树脂、组合物和用途的制作方法

文档序号:12284738阅读:409来源:国知局

用于专业应用以及自助(DIY)应用的醇酸漆料正经受日益增长的技术限制和生态限制。挥发性有机化合物(VOC)的排放必须降低以保护环境,并且高固体醇酸树脂的使用旨在解决该问题。当配制高固体涂料时,面临的挑战是降低树脂粘度,而不会对涂料性质造成严重的不利影响,例如不会增加干燥时间和/或不会增加黄变。本发明的另一个优选的目标是如本文中所限定,树脂具有高的生物基含量。例如,本发明的一个更优选的目标是减少或者消除例如邻苯二甲酸酐(其不易从生物基来源获得)的成分的使用,同时使对涂层性能的任何不利影响最小化。

在本文中使用时,“不饱和醇酸树脂”(为方便起见,本文中也简称为“醇酸树脂”)表示包含一个或多个不饱和脂肪酸片段的聚酯,其在空气中在环境条件下是可自动氧化的。醇酸树脂和醇酸乳剂在如下文献中有讨论:N.Tuck的“Water borne and solvent based alkyds and their end user applications”,第VI卷,Wiley/Sita Series In Surface Coatings technology;(ISBN 471985910),2000年出版。

目前的生物可再生醇酸乳剂倾向于显示出不期望的泛黄度以及缓慢干燥。醇酸树脂有在暗处黄变的倾向。对于包含松香和相对多脂肪酸的生物可再生醇酸树脂更是如此。生物可再生醇酸树脂含有生物基结构单元或者获自生物基结构单元。

本发明的优选醇酸树脂包含至少55重量%、更优选地至少65重量%、最优选地至少80重量%、例如至少95重量%(例如约100重量%)的获自生物基(即,非化石、生物可再生)来源的组分。“生物可再生组分”指的是其中碳来自非化石的生物来源的有机组分。

衣康酸酐/柠康酸酐和萜二烯以及丁二烯在古老的1927 IG Farben专利(GB 300130)中作为Diels Alder加合物的可能单体被提到,该专利的作者是Diels和Alder他们自己。1969 Veba Chemie专利(US 3745179)中讨论了异戊二烯和柠康酸酐的加合物的制备和氢化。更近的Huntsman专利(WO 04/096965)描述了待被用作表面活性剂的基于月桂烯的丙烯酸衍生物的一元酸官能Diels-Alder加合物。然而,这些参考文献中无一教导在漆中直接使用这种加合物,也无一教导使用这种加合物作为聚合物前体来制备用于漆中的醇酸树脂。

以下文件中描述了可再生醇酸树脂。申请人的共同待决申请EP13188226.8(于2013年10月11日递交)描述了酰亚胺醇酸树脂,其是由可再生单体制备的,但使用与本文所述的化学过程迥然不同的化学过程。WO2013-167662(DSM)描述了衣康酸酯醇酸树脂,其可以由生物基来源的原料制备。衣康酸或衍生物被用作制备低黄变醇酸树脂的单体。

相较之下,本发明使用衣康酸和/或衣康酸酐和/或柠康酸酐和/或柠康酸作为Diels Alder反应的原料来制备酸官能Diels Alder加合物。这种酸官能Diels Alder加合物可作为聚合物前体在另外的聚合步骤中在原位直接反应或者于分离后反应以制备醇酸树脂,所述醇酸树脂自身任选地还可用于形成涂料(例如,作为漆)。此外,WO2013-167662没有描述使用如本发明中所使用的Diels Alder加合物。

出乎意料地,申请人已发现:某些柠康酸或柠康酸酐基Diels Alder加合物可被用作醇酸树脂合成中的单体。加合物是由以下物质制备的:(i)柠康酸和/或柠康酸酐和/或衣康酸和/或衣康酸酐以及(ii)C4-C14共轭二烯,例如丁二烯、异戊二烯(产生二甲基四氢邻苯二甲酸酐或DMTHPA),或者C4-C14共轭二烯官能萜类例如月桂烯、水芹烯和α-萜品烯。本发明的醇酸树脂的缩合产物中存在的Diels Alder加合物也可以由衣康酸和/或衣康酸酐制备,在这种情况下衣康酸和/或衣康酸酐的异构化必须在制备Diels Alder加合物期间发生,这可通过在高温(例如在高于50℃的温度)下制备Diels Alder加合物来实现。C4-C14共轭二烯也可以在存在合适的异构化催化剂(例如碘或强酸如磷酸)的情况下由二烯原位制备。这种原位制备特别适用于制备C4-C14共轭二烯官能萜类,例如由柠檬烯制备C4-C14共轭二烯官能萜类。本发明中使用的用来制备Diels Alder加合物的C4-C14共轭二烯优选地是不含羧酸官能团的C4-C14共轭二烯。优选地,加合物可被氢化,但这不是必要的。下面示出了一些示例性加合物的结构。

水芹烯柠康酸酐加合物

α-萜品烯柠康酸酐加合物

优选地,柠康酸和/或柠康酸酐被用于制备Diels Alder加合物。更优选地,柠康酸酐被用于制备Diels Alder加合物,所述Diels Alder加合物被用于制备本发明的醇酸树脂。

出乎意料地,已发现:这种加合物可替代邻苯二甲酸和/或邻苯二甲酸酐(整体或部分)作为制备用于漆中的醇酸树脂的单体。利用这种加合物制备的醇酸树脂在用于漆中时令人惊讶地显示出改善的或比得上的性能,例如良好干燥、高硬度和/或甚至更令人惊讶的低黄变。对于替代芳族单体的基于本发明中所使用的Diels Alder加合物的脂环族单体,这种高硬度尤其显著。

因此,本发明提供了醇酸树脂,其包含至少以下组分的缩合产物:

(A)多元酸(和/或多元酸的衍生物例如多元酸的酯和/或酸酐),

(B)多元醇,和

(C)线性C12-C60烃羧酸,和

任选的(D)至少一种不同于组分(A)至(C)中的任何组分的组分,

其中至少部分(A)多元酸是柠康酸与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物、柠康酸酐与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物、这种Diels Alder加合物的半酯和/或这种Diels Alder加合物的二酯。

广义地,本发明的另一方面提供制备不饱和醇酸树脂的方法,所述方法包括以下步骤:

a.制备柠康酸与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物和/或柠康酸酐与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物,和

b.在酯化步骤中,使在a)中获得的Diels Alder加合物直接在制备之后或者在收集和分离之后与醇酸预聚合物反应,以形成醇酸树脂。

广义地,本发明的另一方面提供制备不饱和醇酸树脂的方法,所述方法包括以下步骤:

a.制备柠康酸与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物、柠康酸酐与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物和/或这种Diels Alder加合物的二酯,和

b.在(转)酯化步骤中,使在a)中获得的Diels Alder加合物直接在制备之后或者在收集和分离之后与组分B、C和D反应并任选地与额外的多元酸(A)反应,以形成醇酸树脂。

在另一方面,本发明提供通过本发明的任一种方法获得的和/或能够获得的醇酸树脂。

本发明的另一方面提供包含本发明的醇酸树脂的涂料组合物。本发明的优选涂料组合物选自溶剂基漆和水基漆。

本发明的另一方面提供涂有本发明的涂料组合物的基材或制品。

本发明的另一方面提供涂布基材或制品的方法,所述方法包括以下步骤:

A)用本发明的涂料组合物涂布基材或制品;和

B)任选地在原位干燥组合物和/或任选地在原位固化组合物,以在基材或制品上形成固化涂层。

可以不使用例如松香的成分来制备由本发明的Diels Alder基结构单元制备的醇酸树脂,因此提高了干燥速率。优选地,不使用松香来制备醇酸树脂。这些Diels Alder加合物可被用作替代(整体或部分)非可再生芳族酸单体(例如,邻苯二甲酸和/或邻苯二甲酸酐)的结构单元,并仍然提供相同水平的硬度。相对于现有技术中的可再生醇酸树脂,能够获得更快干燥和/或更高硬度和/或更好黄变。

本发明中所使用的Diels Alder加合物是由以下物质制备的:(i)柠康酸和/或柠康酸酐和/或衣康酸和/或衣康酸酐以及(ii)C4-C14共轭二烯。优选用于制备本发明中的加合物的柠康酸和柠康酸酐可由衣康酸/衣康酸酐制备,就这一点而论,本发明的醇酸树脂除了柠康酸/柠康酸酐之外还可包含衣康酸/衣康酸酐与C4-C14共轭二烯的Diels Alder加合物。

优选地,C4-C14共轭二烯选自1,3-丁二烯、异戊二烯、含共轭双键的萜类及其任意混合物。优选的已含有共轭双键的萜为月桂烯。在另一种优选的实施方式中,通过用异构化催化剂(例如强酸,例如磷酸)处理萜(例如柠檬烯)来原位制备含共轭双键的萜。最优选地,本发明的醇酸树脂中存在的Diels Alder加合物是由用异构化催化剂处理的异戊二烯、月桂烯、水芹烯、柠檬烯或者由这些二烯之中的至少两种的混合物制备的。

优选地,在根据本发明的醇酸树脂中,至少部分多元酸(A)是柠康酸酐与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物。

柠康酸酐可完全获自生物基材料。例如,柠康酸酐可由生物基衣康酸制备,如果需要的话在原位进行。优选地,用于和柠康酸和/或柠康酸酐一起制备反应产物的二烯也获自生物基来源。例如,异戊二烯以及其它如柠檬烯在不远的将来将能够以生物基等级获得,且月桂烯是天然产品。Diels Alder加合物中的双键可被原样使用,从而在醇酸树脂中提供改善的硬度(可能通过额外氧化反应);或者可被氢化,以提供甚至进一步减少黄变的脂族材料。

“萜类”指的是天然存在的异戊二烯低聚物及其衍生物、或其合成对应物,例如来自废物流的热解。萜类包含两个或更多个异戊二烯残基。已知某些萜类具有共轭双键,因此其能够与亲二烯体一起进行Diels Alder加合反应。其它萜类不含共轭双键,但可被异构化以产生共轭双键(例如柠檬烯)。萜类优选地为单萜、倍半萜或二萜,且期望地为烃。用作二烯的优选萜类是月桂烯和/或柠檬烯。

萜类可与马来酸酐和柠康酸酐一起用于Diels-Alder反应。与马来酸酐一起使用是经典Diels-Alder反应之一且多次被描述。柠康酸酐的使用是新的且没有先例是已知的。共轭萜类(如α-萜品烯和α-水芹烯)可在170℃下与柠康酸酐反应几小时,从而获得预期的Diels-Alder加合物。非共轭萜类(如柠檬烯)也可用于Diels-Alder反应,这是通过向与柠康酸酐的反应混合物中加入异构化剂(如磷酸)来实现的,从而产生与上述α-萜类相同的产物。因此,本发明还涉及由柠康酸或柠康酸酐与共轭萜类(例如α-萜品烯和α-水芹烯)获得的Diels Alder加合物,以及由柠康酸或柠康酸酐与通过用异构化催化剂处理萜类(例如柠檬烯)获得的共轭萜类获得的Diels Alder加合物。

可以通过用于Diels Alder加合物的常规方法如下制备本发明中所使用的加合物:加热基本处于化学计量比或者其中二烯过量的单体的反应混合物,并任选地在合适的有机溶剂中进行(如果需要流动性的话)。可以利用Diels Alder催化剂(例如路易斯酸,例如氯化铝),但未催化的反应是优选的。反应温度优选地高于50℃,更优选地高于70℃且优选地低于产物的分解温度。维持高温一段足够的时间以获得可接受的加合物产率。所需时间取决于特定试剂的反应性、温度、产物的稳定性和商业考虑(例如,相对于延长加热步骤的成本,产物的价值),但其通常多于30分钟,优选地多于1小时,更优选地多于2小时。制备本发明中所使用的加合物可以利用压力或者不利用压力实现,但优选地利用压力实现,因为可以使用较低的温度来获得与不利用压力时相同的转化率。制备基于挥发性反应物的加合物优选地利用压力实现。制备本发明中所使用的加合物优选地在阻聚剂(例如氢醌)存在的情况下实现。

优选地,醇酸树脂中存在的上文所指定的Diels Alder加合物[即,柠康酸与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物、柠康酸酐与C4-C14共轭二烯的(任选氢化的)Diels Alder加合物、这种Diels Alder加合物的半酯和/或这种Diels Alder加合物的二酯]的总量为至少25重量%、更优选地至少50重量%(相对于醇酸树脂中存在的多元酸的总重量)、更优选地至少75重量%,甚至更优选地醇酸树脂中存在的上文所指定的Diels Alder加合物的量为100重量%(相对于醇酸树脂中存在的多元酸的总重量)。

优选地,用于制备本发明的醇酸树脂的组分(A)、(B)、(C)和(D)的量为10-50重量%的(A)、更优选地15-40重量%的(A);10-40重量%的(B)、更优选地15-30重量%的(B);1-80重量%的(C)、更优选地10-70重量%的(C)、甚至更优选地20-70重量%的(C),其中组分(A)-(D)的总量为100重量%。

根据本发明的醇酸树脂优选地包含组分(A)、(B)、(C)和(D)的缩合产物。

本发明的醇酸树脂的组分(A)是多元酸和/或多元酸的衍生物,例如多元酸的酯和/或酸酐。如果本发明的醇酸树脂包含不同于上文所指定的Diels Alder加合物的另一种多元酸,则额外的多元酸优选地选自邻苯二甲酸、马来酸、富马酸、壬二酸、琥珀酸、衣康酸、己二酸、癸二酸、呋喃二羧酸、苯偏三酸、苯均四酸及其任意混合物。此处也可以使用多元酸的衍生物,例如提到的多元酸的酯和/或酸酐。然而,醇酸树脂中(通过使用邻苯二甲酸和/或邻苯二甲酸酐而引入的)邻苯二甲酸单体的量为优选地低于25重量%(相对于醇酸树脂的总重量)、更优选地低于20重量%、甚至更优选地低于15重量%、甚至更优选地低于10重量%、甚至更优选地低于5重量%、最优选地至多2重量%、最优选地0重量%。优选地,本发明的醇酸树脂中存在的共轭二烯与马来酸酐的Diels Alder加合物和共轭二烯与马来酸的Diels Alder加合物的总量为低于15重量%(相对于醇酸树脂的总重量)、优选地低于10重量%、甚至更优选地低于5重量%、最优选地至多2重量%、最优选地0重量%。

本发明的醇酸树脂的组分(B)是多元醇、优选地具有至少3个羟基的多元醇;优选地选自丙三醇;三羟甲基丙烷、季戊四醇;甘露醇、山梨醇、山梨聚糖及其任意混合物;更优选地选自丙三醇、季戊四醇及其混合物。

本发明的醇酸树脂的组分(C)优选地是一种脂肪酸或多种脂肪酸的混合物。脂肪酸优选地包含至少一个、优选地至少2个双键,更优选地至少2个非共轭双键,所述非共轭双键优选地选自亚油酸不饱和片段(=亚油酸不饱和基团)。优选地,脂肪酸获自天然来源例如大豆脂肪酸、向日葵脂肪酸、妥尔油脂肪酸、亚麻籽油脂肪酸,优选地大豆脂肪酸、向日葵脂肪酸、妥尔油脂肪酸。

本发明的醇酸树脂中任选存在的组分(D)是例如苯甲酸、磺化苯甲酸、磺化间苯二甲酸、二羟甲基丙酸,或者多异氰酸酯(主要是二异氰酸酯)、二羟甲基丙酸、磺化间苯二甲酸、磺化苯甲酸、磺化衣康酸的中和衍生物。

本发明还涉及上文所述的醇酸树脂,其是溶剂型或固体。在一个实施方式中,醇酸树脂是固体,其中所述醇酸树脂是上文所述的缩合产物。在另一个实施方式中,醇酸树脂包含量为优选地至少50重量%(相对于醇酸树脂)的上文所述的缩合产物,并且还包含溶剂和/或稀释剂。

本发明另外还涉及水型醇酸乳剂,其包含上文所述的缩合产物和水,且其中任选地在组分A至D的反应之后加入至少一种表面活性剂(优选地非离子型表面活性剂和离子型表面活性剂的混合物)且其中任选地在组分A至D的反应期间加入至少一种表面活性剂(优选地非离子型表面活性剂和离子型表面活性剂的混合物)。合适的表面活性剂包括但不限于常规的阴离子型表面活性剂、阳离子型表面活性剂和/或非离子型表面活性剂,例如二烷基磺基琥珀酸酯的Na盐、K盐和NH4盐,磺化油的Na盐、K盐和NH4盐,烷基磺酸的Na盐、K盐和NH4盐,烷基硫酸酯的Na盐、K盐和NH4盐,磺酸的碱金属盐;脂肪醇、乙氧基化脂肪酸和/或脂肪酰胺,以及脂肪酸的的Na盐、K盐和NH4盐,例如硬脂酸钠和油酸钠。其它阴离子型表面活性剂包括链接到磺酸基团、硫酸半酯基团(再链接到聚二醇醚基团)、膦酸基团、磷酸类似物和磷酸酯或者羧酸基团的烷基或者(烷)芳基。阳离子型表面活性剂包括链接到季铵盐基团的烷基或者(烷)芳基基团。非离子型表面活性剂包括聚二醇醚化合物和聚环氧乙烷化合物。表面活性剂还可以是聚合型表面活性剂,该种表面活性剂也被描述为润湿剂。基于全部树脂材料的重量,所使用的全部表面活性剂的量为优选地至少0.1重量%、更优选地至少1重量%、最优选地至少3重量%且优选地少于11重量%、更优选地少于9重量%、最优选地少于7重量%。优选地,使用阴离子型表面活性剂和非离子型表面活性剂的混合物。

本发明还涉及涂料组合物,其包含上文所述醇酸树脂和/或通过上文所述方法获得的醇酸树脂。在一个优选的实施方式中,涂料组合物是水型的。在另一个优选的实施方式中,涂料组合物是溶剂型的。本发明还涉及在其上涂布有(任选固化的)本文所述涂料组合物的基材或制品。

本发明还涉及使用上文所述醇酸树脂和/或通过上文所述方法获得的醇酸树脂制备上文所述涂料组合物的方法。本发明还涉及制备经涂布的基材或制品的方法,所述方法包括以下步骤:将本文所述涂料组合物涂覆到基材或制品上;任选地在原位干燥组合物并/或任选地在原位固化组合物以在基材或制品上形成涂层。

现在通过一系列实施例和对比例来展示本发明。所有实例均支持权利要求的范围。但本发明并不局限于实例中所示的特定实施方式。

试验方法

酸值

酸值(或AN)是以中和一克所测物质所需要的以mg计的氢氧化钾(KOH)的质量来给出的,并且作为所存在的羧酸基团浓度的量度来使用。常规地,通过滴定和/或使用ASTM D974测定AN。

光泽度测量方法

光泽度测量是在BYK Gardner micro TRI gloss 20 60 85光泽计上按照ASTM D523 89进行的。

硬度

按照DIN 53157 NEN 5319使用Erichsen硬度设备测定硬度。值以秒(s)给出。优选地,本发明的未着色的组合物在4周后具有至少30秒的硬度

分子量测定(重均Mw)

除上下文中另有说明外,本申请中涉及的分子量是重均分子量(本文中也表示为Mw),在具有型号Mixed-C、I/d=300/7.5mm的两个连续PL-凝胶柱(Polymer Laboratories)的Alliance Waters 2695 GPC上测量,其中使用10μm的柱颗粒尺寸,在40℃下以1mL/min使用用0.8%乙酸的改性的四氢呋喃(THF)作为洗脱剂,并且在40℃下使用Alliance Waters 2414折光率检测器。使用分子量范围为500至7x106g/mol的一组聚苯乙烯标准品来校准GPC装置。

分子量计算(数均Mn)

除上下文中另有说明外,使用相同的仪器以上述方法测量数均分子量(本文中也表示为Mn)。

标准条件

除上下文中另有说明外,在本文中使用时,标准条件(例如用于干燥膜)指相对湿度为50%±5%;环境温度为23℃±2℃;空气流速小于或等于0.1m/s。

干燥性质(棉絮不粘尘时间(DFT)和表干时间(TFT)测试)

棉絮粘附测试测量了涂料膜的表面干燥速率。在用100μm狭缝涂布器涂覆于玻璃板上的涂料膜上进行棉絮粘附测试。涂覆涂料组合物后,将一个棉絮样品(约0.2g且直径约3cm的松散的球)从5cm的高度落到漆料膜上。10秒后,将玻璃板翻转180°,并观察棉絮是否脱落而没有棉纤维留在表面上。当棉絮不粘于表面时,该时间被记录为不粘尘时间。对于表干时间来说,使用相同的程序,但在棉絮上放置1kg的重量。表干时间总是在达到不粘尘性质后测定。

黄变:

根据CieLab测量由黄变所引起的颜色变化。用100μm狭缝涂布器在玻璃板上涂覆涂料膜,并在室温下干燥一周。然后,根据CieLab(L-值、a-值、b-值)测量初始颜色并记录b-值。接下来,将膜在50℃下烘箱中储存一周。再次测量颜色,并记录b-值的变化作为Δb。Δb越高,黄变越强。通过3周后进一步测量来改善可靠性。

实施例和对比实验

实施例1a(DMTHPA)

通过如下制备异戊二烯与柠康酸酐的加合物:将单体(异戊二烯5%过量)与250ppm氢醌在搅动的压力反应器中混合并加热至85℃持续12小时。蒸馏步骤之后,约92%产物作为流性液体被分离,并通过H NMR被鉴定为二甲基四氢邻苯二甲酸酐(DMTHPA)的2种异构体的混合物。通过GC估计的纯度为99.8%。

实施例1b(来自DMTHPA的醇酸树脂)

通过如下制备醇酸树脂:使35.0g根据实施例1a制备的DMTHPA、26.6g季戊四醇、16.5g苯甲酸和37.1g大豆脂肪酸在最高230℃下反应。利用共沸除水进行酯化直至酸值低于15mgKOH/g。将树脂冷却,然后在二甲苯中稀释并倒出。表1中显示了树脂性质。

对比例Comp A-C

通过如下制备对比性醇酸树脂A:使168.2g邻苯二甲酸酐(PA)、155.4g季戊四醇、96.2g苯甲酸和271g大豆脂肪酸在最高230℃下反应。利用共沸除水进行酯化直至酸值低于15mgKOH/g。将树脂冷却,然后在二甲苯中稀释并倒出。

分别通过如下生产对比性树脂B和C:在摩尔基础上分别用四氢邻苯二甲酸酐(THPA)或甲基四氢邻苯二甲酸酐(MTHPA)替代上文对比例A中所述方法中的邻苯二甲酸酐。MTHPA由Polynt SpA生产。表1中显示了树脂性质。

实施例2a(DMHHPA)

使用负载型钯催化剂在搅动的压力反应器中氢化根据实施例1a制备的DMTHPA以产生二甲基六氢邻苯二甲酸酐(DMHHPA)。H NMR显示了C=C双键的转化率,GC显示了所形成的4种化合物的存在且质谱法(使用化学离子化)显示了所有4个峰的MW均为182(Diels-Alder加合物起始材料的MW为180)。所有4个峰的进一步碎片化谱图(使用电子撞击)表明它们均为异构体/非对映体。

实施例2b(来自DMHHPA的醇酸树脂)

通过如下制备醇酸树脂:使45.6g根据实施例2a制备的DMHHPA、34g季戊四醇、21.1g苯甲酸和47.5g大豆脂肪酸在最高230℃下反应。利用共沸除水进行酯化直至酸值低于15mgKOH/g。将树脂冷却,然后在二甲苯中稀释并倒出。表1中显示了树脂性质。

对比例Comp D和E

分别通过如下生产对比性树脂D和E:在摩尔基础上分别用六氢邻苯二甲酸酐(HHPA)或甲基六氢邻苯二甲酸酐(MHHPA)替代上文对比例A中所述方法中的邻苯二甲酸酐。MHHPA由Polynt SpA生产。表1中显示了树脂性质。

实施例3a(柠康酸酐-月桂烯加合物)

通过如下制备月桂烯与柠康酸酐的加合物:将以各当量的各单体在室温下在搅动的压力反应器中混合并加热至180℃持续2小时。蒸馏步骤之后,约97%产物作为淡黄色流性液体被分离,其特性通过H NMR被鉴定。

实施例3b(来自柠康酸酐-月桂烯加合物的醇酸树脂)

通过如下制备醇酸树脂:使234g根据实施例3a制备的加合物、137.7g季戊四醇、80.1g苯甲酸和230.6g大豆脂肪酸在最高240℃下反应。利用共沸除水进行酯化直至酸值低于15mgKOH/g。将树脂冷却,然后在二甲苯中稀释并倒出。表1中显示了树脂性质。

实施例4a(来自DMTHPA加合物的醇酸树脂)

通过如下制备醇酸树脂:使227.4g根据实施例1a制备的加合物、170.5g季戊四醇、105.6g苯甲酸和238.2g大豆脂肪酸在最高240℃下反应。利用共沸除水进行酯化直至酸值低于12mgKOH/g。将树脂冷却,并利用二甲苯对其进行稀释。然后将树脂倒出。

实施例5a(来自DMHHPA的醇酸树脂)

通过如下制备醇酸树脂:使513g根据实施例2a制备的加合物、361g季戊四醇、178g苯甲酸和532g大豆脂肪酸在最高250℃下反应。利用共沸除水进行酯化直至酸值低于12mgKOH/g。将树脂冷却,并通过真空蒸馏除去二甲苯。将树脂倒出并在实施例5b中使用。

实施例5b(来自DMHHPA的乳剂树脂)

如下所述乳化302g来自实施例6a的固体树脂。将树脂加热至50-80℃之间并加入14g脱矿质水和51g基于高度分支醇的表面活性剂(组合了阴离子型组分和非离子型组分)的30%溶液。将混合物用非胺碱中和并搅动直至均匀。在2小时期间加入脱矿质水直至获得53%的固体含量。乳剂显示出乳状外观并且是稳定的。

实施例6a(来自柠康酸酐-月桂烯加合物的醇酸树脂)

通过如下制备醇酸树脂:使351g根据实施例3a制备的加合物、200g季戊四醇、116g苯甲酸和335g大豆脂肪酸在最高240℃下反应。利用共沸除水进行酯化直至酸值低于12mgKOH/g。将树脂冷却,并通过真空蒸馏除去二甲苯。将树脂倒出并在实施例6b中使用。

实施例6b(来自柠康酸酐-月桂烯加合物的乳剂树脂)

如下所述乳化348g来自实施例6a的固体树脂。将树脂加热至50-80℃之间并加入25g脱矿质水和59g基于高度分支醇的表面活性剂(组合了阴离子型组分和非离子型组分)的30%溶液。将混合物用非胺碱中和并搅动直至均匀。在2小时期间加入脱矿质水直至获得51%的固体含量。乳剂显示出乳状外观并且是稳定的。

对比例Comp F和G

使用马来酸酐和月桂烯并利用实施例3a的方法来制备对比性加合物F。

通过如下制备对比性醇酸树脂G:在摩尔基础上用马来酸酐-月桂烯加合物F替代上文实施例3b中所述方法中的柠康酸酐-月桂烯加合物。表1中显示了树脂性质。

对比例Comp H

如下所述制备WO2013/167662中所示例的含松香-柠康酸酐加合物的树脂:将400g妥尔油脂肪酸、450g妥尔松香和114g衣康酸填充到配备有热电偶、搅拌器、氮气流和Dean-Stark分离器的反应器中,并加热至180℃。2小时后,将反应器冷却至120℃并向反应器中填充175g丙三醇。在二甲苯回流条件下将反应器加热至250℃并在酸值达到10mg KOH/g树脂时停止蒸馏。然后将反应器冷却至180℃并开始真空蒸馏以除去二甲苯共沸溶剂。冷却至低于100℃之后,倒出树脂。表1中显示了树脂性质。

对比例Comp J

如下所述制备WO2013/167662中所示例的含松香-柠康酸酐加合物的树脂:将536g妥尔油脂肪酸、203g妥尔松香和183g衣康酸填充到配备有热电偶、搅拌器、氮气流和Dean-Stark分离器的反应器中,并加热至180℃。2小时后,将反应器冷却至120℃并向反应器中填充184g丙三醇。在二甲苯回流条件下将反应器加热至250℃并在酸值达到15mg KOH/g树脂时停止蒸馏。然后将反应器冷却至180℃并开始真空蒸馏以除去二甲苯共沸溶剂。冷却至低于100℃之后,倒出树脂。表1中显示了树脂性质。

对比例Comp K:乳剂树脂

如下所述制备对比性乳剂K:通过蒸馏使对比性醇酸树脂Comp A的样品不含二甲苯并在实施例6b中所示例的制备程序中使用。所产生的乳剂具有53%的固体含量,其显示出乳状外观并且是稳定的。

表1:树脂特征

实施例7:漆

通过如下生产漆:在Cowless溶解装置中混合树脂溶液(44g固体树脂)、28g Tioxide TR 92(颜料)和0.30g Nuosperse FA 601(分散剂)并将它们研磨成研磨浆体。在搅拌条件下向这种浆体中加入0.31g Borchi-Oxy-Coat(铁干燥剂)、0.70g环烷酸钙(钙干燥剂)、1.83g Octasoligen Zirconium 12(锆干燥剂)、0.3g Borchinox M2(防结皮剂)和二甲苯以提供应用粘度。

这些漆显示出以下性质(表2)。

结果显示:利用本发明的树脂(由根据本发明实施例1a的DMTHPA单体(月桂烯和柠康酸酐的加合物)制备的实施例1b)配制的漆(实施例7)与分别由对比性树脂Comp A、B和C配制的现有技术漆A1、B1和C1相比显示出更好的最终硬度和黄变结果。有趣的是,实施例7是比使用由邻苯二甲酸酐PA单体制成的树脂(Comp A)制备的漆A1更好的漆,其具有好得多的黄变和比得上的(comparable)硬度发展以及甚至更好的最终硬度。此外,特别出乎意料的是,实施例7还具有比漆B1和C1好得多的性质,其中漆B1和C1分别是由从THPA(Comp B)和MTHPA(Comp C)的单体制备的树脂配制的,THPA(Comp B)和MTHPA(Comp C)是DMTHPA的马来酸酐基类似物。

实施例8:漆

通过如下生产漆:在Cowless溶解装置中混合树脂溶液(44g固体树脂)、28g Tioxide TR 92(颜料)和0.30g Nuosperse FA 601(分散剂)并将它们研磨成研磨浆体。在搅拌条件下向这种浆体中加入0.31g Borchi-Oxy-Coat(铁干燥剂)、0.70g环烷酸钙(钙干燥剂)、1.83g Octasoligen Zirconium 12(锆干燥剂)、0.3g Borchinox M2(防结皮剂)和二甲苯以提供应用粘度。

这些漆显示出以下性质(表3)。

结果显示:利用本发明的树脂(由根据本发明实施例2a的DMHHPA单体(月桂烯和柠康酸酐的氢化加合物)制备的实施例2b)配制的漆(实施例8)与分别由对比性树脂Comp D和E配制的现有技术漆D1和E1相比显示出更好的硬度发展结果。然而,相较于使用由PA单体制成的树脂(Comp A)制备的漆A2来说,所有氢化单体(HHPA、MHHPA和DMHHPA)均导致较少黄变的漆;特别出乎意料的是,实施例8还具有比漆D1和E1更好的硬度性质,其中漆D1和E1分别是由从HHPA(Comp D)和MHHPA(Comp E)的单体制备的树脂配制的,HHPA(Comp D)和MHHPA(Comp E)是DMHHPA的马来酸酐基类似物。

实施例9:漆

通过如下生产漆:在Cowless溶解装置中混合树脂溶液(44g固体树脂)、28g Tioxide TR 92(颜料)和0.30g Nuosperse FA 601(分散剂)并将它们研磨成研磨浆体。在搅拌条件下向这种浆体中加入0.31g Borchi-Oxy-Coat(铁干燥剂)、0.70g环烷酸钙(钙干燥剂)、1.83g Octasoligen Zirconium 12(锆干燥剂)、0.3g Borchinox M2(防结皮剂)和二甲苯以提供应用粘度。

这些漆显示出以下性质(表4)。

结果显示:利用本发明的树脂(由本发明实施例3a的柠康酸酐-月桂烯加合物制备的实施例3b)配制的漆(实施例9)与由对比性树脂Comp G配制的现有技术漆G1相比显示出比得上的硬度发展和好得多的黄变结果。相较于由基于专利公开WO2013/167662的现有技术树脂Comp H和Comp G配制的现有技术漆H1和G1,本发明的漆还显示出(处于相等或更好的硬度)好得多的黄变结果。此外,实施例9是比使用由邻苯二甲酸酐PA单体制成的树脂(Comp A)制备的漆A3更好的漆,其具有好得多的硬度发展。

实施例10-12:漆

通过如下生产漆:在Cowless溶解装置中混合树脂溶液(44g固体树脂)、28g Tioxide TR 92(颜料)和0.30g Nuosperse FA 601(分散剂)并将它们研磨成研磨浆体。在搅拌条件下向这种浆体中加入0.31g Borchi-Oxy-Coat(铁干燥剂)、0.3g Exkin2(防结皮剂)和二甲苯以提供应用粘度。

这些漆显示出以下性质(表5)。

表5中的结果显示:利用本发明的树脂配制的漆(实施例10-12)与由对比性树脂Comp A配制的现有技术漆A4相比显示出更好的最终硬度或者更好的黄变结果(或二者),正如上文关于实施例8和9分别发现的那样。

实施例13-14:乳剂漆

通过如下生产浆体:在Cowless溶解装置中混合5.5g脱矿质水、24g Tioxide TR 92(颜料)、1.2g Disperbyk 2015(分散剂)、1g Rheolate 212(增稠剂)和0.2g Byk 028(消泡剂)并将它们研磨成研磨浆体。在搅拌条件下向这种浆体中加入树脂乳剂(26.24g固体树脂)、在脱矿质水中按9∶1稀释的1.84g Borchi-Oxy-Coat 1101(铁干燥剂)、2.7g Rheolate 644(增稠剂)和脱矿质水以提供100g漆。

这些乳剂漆显示出以下性质(表6)。

表6中的结果显示:利用本发明的乳剂配制的漆(实施例13和14)与优化的可商业获得的基于现有技术的漆相比显示出更好的最终硬度或者黄变结果。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1