一种制备超级电容器用相互连接的且褶皱的石墨烯材料的方法

文档序号:9389907阅读:225来源:国知局
一种制备超级电容器用相互连接的且褶皱的石墨烯材料的方法
【技术领域】
[0001]本发明属于炭材料制备技术领域,具体涉及一种制备超级电容器用相互连接的且褶皱的石墨烯材料的方法。
【背景技术】
[0002]超级电容器是一种基于在电极-电解液界面上进行充放电的一种特殊的电容器。作为一种新型储能器件,超级电容器具有充放电速度快、循环寿命长、工作温度范围宽等优点。超级电容器的性能主要取决于电极材料和电解液的结构和性能。由于石墨烯材料具有导电性好、比表面积大、环保、物化性能稳定等优点,所以石墨烯材料有望作为高性能超级电容器的电极材料。目前,市场上的石墨烯主要由氧化石墨制备,而氧化石墨的价格高达1000元/克,从而导致石墨烯的价格居高不下。石墨烯的性能和价格主要取决于所用的碳源和制备工艺。制备石墨烯的碳源除了石墨或者氧化石墨外,还有煤质原料、生物质原料、含碳的高分子聚合物及有机金属配位化合物等。
[0003]蒽油是煤焦油加工的初级产品,价格在0.005元/克左右,具有廉价、易得、低灰和富含多环芳香性结构单元等优点。目前,国内外对蒽油的加工主要是提取其中蒽、菲、咔唑三种组分。这三种组分在分离加工过程中极易形成一些双组分低共熔物和一系列固溶体,分离困难且分离过程能耗高、污染大。探索蒽油的高效率利用方法,对生物医药、材料、冶金等行业具有重要意义,对国民经济的发展也有巨大的促进作用。

【发明内容】

[0004]鉴于蒽油具有廉价、易得和富含多环芳香性结构单元等优点,以蒽油为碳源直接制备高性能超级电容器用石墨烯材料,不仅可以降低石墨烯的制备成本,而且可为蒽油的利用找到一条新的路径,实现蒽油的高附加值利用。故本发明以蒽油为碳源提出了一种制备超级电容器用相互连接的且褶皱的石墨烯材料的方法。
[0005]本发明制备方法具体步骤如下:
[0006](I)反应物的预处理:将模板剂放入研钵,加入活化剂研磨均匀得混合物,将所得二者的混合物加入已经放置了碳源的烧杯中,加入N,N-二甲基甲酰胺进行溶解,边加入边搅拌,将得到的混合物超声震荡lh,静置12h后得到反应物;其中,所述碳源为蒽油,模板剂为纳米氧化镁,活化剂为氢氧化钾;活化剂的质量占模板剂、活化剂和碳源总质量的40.0%?44.4%,活化剂的质量与碳源的质量比为2/1,N, N- 二甲基甲酰胺与模板剂的质量比为13/60?13/45 ;
[0007](2)相互连接的且褶皱的石墨烯材料的制备:把步骤⑴得到的反应物放入刚玉瓷舟中,然后将所述刚玉瓷舟置于管式炉内,在流动的氩气气氛下,将管式炉加热至300°C,恒温30min,继续升温将管式炉加热至800?1000°C的终温,恒温lh,反应结束后自然降至室温,将得到的产物取出、研磨粉碎后,经酸洗、蒸馏水洗涤至中性,干燥后得到超级电容器用相互连接的且褶皱的石墨烯材料。
[0008]作为一种优化,在步骤(I)中,碳源的质量为6g,N,N_ 二甲基甲酰胺的质量为2.6g,模板剂的质量为9g,活化剂的质量为12g;在步骤(2)中,将管式炉加热至终温950。。。
[0009]与现有技术相比,该发明具有以下优点:
[0010]1、以蒽油为碳源,原料来源丰富、廉价易得,且富含多环芳香性结构单元,拓展了煤焦化副产物蒽油的利用途径,实现了蒽油的高附加值利用;
[0011]2、直接从蒽油制备超级电容器用相互连接的且褶皱的石墨烯材料,工艺简单,成本低;
[0012]3、所制备的电极片内阻小,在1- 丁基-3-甲基咪唑六氟磷酸盐(BM頂PF6)离子液体电解液中,具有很好的循环稳定性;在50!^/^电流密度下,电极比容达271F/g,对称型超级电容器的可用能量密度高达150Wh/kg,可以和锂离子电池的能量密度相媲美。
【附图说明】
[0013]图1为本发明实施例3制备的相互连接的且褶皱的石墨烯材料IFCG99。。的透射电镜照片。
[0014]图2为本发明实施例4制备的相互连接的且褶皱的石墨烯材料IFCG995。的透射电镜照片。
[0015]图3为本发明实施例6制备的相互连接的且褶皱的石墨烯材料IFCG129。。的透射电镜照片。
[0016]图4为本发明实施例1、2、3、4、5、6制备的相互连接的且褶皱的石墨烯材料在1-丁基-3-甲基咪唑六氟磷酸盐(BM頂PF6)离子液体电解液中在0.05A/g的电流密度下的比容。
[0017]图5为本发明实施例1、2、3、4、5、6制备的相互连接的且褶皱的石墨烯基超级电容器在1- 丁基-3-甲基咪唑六氟磷酸盐(BM頂PF6)离子液体电解液中在0.05A/g的电流密度下的可用能量密度。
[0018]图6为本发明实施例4制备的相互连接的且褶皱的石墨烯材料在1-丁基-3-甲基咪唑六氟磷酸盐(BM頂PF6)离子液体电解液中的比容随电流密度的变化图。
[0019]图7为本发明实施例4制备的相互连接的且褶皱的石墨烯基超级电容器在1- 丁基-3-甲基咪唑六氟磷酸盐(BM頂PF6)离子液体电解液中的可用能量密度与平均功率密度的关系图。
【具体实施方式】
[0020]以下结合具体实施例详述本发明,但本发明不局限于下述实施例,应当理解成事例性的,本领域的技术人员可以在不违背本发明精神和范围的基础上进行改变和修改,所有这些改变和修改包括在本发明范围内。
[0021]实施例1
[0022]相互连接的且褶皱的石墨烯材料IFCG9 ■的具体制备过程如下:
[0023](I)反应物的预处理:称取12g KOH固体放入研钵中,研磨粉碎,加入9g纳米氧化镁粉末,将二者均匀混合后得到混合的粉末,将所得混合的粉末加入盛有6g蒽油的烧杯中,向烧杯中滴加2.6g N,N-二甲基甲酰胺进行溶解,辅以玻璃棒不断搅拌,将所得混合物超声震荡lh,静置12h得到反应物;
[0024](2)相互连接的且褶皱的石墨烯材料的制备:把步骤(I)得到的反应物放入刚玉瓷舟中,然后将所述瓷舟置于管式炉内,以60mL/min的速率通入氩气将管式炉内的空气排净后,在流动氩气气氛下,以3°C /min的升温速率将管式炉加热至300°C,恒温30min,继续以3°C /min的升温速率将管式炉加热至800°C,恒温lh,反应结束后自然降至室温,然后将得到的产物取出,研磨粉碎后放入烧杯中,加入2M稀
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1