电容器;钛酸锶系具有相对较高的介电常数(≈250)、高频损耗低、高击穿强度等优点,此外,钛酸锶常温下为顺电体结构,施加一定的外电场不会引起电畴转动,从而提高电容器的可靠性和使用寿命。



技术实现要素:

针对上述问题中存在的不足之处,本发明提供一种用于中温烧结的钛酸锶基储能介质材料,该介质材料具有较高的介电常数、击穿强度和绝缘电阻率,较低的损耗和烧结温度,以及温度系数稳定且可调等优点。。

为实现上述目的,本发明提供一种用于中温烧结的钛酸锶基储能介质材料,该介质材料由主料、副料、改性剂和烧结助剂组成,其中:

所述主料为SrTiO3

所述副料为CaTiO3和Bi2O3·3TiO2

所述改性剂为MnCO3、MgTiO3、Co2O3、CeO2和Y2O3中的三种或三种以上;

所述烧结助剂BZS由H3BO3、ZnO和SiO2组成。

作为本发明的进一步改进,该介质材料以100重量份的SrTiO3为基材,各成分及相对含量如下:

主料SrTiO3为100份;

副料CaTiO3为17.80~29.60份;

副料Bi2O3·3TiO2为7.30~20.30份;

烧结助剂BZS为3.50~4.00份;

改性剂MnCO3为0.18~0.26份;

改性剂MgTiO3为0.60~3.06份;

改性剂Co2O3为0~0.18份;

改性剂Y2O3为0~0.15份;

改性剂CeO2为0~0.18份;

将上述各成分按照重量称取,放入装有氧化锆球的球磨罐中,加入去离子水球磨、烘干、研磨过筛,装袋备用。

与现有技术相比,本发明的有益效果为:

本发明公开的一种用于中温烧结的钛酸锶基储能介质材料,采用传统固相法制备出钛酸锶基陶瓷材料,其具有较高的介电常数、击穿强度和绝缘电阻率,较低的损耗和烧结温度,且温度系数稳定且可调;该介质材料可用于银-钯内电极的MLCC生产,该材料进行了MLCC的工艺验证(流延膜片厚度30μm±0.3μm),流延及烧结等工艺性良好,所生产的MLCC的综合性能优异,该介质材料具有良好的实用价值和市场前景。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明所选原料如无特殊说明,均可通过商业渠道采购。

针对现有技术中存在的问题,本发明采用传统固相法结合掺杂改性技术,制备出钛酸锶基陶瓷材料,其具有较高的介电常数、击穿强度和绝缘电阻率,较低的损耗和烧结温度,以及温度系数稳定且可调,是一种非常有前景的储能介质陶瓷材料。

本发明提供一种用于中温烧结的钛酸锶基储能介质材料,该介质材料由主料SrTiO3、副料CaTiO3和Bi2O3·3TiO2、改性剂MnCO3、MgTiO3、Co2O3、CeO2和Y2O3中的三种或三种以上和烧结助剂BZS组成,烧结助剂BZS由H3BO3、ZnO和SiO2组成。其中:主料SrTiO3的质量分数为64.55wt%-75.23wt%,该介质材料以100重量份的SrTiO3为基材,各成分及相对含量如下:主料SrTiO3为100份、副料CaTiO3为17.80~29.60份、副料Bi2O3·3TiO2为7.30~20.30份、烧结助剂BZS为3.50~4.00份、改性剂MnCO3为0.18~0.26份、改性剂MgTiO3为0.60~3.06份、改性剂Co2O3为0~0.18份、改性剂Y2O3为0~0.15份和改性剂CeO2为0~0.18份。其中,主料、副料和烧结助剂均采用分析纯的化工原料制备。所述主料SrTiO3为顺电体结构,副料CaTiO3和Bi2O3·3TiO2用于调节该介质材料的温度系数和介电常数,改性剂用于优化综合电学性能,烧结助剂用于降低烧结温度,最终获得温度系数系列化且稳定的用于中温烧结综合性能优异的钛酸锶基储能介质材料。

本发明一种用于中温烧结的钛酸锶基储能介质材料的制备方法为:

(1)、以分析纯的SrCO3和TiO2为原料,按摩尔比1:1称取SrCO3和TiO2原料,将称取的原料放入装有氧化锆球的球磨罐中,以去离子水为介质进行混合球磨,球磨7~9小时;然后在烘箱中烘干,烘干温度为110~120℃,烘干时间6~8小时;再在马弗炉中1100±20℃煅烧2.5小时得到主料SrTiO3粉体。

(2)、以分析纯的CaCO3和TiO2为原料,按摩尔比1:1称取CaCO3和TiO2原料,将称取的原料放入装有氧化锆球的球磨罐中,以去离子水为介质进行混合球磨,为时5~6小时;然后在烘箱中烘干,烘干温度为110~120℃,烘干时间6~8小时;再在马弗炉中1050±20℃煅烧2.5小时得到副料CaTiO3粉体。

(3)、以分析纯的Bi2O3和TiO2为原料,按摩尔比1:3称取Bi2O3和TiO2原料,将称取的原料放入装有氧化锆球的球磨罐中,以去离子水为介质进行混合球磨,为时5~6小时;然后在烘箱中烘干,烘干温度为110~120℃,烘干时间6~8小时;再在马弗炉中880℃±30煅烧2小时得到副料Bi2O3·3TiO2粉体。

(4)、请补充烧结助剂BZS中H3BO3、ZnO和SiO2的配比及制备方法按照质量比1:2.3:0.7的比例称取H3BO3、ZnO和SiO2;选用去离子水作为球磨介质,球磨时间为5小时;烘干温度为85℃,时间为10小时,之后过80目筛;预烧温度为570℃,时间为5小时,之后随炉冷却;经过研磨后,过100目筛,获得所述烧结助剂BZS,并用自封袋进行封装储存备用。

(5)、按照表1的重量比进行主料、副料、改性剂和烧结助剂的称取(单位为克),以去离子水为介质,球磨混合5小时,在120℃下烘干6小时,取出陶瓷粉体,研磨并过40目筛后,用自封袋封装储存。

表1介质材料配方列表

对所制备陶瓷材料进行性能考核:称取2g陶瓷粉体,加入6.5wt%的PVA水溶液进行造粒,在200MPa下压制成Ф=10mm的圆片,放入电阻炉中,以2~3℃/min由室温升高到500~600℃、保温2~3小时排胶,再以4~5℃/min升高到1150℃±10℃烧结成瓷,随炉冷却后,进行样品表面处理,并涂覆、烧结电极。制成圆片电容器后测试容值、损耗、绝缘电阻和击穿电压,并计算得出相对介电常数、绝缘电阻率和击穿场强;并测试其温度特性,其电学性能参数见表2。

表2介质材料圆片性能列表

采用配方1和配方7对应的陶瓷材料,经配料、流延、印刷、叠层、匀压、排胶、烧结(烧结温度1150℃)、倒角、涂端、烧端、电镀获得容量为220nF的MLCC芯片(平均介质层厚度20μm)。MLCC电学性能如表3所示。

表3介质材料芯片性能

本发明一种用于中温烧结的钛酸锶基储能介质材料,采用传统固相法制备出钛酸锶基陶瓷材料,其具有较高的介电常数、击穿强度和绝缘电阻率,较低的损耗和烧结温度,且温度系数稳定且可调。该介质材料可用于银-钯内电极的MLCC生产,该材料进行了MLCC的工艺验证(流延膜片厚度30μm±0.3μm),流延及烧结等工艺性良好,所生产的MLCC的综合性能优异,该介质材料具有良好的实用价值和市场前景。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1