噁唑菌酮的多晶型及其制备方法与流程

文档序号:13380558阅读:387来源:国知局
噁唑菌酮的多晶型及其制备方法与流程

本发明属于药物化学领域,具体地说,本发明涉及噁唑菌酮的多晶型物、其应用和制备方法。



背景技术:

无脊椎动物害虫如节肢动物的防治对实现高效农业生产非常重要,无脊椎害虫对生长着和储存后的农作物的危害会导致严重减产,尤其是森林、温室作物、观赏植物、苗圃作物、储存食品和纤维产品、家畜、家庭,以及公共卫生与动物保健中。

噁唑菌酮(式i化合物),即化学名为5-甲基-5-(4-苯氧基苯基)-3-苯基氨基-2,4-噁唑烷二酮,该化合物高效广谱,适宜作物如小麦、大麦、豌豆、甜菜、油菜、葡萄、马铃薯、瓜类、辣椒,番茄等。主要用于防治子囊菌纲、担子菌纲、卵菌亚纲中的重要病害如白粉病、锈病、颖枯病、网斑病、霜霉病、晚疫病等。并且具有亲脂性,喷施作物叶片上后易粘附,不易被雨水冲刷。

因此,本领域亟需研发式i化合物的多晶型物,要求制备方法简单,热稳定性好,吸湿性低,可规模化生产。



技术实现要素:

本发明的目的在于提供一种噁唑菌酮的晶型a、晶型b、晶型c和晶型d,以及其制备方法和应用。

本发明第一方面,提供一种式i化合物的晶体,

在另一优选例中,所述晶体选自下组:晶型a、晶型b、晶型c和晶型d。

在另一优选例中,所述晶型a的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:6.0±0.2°、7.9±0.2°、9.6±0.2°、10.1±0.2°、12.0±0.2°、16.7±0.2°、17.3±0.2°、18.5±0.2°、19.2±0.2°、19.7±0.2°和22.1±0.2°。

在另一优选例中,所述晶型a的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:6.0±0.2°、7.9±0.2°、9.6±0.2°、10.1±0.2°、12.0±0.2°、14.8±0.2°、16.3±0.2°、16.7±0.2°、17.3±0.2°、18.5±0.2°、19.2±0.2°、19.7±0.2°、20.5±0.2°、21.1±0.2°、22.1±0.2°、23.3±0.2°、24.1±0.2°、25.5±0.2°、26.7±0.2°、28.6±0.2°和29.5±0.2°。

在另一优选例中,所述晶型a的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:6.0±0.2°、7.9±0.2°、9.6±0.2°、10.1±0.2°、12.0±0.2°、12.4±0.2°、14.8±0.2°、15.8±0.2°、16.3±0.2°、16.7±0.2°、17.3±0.2°、18.5±0.2°、19.2±0.2°、19.7±0.2°、20.5±0.2°、21.1±0.2°、22.1±0.2°、23.3±0.2°、24.1±0.2°、24.7±0.2°、25.5±0.2°、26.7±0.2°、27.3±0.2°、27.9±0.2°、28.6±0.2°、29.5±0.2°、30.2±0.2°和32.0±0.2°。

在另一优选例中,所述晶型a的x射线粉末衍射图谱基本如图1所表征。

在另一优选例中,所述晶型a的tg图基本如图3所表征。

在另一优选例中,所述晶型a的dsc图在140-145℃范围内具有吸热峰。

在另一优选例中,所述晶型a的dsc图基本如图2所表征。

在另一优选例中,所述晶型a纯度大于95%,优选地,纯度大于97%,更优选地,纯度大于99%,最优选地,纯度大于99.5%。

在另一优选例中,所述晶型b的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:9.8±0.2°、11.2±0.2°、16.6±0.2°、17.3±0.2°、18.4±0.2°、19.9±0.2°、20.7±0.2°、25.6±0.2°和26.7±0.2°。

在另一优选例中,所述晶型b的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:9.8±0.2°、11.2±0.2°、14.3±0.2°、14.7±0.2°、15.6±0.2°、16.6±0.2°、17.3±0.2°、18.4±0.2°、19.9±0.2°、20.7±0.2°、21.3±0.2°、22.2±0.2°、22.6±0.2°、23.1±0.2°、25.6±0.2°、26.7±0.2°、27.9±0.2°、28.3±0.2°、28.8±0.2°、29.7±0.2°和30.9±0.2°。

在另一优选例中,所述晶型b的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:9.8±0.2°、11.2±0.2°、13.0±0.2°、14.3±0.2°、14.7±0.2°、15.6±0.2°、16.6±0.2°、17.3±0.2°、18.4±0.2°、19.9±0.2°、20.7±0.2°、21.3±0.2°、22.2±0.2°、22.6±0.2°、23.1±0.2°、24.8±0.2°、25.6±0.2°、26.7±0.2°、27.2±0.2°、27.9±0.2°、28.3±0.2°、28.8±0.2°、29.7±0.2°和30.9±0.2°、33.2±0.2°、35.4±0.2°、37.2±0.2°、40.0±0.2°、40.5±0.2°。

在另一优选例中,所述晶型b的x射线粉末衍射图谱基本如图4所表征。

在另一优选例中,所述晶型b的tg图基本如图6所表征。

在另一优选例中,所述晶型b的dsc图在137-142℃范围内具有吸热峰。

在另一优选例中,所述晶型b的dsc图基本如图5所表征。

在另一优选例中,所述晶型b纯度大于95%,优选地,纯度大于97%,更优选地,纯度大于99%,最优选地,纯度大于99.5%。

在另一优选例中,所述晶型c的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:10.0±0.2°、16.7±0.2°、18.1±0.2°、20.2±0.2°、20.8±0.2°、21.2±0.2°、22.2±0.2°、24.3±0.2°和28.5±0.2°。

在另一优选例中,所述晶型c的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:8.4±0.2°、10.0±0.2°、12.8±0.2°、15.0±0.2°、16.7±0.2°、18.1±0.2°、20.2±0.2°、20.8±0.2°、21.2±0.2°、22.2±0.2°、24.3±0.2°、25.3±0.2°、25.8±0.2°、28.5±0.2°、29.9±0.2°、30.3±0.2°、32.1±0.2°、32.8±0.2°、33.7±0.2°、34.3±0.2°。

在另一优选例中,所述晶型c的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:5.6±0.2°、6.4±0.2°、8.4±0.2°、10.0±0.2°、11.7±0.2°、12.8±0.2°、14.5±0.2°、15.0±0.2°、16.7±0.2°、18.1±0.2°、18.5±0.2°、20.2±0.2°、20.8±0.2°、21.2±0.2°、22.2±0.2°、24.3±0.2°、25.3±0.2°、25.8±0.2°、26.4±0.2°、27.6±0.2°、28.5±0.2°、29.9±0.2°、30.3±0.2°、32.1±0.2°、32.8±0.2°、33.7±0.2°、34.3±0.2和34.8±0.2°。

在另一优选例中,所述晶型c的x射线粉末衍射图谱基本如图7所表征。

在另一优选例中,所述晶型c的tg图基本如图9所表征。

在另一优选例中,所述晶型c的dsc图在132~137℃范围内具有吸热峰。

在另一优选例中,所述晶型c的dsc图基本如图8所表征。

在另一优选例中,所述晶型c纯度大于95%,优选地,纯度大于97%,更优选地,纯度大于99%,最优选地,纯度大于99.5%。

在另一优选例中,所述晶型d的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:10.3±0.2°、10.9±0.2°、11.7±0.2°、14.2±0.2°、16.7±0.2°、18.1±0.2°、18.8±0.2°、20.0±0.2°、21.7±0.2°和28.4±0.2°。

在另一优选例中,所述晶型d的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:4.7±0.2°、5.1±0.2°、6.1±0.2°、7.3±0.2°、10.3±0.2°、10.9±0.2°、11.7±0.2°、13.0±0.2°、14.2±0.2°、15.0±0.2°、16.7±0.2°、18.1±0.2°、18.8±0.2°、20.0±0.2°、21.7±0.2°、23.5±0.2°、24.2±0.2°、25.3±0.2°、25.9±0.2°、27.9±0.2°、28.4±0.2°、28.9±0.2°、30.3±0.2°、31.9±0.2°和32.7±0.2°。

在另一优选例中,所述晶型d的x射线粉末衍射图谱包括3个或3个以上选自下组的2θ值:4.7±0.2°、5.1±0.2°、6.1±0.2°、7.3±0.2°、8.0±0.2°、10.3±0.2°、10.9±0.2°、11.7±0.2°、13.0±0.2°、14.2±0.2°、14.6±0.2°、15.0±0.2°、16.7±0.2°、18.1±0.2°、18.8±0.2°、20.0±0.2°、21.3±0.2°、21.7±0.2°、22.7±0.2°23.5±0.2°、24.2±0.2°、25.3±0.2°、25.9±0.2°、27.9±0.2°、28.4±0.2°、28.9±0.2°、30.3±0.2°、31.9±0.2°和32.7±0.2°。

在另一优选例中,所述晶型d的x射线粉末衍射图谱基本如图10所表征。

在另一优选例中,所述晶型d的tg图基本如图12所表征。

在另一优选例中,所述晶型d的dsc图在135~140℃范围内具有吸热峰。

在另一优选例中,所述晶型d的dsc图基本如图11所表征。

在另一优选例中,所述晶型d纯度大于95%,优选地,纯度大于97%,更优选地,纯度大于99%,最优选地,纯度大于99.5%。

本发明第二方面,一种农药组合物,所述组合物包含:(a)如本发明第一方面所述的晶体,以及(b)农药学上可接受的载体。

本发明第三方面,一种制备本发明第一方面所述晶型a的方法,包括步骤:

(i)将式i化合物溶解于有机溶剂a1中,所述有机溶剂a1选自下组:取代或未取代的c1-7烷烃、水、n,n-二甲基甲酰胺、四氢呋喃、或其组合,其中所述取代基选自卤素、c1-6烷基或c1-3烷氧基(较佳地选自下组:二氯甲烷、正庚烷、正己烷、环己烷、水、正庚烷、n,n-二甲基甲酰胺、四氢呋喃、或其组合);和

(ii)干燥得到晶型a;

和/或

(a)将式i化合物于有机溶剂a2中悬浮,所述有机溶剂a2选自下组:甲苯、对二甲苯、异丙醚、甲基叔丁基醚、乙二醇二乙醚、硝基甲烷、1,2-二氯乙烷、丙酮、2-丁酮、4-甲基-2-戊酮、乙腈、或其组合;和

(b)干燥得到所述晶型a。

在另一优选例中,步骤(i)中,所述式i化合物与所述有机溶剂a1的重量体积比为5-20mg:0.5-2ml,较佳地为10-15mg:1-1.5ml。

在另一优选例中,步骤(a)中,所述式i化合物与所述有机溶剂a2的重量体积比为80-180mg:8-18ml,较佳地为100-150mg:10-15ml。

在另一优选例中,步骤(a)中,所述有机溶剂a2选自溶剂x和溶剂y的组合,其中,溶剂x选自下组:甲苯、二甲苯、异丙醚、甲基叔丁基醚、乙二醇二乙醚、硝基甲烷、1,2-二氯乙烷、丙酮、2-丁酮、4-甲基-2-戊酮和乙腈;溶剂y选自下组:甲苯、二甲苯、异丙醚、甲基叔丁基醚、乙二醇二乙醚、硝基甲烷、1,2-二氯乙烷、丙酮、2-丁酮、4-甲基-2-戊酮和乙腈,并且,溶剂x和溶剂y的体积比为0.1-10,较佳地为0.25-6,更佳地为0.5-5。

在另一优选例中,步骤(a)中,所述悬浮在20-35℃下进行。

在另一优选例中,步骤(a)中,所述悬浮时间为20-27h。

本发明第四方面,提供一种制备本发明第一方面所述晶型b的方法,包括步骤:

(i)将本发明第一方面所述的晶型a溶解于有机溶剂b1中,所述有机溶剂b1选自下组:乙酸乙酯、n,n-二甲基甲酰胺、环己烷、或其组合;和

(ii)干燥,得到所述晶型b;

和/或

(a)将式i化合物于有机溶剂b2中悬浮,所述有机溶剂b2选自下组:氯苯、取代或未取代的c5-7烷烃、或其组合;较佳地选自下组:氯苯、正己烷、环己烷、正庚烷、或其组合;和

(b)干燥得到所述晶型b。

在另一优选例中,步骤(a)中,所述悬浮在20-35℃下进行。

在另一优选例中,步骤(a)中,所述悬浮时间为20-27h。

在另一优选例中,步骤(i)中,所述晶型a与所述有机溶剂b1的重量体积比为5-25mg:0.025-2.5ml,较佳地为10-20mg:0.05-2ml。

本发明第五方面,一种制备本发明第一方面所述晶型c的方法,包括步骤:

(i)将本发明第一方面所述的晶型a溶解于有机溶剂c1中,溶清,干燥后得到所述晶型c,其中,所述有机溶剂c1选自下组:取代或未取代的c1-7烷烃、乙腈、甲苯、对二甲苯、n,n-二甲基甲酰胺、水、四氢呋喃、或其组合,所述取代基选自卤素、c1-6烷基或c1-3烷氧基;较佳地选自下组:1,2-二氯乙烷、乙腈、甲苯、对二甲苯、二氯甲烷、正庚烷、正己烷、环己烷、n,n-二甲基甲酰胺、水、四氢呋喃、或其组合;和

(ii)干燥得到所述晶型c;

和/或

(a)将晶型a溶于有机溶剂c2中,所述有机溶剂c2选自下组:取代或未取代的c1-5醇、取代或未取代的c1-3烷烃,所述取代基选自卤素、c1-6烷基或c1-3烷氧基,较佳地选自下组:甲醇、乙醇、正丙醇、二氯甲烷、或其组合;和

(b)超声,干燥得到晶型c;

和/或

(c)将式i化合物于有机溶剂c3中,在20-35℃下悬浮,干燥得到晶型c,所述有机溶剂c3选自下组:取代或未取代的c1-5醇、取代或未取代的c2-8醚、取代或未取代的c1-3烷烃、2-乙氧基乙醇、乙酸乙酯、醋酸、或其组合,其中所述取代基选自卤素、c1-6烷基或c1-3烷氧基;较佳地选自下组:甲醇、乙醇、正丙醇、乙二醇、2,2,2-三氟乙醇、乙醚、乙二醇二甲醚、二氯甲烷、2-乙氧基乙醇、乙酸乙酯、醋酸、或其组合;和

(d)干燥得到晶型c。

在另一优选例中,所述步骤(i)在20-35℃下进行。

在另一优选例中,步骤(i)中,所述有机溶剂c1选自溶剂m和溶剂n的组合,其中,溶剂m选自下组:1,2-二氯乙烷、乙腈、甲苯、对二甲苯、二氯甲烷、正庚烷、正己烷、n,n-二甲基甲酰胺、水和四氢呋喃;溶剂y选自下组:1,2-二氯乙烷、乙腈、甲苯、对二甲苯、二氯甲烷、正庚烷、正己烷、n,n-二甲基甲酰胺、水和四氢呋喃,并且,溶剂m和溶剂n的体积比为0.1-10,较佳地为0.25-6,更佳地为0.5-5。

在另一优选例中,步骤(i)中,所述晶型a与所述有机溶剂c1的重量体积比为5-80mg:0.1-8ml,较佳地为10-60mg:0.2-0.6ml。

在另一优选例中,步骤(i)中,所述晶型a与所述有机溶剂c2的重量体积比为5-150mg:0.5-15ml,较佳地为10-120mg:1-12ml。

在另一优选例中,步骤(i)中,所述晶型a与所述有机溶剂c3的重量体积比为80-150mg:8-15ml,较佳地为100-130mg:10-13ml。

本发明第六方面,提供一种制备本发明第一方面所述晶型d的方法,包括步骤:

(i)将晶型a溶于有机溶剂d中,所述有机溶剂d选自下组:仲丁醇、正丁醇、或其组合;和

(ii)超声,干燥得到晶型d;

在另一优选例中,所述步骤(i)中,在20-35℃下进行。

在另一优选例中,所述步骤(ii)中,干燥在20-35℃下进行。

在另一优选例中,步骤(i)中,所述晶型a与所述有机溶剂d的重量体积比为5-50mg:0.5-5ml,较佳地为10-25mg:1-2.5ml。

本发明第七方面,提供一种本发明第一方面所述的晶型或本发明第二方面所述的农药组合物的用途,用于制备预防或控制有害生物引起的病害的药物。

在另一优选例中,所述病害选自下组:蔬菜瓜果类的西瓜炭疽病、西瓜白粉病、柑橘疮痴病、香蕉黑星病、葡萄的白粉病、霜霉病及炭疽病、番茄早疫病、苹果褐斑病、苹果斑点落叶病及斑点落叶病、柑橘疮痴病、黄瓜白粉病和果树黑星病。

应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。

附图说明

图1显示了晶型a的xrd图谱。

图2显示了晶型a的dsc图。

图3显示了晶型a的tg图。

图4显示了晶型b的xrd图谱。

图5显示了晶型b的dsc图。

图6显示了晶型b的tg图。

图7显示了晶型c的xrd图谱。

图8显示了晶型c的dsc图。

图9显示了晶型c的tg图。

图10显示了晶型d的xrd图谱。

图11显示了晶型d的dsc图。

图12显示了晶型d的tg图。

具体实施方式

本发明人通过广泛而深入的研究,首次意外地发现噁唑菌酮的多晶型物、其应用和制备方法。在此基础上完成了本发明。

术语说明

除非另外定义,否则本文中所用的全部技术与科学术语均具有如本发明所属领域的普通技术人员通常理解的相同含义。

如本文所用,在提到具体列举的数值中使用时,术语“约”意指该值可以从列举的值变动不多于1%。例如,如本文所用,表述“约100”包括99和101和之间的全部值(例如,99.1、99.2、99.3、99.4等)。

如本文所用,术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…构成”、或“由…构成”。

式i化合物

本发明的式i化合物即噁唑菌酮,结构式为化学名为5-甲基-5-(4-苯氧基苯基)-3-苯基氨基-2,4-噁唑烷二酮,该化合物高效广谱,适宜作物如小麦、大麦、豌豆、甜菜、油菜、葡萄、马铃薯、瓜类、辣椒,番茄等。主要用于防治子囊菌纲、担子菌纲、卵菌亚纲中的重要病害如白粉病、锈病、颖枯病、网斑病、霜霉病、晚疫病等。并且具有亲脂性,喷施作物叶片上后易粘附,不易被雨水冲刷。

多晶型物

化合物的多晶型形式可以表现出不同的熔点、吸湿性、稳定性、溶解度、生物利用度和流动性等,而这些是影响成药性的重要因素。

本发明的晶体,包括选自下组的晶型:晶型a、晶型b、晶型c和晶型d。

溶剂合物

化合物或药物分子与溶剂分子接触过程中,外部条件与内部条件因素造成溶剂分子与化合物分子形成共晶而残留在固体物质中的情况难以避免。药物与溶剂结晶后形成的物质称作溶剂合物(solvate)。容易的与有机化合物形成溶剂合物的溶剂种类为水、甲醇、苯、乙醇、醚、芳烃、杂环芳烃等。

水合物是一种特殊的溶剂合物。在制药工业中,无论在原料药的合成、药物制剂、药物贮存和药物活性评价中,水合物都因为其特殊性而具有单独讨论的价值。

本发明中,式(i)所示化合物的晶体,可以为非溶剂合物,也可以为溶剂合物。

农药组合物

本发明所述农药组合物中的“活性成分”是指本发明所述的式(i)化合物。

本发明所述的“活性成分”和农药组合物可用作预防或控制有害生物。

制备方法

本发明制备晶型a时,使用了悬浮和溶析的方法。

本发明制备晶型b时,使用了挥发的方法。

本发明制备晶型c时,使用了挥发和溶析的方法,该法简便易行,易于工业化生产。

本发明制备晶型d时,使用了溶析的方法,并且使用了超声辅助溶解,再通过挥发得到,该法新颖易行。

用途

本发明提供了晶型a、b、c、d及其农药组合物的用途,所述晶型高效广谱,对囊菌纲、担子菌纲和卵菌亚纲均有很好的控制效果,尤其是针对白粉病、锈病、颖枯病、网斑病、霜霉病和晚疫病等病虫害。

在另一优选例中,所述病害选自下组:蔬菜瓜果类的西瓜炭疽病、西瓜白粉病、柑橘疮痴病、香蕉黑星病、葡萄的白粉病、霜霉病及炭疽病、番茄早疫病、苹果褐斑病、苹果斑点落叶病及斑点落叶病、柑橘疮痴病、黄瓜白粉病和果树黑星病。

本发明的主要优点在于:

(1)本发明的化合物晶型均具有良好的热稳定性和非吸湿性,并且在溶解度方面优于现有的噁唑菌酮。

(2)本发明的晶型制备方法简单,适合大规模工业化生产。

(3)本发明的晶型可以有效预防或控制有害生物。

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。

以下实施例中所用的实验材料和试剂如无特别说明均可从市售渠道获得。

测试方法:

xrd(x-射线粉末衍射)方法:仪器型号:rigakuultimaiv,靶:cu-kα(40kv,40ma),于室温下使用d/texultra检测器进行。扫描范围在2θ区间自3°至45°,扫描速度为20°/分钟。

由包括以下的多种因素产生与这类x射线粉末衍射分析结果相关的测量差异:(a)样品制备物(例如样品高度)中的误差,(b)仪器误差,(c)校准差异,(d)操作人员误差(包括在测定峰位置时出现的误差),和(e)物质的性质(例如优选的定向误差)。校准误差和样品高度误差经常导致所有峰在相同方向中的位移。当使用平的支架时,样品高度的小差异将导致xrd峰位置的大位移。系统研究显示1mm的样品高度差异可以导致高至1°的2θ的峰位移。可以从x射线衍射图鉴定这些位移,并且可以通过针对所述位移进行补偿(将系统校准因子用于所有峰位置值)或再校准仪器消除所述位移。如上所述,通过应用系统校准因子使峰位置一致,可校正来自不同仪器的测量误差。

tg(热重分析)方法:仪器型号:taq500热重分析仪,采用n2气氛,升温速度为10℃/min

dsc(差示扫描量热法)方法:仪器型号:taq2000,采用n2气氛,升温速度为10℃/min

实施例1.晶型a的制备

1.1称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的二氯甲烷和正庚烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.2称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的二氯甲烷和正己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.3称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的二氯甲烷和环己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.4称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:4的二氯甲烷和水,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.5称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的二氯甲烷和水,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.6称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的二氯甲烷和正庚烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.7称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的二氯甲烷和正己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.8称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的二氯甲烷和环己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.9称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的n,n-二甲基甲酰胺和正庚烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.10称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的n,n-二甲基甲酰胺和正己烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.11称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:4的n,n-二甲基甲酰胺和正庚烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.12称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:4的n,n-二甲基甲酰胺和正己烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.13称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:4的n,n-二甲基甲酰胺和环己烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.14称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的n,n-二甲基甲酰胺和水,溶清,静置挥发,固体真空干燥后得到晶型a。

1.15称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的n,n-二甲基甲酰胺和正庚烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.16称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的n,n-二甲基甲酰胺和正己烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.17称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的n,n-二甲基甲酰胺和环己烷,分层、溶清,静置挥发,固体真空干燥后得到晶型a。

1.18称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的四氢呋喃和正庚烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.19称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为1:1的四氢呋喃和正己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.20称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的四氢呋喃和水,溶清,静置挥发,固体真空干燥后得到晶型a。

1.21称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的四氢呋喃和正庚烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.22称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的四氢呋喃和正己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.23称取500mg噁唑菌酮无定形于容器中,加入总体积为50ml、体积比为4:1的四氢呋喃和环己烷,溶清,静置挥发,固体真空干燥后得到晶型a。

1.24称取500mg噁唑菌酮无定形于容器中,加入50ml甲苯进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.25称取500mg噁唑菌酮无定形于容器中,加入50ml对二甲苯进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.26称取500mg噁唑菌酮无定形于容器中,加入50ml异丙醚进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.27称取500mg噁唑菌酮无定形于容器中,加入50ml甲基叔丁基醚进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.28称取500mg噁唑菌酮无定形于容器中,加入50ml乙二醇二乙醚进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.29称取500mg噁唑菌酮无定形于容器中,加入50ml硝基甲烷进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.30称取500mg噁唑菌酮无定形于容器中,加入50ml1,2-二氯乙烷进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.31称取500mg噁唑菌酮无定形于容器中,加入50ml丙酮进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.32称取500mg噁唑菌酮无定形于容器中,加入50ml2-丁酮进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.33称取500mg噁唑菌酮无定形于容器中,加入50ml4-甲基-2-戊酮进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

1.34称取500mg噁唑菌酮无定形于容器中,加入50ml乙腈进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到晶型a。

所得晶型a的xrd图谱见图1,衍射角数据基本如下表1所示。

表1.晶型a的xrd数据

晶型a的dsc图谱基本如图2所示,其中吸热峰对应熔融过程。

晶型a的tg图谱基本如图3所示,其中在分解前基本无失重。

实施例2.晶型b的制备

2.1称取500mg晶型a于容器中,加入30ml乙酸乙酯(收率94%),溶清,静置挥发、真空干燥后得到噁唑菌酮晶型b。

2.2称取500mg晶型a于容器中,加入2.5mln,n-二甲基甲酰胺(收率93%),溶清,静置挥发、真空干燥后得到噁唑菌酮晶型b。

2.3称取500mg晶型a于容器中,加入总体积为50ml、体积比为1:1的n,n-二甲基甲酰胺和环己烷,溶清、分层,静置挥发、真空干燥后得到噁唑菌酮晶型b。

2.4称取500mg噁唑菌酮无定形于容器中,加入50ml氯苯进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型b。

2.5称取500mg噁唑菌酮无定形于容器中,加入50ml正己烷进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型b。

2.6称取500mg噁唑菌酮无定形于容器中,加入50ml环己烷进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型b。

2.7称取500mg噁唑菌酮无定形于容器中,加入50ml正庚烷进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型b。

所得晶型b的xrd图谱见图4,衍射角数据基本如下表2所示。

表2.晶型b的xrd数据

晶型b的dsc图谱基本如图5所示,其中吸热峰对应熔融过程。

晶型b的tg图谱基本如图6所示,其中在分解前基本无失重。

实施例3.晶型c的制备

3.1称取500mg晶型a于容器中,加入15ml1,2-二氯乙烷(收率82%),溶清,静置挥发、固体真空干燥后得到噁唑菌酮晶型c。

3.2称取500mg晶型a于容器中,加入10ml乙腈(收率84%),溶清,静置挥发、固体真空干燥后得到噁唑菌酮晶型c。

3.3称取500mg晶型a于容器中,加入50ml甲苯(收率87%),溶清,静置挥发、固体真空干燥后得到噁唑菌酮晶型c。

3.4称取500mg晶型a于容器中,加入50ml对二甲苯(收率89%),溶清,静置挥发、固体真空干燥后得到噁唑菌酮晶型c。

3.5称取500mg晶型a于容器中,加入2.3ml二氯甲烷溶清,再加入20ml水,析出大量白色固体(产率90%),固体真空干燥后得到噁唑菌酮晶型c。

3.6称取500mg晶型a于容器中,加入2.3ml二氯甲烷溶清,再加入20ml正庚烷,析出大量白色胶状固体(产率92%),固体真空干燥后得到噁唑菌酮晶型c。

3.7称取500mg晶型a于容器中,加入2.3ml二氯甲烷溶清,再加入20ml正己烷,析出大量白色胶状固体(产率91%),固体真空干燥后得到噁唑菌酮晶型c。

3.8称取500mg晶型a于容器中,加入1.5mln,n-二甲基甲酰胺溶清,再加入10ml水,析出大量白色固体(产率92%),固体真空干燥后得到噁唑菌酮晶型c。

3.9称取500mg晶型a于容器中,加入3.5ml四氢呋喃溶清,再加入20ml正庚烷,析出大量白色胶状固体(产率95%),固体真空干燥后得到噁唑菌酮晶型c。

3.10称取500mg晶型a于容器中,加入2.3ml二氯甲烷溶清,加入到20ml水中,分层,析出白色固体(产率88%),固体真空干燥后得到噁唑菌酮晶型c。

3.11称取500mg晶型a于容器中,加入2.3ml二氯甲烷溶清,加入到20ml正庚烷中,析出大量白色胶状固体(产率85%),固体真空干燥后得到噁唑菌酮晶型c。

3.12称取500mg晶型a于容器中,加入2.3ml二氯甲烷溶清,加入到20ml正己烷中,析出大量白色胶状固体(产率82%),固体真空干燥后得到噁唑菌酮晶型c。

3.13称取500mg晶型a于容器中,加入1.5mln,n-二甲基甲酰胺溶清,加入到10ml水中,析出白色固体(产率88%),固体真空干燥后得到噁唑菌酮晶型c。

3.14称取500mg晶型a于容器中,加入3.5ml四氢呋喃溶清,加入到20ml正庚烷中,析出白色固体(产率81%),固体真空干燥后得到噁唑菌酮晶型c。

3.15称取500mg晶型a于容器中,加入3.5ml四氢呋喃溶清,加入到20ml正己烷中,析出白色固体(产率80%),固体真空干燥后得到噁唑菌酮晶型c。

3.16称取500mg晶型a于容器中,加入50ml无水甲醇超声1h溶清,常温静置挥发,固体真空干燥后得到噁唑菌酮晶型c。

3.17称取500mg晶型a于容器中,加入50ml无水乙醇超声1h溶清,常温静置挥发,固体真空干燥后得到噁唑菌酮晶型c。

3.18称取500mg晶型a于容器中,加入50ml正丙醇超声1h溶清,常温静置挥发,固体真空干燥后得到噁唑菌酮晶型c。

3.19称取500mg晶型a于容器中,加入5ml二氯甲烷溶清,在50℃下旋蒸,固体真空干燥后得到噁唑菌酮晶型c。

3.20称取4g晶型a于容器中,加入10mln,n-二甲基甲酰胺热溶清,加入到70ml4℃的水中,析出白色固体(产率87%),固体真空干燥后得到噁唑菌酮晶型c。

3.21称取2g晶型a于容器中,加入6ml二氯甲烷热溶清,加入到70ml4℃的水中,析出白色固体(产率88%),固体真空干燥后得到噁唑菌酮晶型c。

3.22称取2g晶型a于容器中,加入6ml二氯甲烷热溶清,加入到70ml4℃的正庚烷中,析出白色固体(产率90%),固体真空干燥后得到噁唑菌酮晶型c。

3.23称取2g晶型a于容器中,加入6ml二氯甲烷热溶清,加入到70ml4℃的环己烷中,析出白色固体(产率87%),固体真空干燥后得到噁唑菌酮晶型c。

3.24称取500mg晶型a于容器中,加入总体积为50ml、体积比为1:1的二氯甲烷和水,溶清、分层,静置挥发,固体真空干燥后得到噁唑菌酮晶型c。

3.25称取500mg晶型a于容器中,加入总体积为50ml、体积比为1:1的四氢呋喃和环己烷,溶清,静置挥发,固体真空干燥后得到噁唑菌酮晶型c。

3.26称取500mg晶型a于容器中,加入5ml二氯甲烷,40℃下溶清,在50℃下快速旋蒸,得到的固体即时检测,得到噁唑菌酮晶型c。

3.27称取500mg噁唑菌酮无定形于容器中,加入50ml无水乙醚进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.28称取500mg噁唑菌酮无定形于容器中,加入50ml2-乙氧基乙醇进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.29称取500mg噁唑菌酮无定形于容器中,加入50ml乙二醇二甲醚进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.30称取500mg噁唑菌酮无定形于容器中,加入50ml无水甲醇进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.31称取500mg噁唑菌酮无定形于容器中,加入50ml无水乙醇进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.32称取500mg噁唑菌酮无定形于容器中,加入50ml正丙醇进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.33称取500mg噁唑菌酮无定形于容器中,加入50ml乙二醇进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.34称取500mg噁唑菌酮无定形于容器中,加入50ml2,2,2-三氟乙醇进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.35称取500mg噁唑菌酮无定形于容器中,加入50ml二氯甲烷进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.36称取500mg噁唑菌酮无定形于容器中,加入50ml乙酸乙酯进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

3.37称取500mg噁唑菌酮无定形于容器中,加入50ml醋酸进行常温悬浮24小时,剩余固体抽滤,真空干燥后得到噁唑菌酮晶型c。

所得晶型c的xrd图谱见图7,衍射角数据基本如下表3所示。

表3.晶型c的xrd数据

晶型c的dsc图谱基本如图8所示,其中吸热峰对应熔融过程。

晶型c的tg图谱基本如图9所示,其中在150℃前的失重为少量残余溶剂的影响,晶型c在分解前基本无失重。

实施例4.晶型d的制备

称取500mg晶型a于容器中,加入50ml仲丁醇超声1h溶清,常温静置挥发,固体真空干燥后得到噁唑菌酮晶型d。

所得晶型d的xrd图谱基本如图10所示,衍射角数据基本如下表4所示。

表4晶型d的xrd数据

晶型d的dsc图谱基本如图11所示,其中吸热峰对应熔融分解过程。

晶型d的tg图谱基本如图12所示,其中在分解前基本无失重。

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1