基于苯基吲唑衍生物的热激活延迟荧光材料及其有机电致发光器件的制作方法

文档序号:12856342阅读:181来源:国知局

本发明涉及有机电致发光技术领域,具体涉及一种基于苯基吲唑衍生物的热激活延迟荧光材料及其有机电致发光器件。



背景技术:

有机电致发光二极管(organiclight-emittingdiode,oled)是指有机发光材料在电流或电场的作用下发光的二极管,它能够将电能直接转化为光能。1987年kodak公司的tang等发明了三明治型有机双层薄膜发光器件,这一突破性进展,让人们看到了oled技术走向实用化、走向商业市场的巨大潜力,掀起了有机发光二极管的研究热潮。30年来,oled技术取得了日新月异的发展,已经从实验室研究走向工业化生产。oled技术的全固态、主动发光、高对比度、超薄、可柔性显示、低功耗、宽视角、响应速度快、工作温度范围宽、易于实现3d显示等诸多优点,被业内人士称为“梦幻般的显示器”,将成为未来最具发展潜力的新型显示技术。

当然,oled技术突飞猛进的背后,有机发光材料起着重要的作用。有机发光材料根据发光机理大致可以分为三类:传统荧光材料、磷光材料和热激活延迟荧光(thermallyactivateddelayedfluorescence,tadf)材料。其中,传统荧光材料和磷光材料已经在工业化生产中得到应用,但它们仍然存在明显的不足。传统的荧光材料,在电致激发的条件下,受到自旋量子统计规律的限制,形成的单重态激子与三重态激子数量之比为1:3,75%的三重态激子只能以热量的形式耗散而不能通过辐射跃迁发光,只有25%的单重态激子可通过辐射跃迁发光,即传统的荧光材料最高内量子效率(internalquantumefficiency,iqe)仅为25%,若考虑到光耦合输出效率为20%,那么其oled器件的最高外量子效率(externalquantumefficiency,eqe)仅为5%。尽管荧光材料oled器件具有较高的可靠性和稳定性,但较低的外量子效率仍然限制了其应用。而磷光材料通常包含稀有贵金属,导致价格昂贵,并且器件稳定性能差、器件效率下降严重等问题都在很大程度上进一步限制了其大规模商用普及。近年来,热激活延迟荧光材料逐渐成为了本领域研究的新热点。该材料可以在无贵金属的条件下实现100%的内量子效率,不仅可以避免昂贵的重金属的使用,从而一定程度上降低成本,而且可以期望大幅提高器件寿命和光谱稳定性,同时具有发光效率高、环境友好等优势,被称为第三代电致发光材料。

但是,目前关于热激活延迟荧光材料的相关研究还比较少,材料种类仍然单一,无法满足oled器件的开发需求,新型高性能热激活延迟荧光材料亟待开发。



技术实现要素:

有鉴于此,为了解决现有技术中热激活延迟荧光材料种类单一,无法满足oled器件需求的技术问题,本发明提供一种基于苯基吲唑衍生物的热激活延迟荧光材料及其有机电致发光器件。

本发明首先提供了一种基于苯基吲唑衍生物的热激活延迟荧光材料,具有如式(i)所示的结构式:

其中,ar选自取代或未取代的c6-c60的芳胺、取代或未取代的c4-c60的芳杂环中的任意一种。

优选的,所述ar选自取代或未取代的c6-c30的芳胺、取代或未取代的c4-c30的芳杂环中的任意一种。

优选的,所述ar选自如下结构中的任意一种:

其中,r1、r2独立地选自c1-c10的烷基、取代或未取代的c6-c30的芳基中的一种;r3、r4独立地选自h、c1-c10的烷基、取代或未取代的c6-c30的芳基中的一种,或者r3或r4与所在的基团形成稠环。

优选的,所述的基于苯基吲唑衍生物的热激活延迟荧光材料,如下化合物1-10中的任意一种所示:

本发明还提供一种有机电致发光器件,包括阳极、阴极以及位于所述阳极与阴极之间的若干个有机功能层,所述有机功能层中包括所述的基于苯基吲唑衍生物的热激活延迟荧光材料的任意一种或至少两种的组合。

优选的,所述有机功能层包括发光层,所述发光层包括所述的基于苯基吲唑衍生物的热激活延迟荧光材料的任意一种或至少两种的组合。

优选的,所述基于苯基吲唑衍生物的热激活延迟荧光材料在发光层中用作掺杂材料、共同掺杂材料或主体材料。

本发明的有益效果:

为了解决现有技术中热激活延迟荧光材料种类单一,无法满足oled器件需求的技术问题,本发明提供一种基于苯基吲唑衍生物的热激活延迟荧光材料及其有机电致发光器件。本发明以苯基吲唑基团作为电子受体,以苯环为连接桥,以芳胺或含有氮原子的六元稠和芳杂环作为电子给体,使分子中兼具吸电子和推电子基团,实现homo和lumo的电子云分离,有效地诱导产生分子内电荷转移,有利于载流子在器件中传输,进而提高有机电致发光器件的发光特性。

实验结果表明,使用本发明提供的基于苯基吲唑衍生物的热激活延迟荧光材料制备的有机电致发光器件,外量子效率高,最大电流效率可达18.63cd/a,最大功率效率可达20.31lm/w,具有较高的发光效率,并且驱动电压低,是一种优异的oled材料。

具体实施方式

为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。

需要说明的是,除非另有规定,本发明所使用的科技术语的含义与本领域技术人员通常所理解的含义相同。

本发明所述烷基是指烷烃分子中少掉一个氢原子而成的烃基,其可以为直链烷基、支链烷基或环烷基,实例可包括甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、环戊基、环己基等,但不限于此。

本发明所述芳胺可以是单环二芳胺、多环二芳胺、或单环和多环二芳胺。

本发明所述芳基是指芳烃分子的芳核碳上去掉一个氢原子后,剩下一价基团的总称,其可以为单环芳基或稠环芳基,实例可包括苯基、联苯基、萘基、蒽基、菲基或芘基等,但不限于此。

本发明所述芳杂环是指芳环中一个或多个芳核碳被杂原子替代得到的基团的总称,所述杂原子包括但不限于氧、硫、氮或硅原子,所述芳杂环可以为单环或稠环,实例可包括吡啶基、吩噻嗪基、吩恶嗪基、嘧啶基、苯并嘧啶基、咔唑基、三嗪基、苯并噻唑基、苯并咪唑基、吖啶基等,但不限于此。

本发明首先提供基于苯基吲唑衍生物的热激活延迟荧光材料,具有如式(i)所示的结构式:

其中,ar选自取代或未取代的c6-c60的芳胺、取代或未取代的c4-c60的芳杂环中的任意一种。

按照本发明,优选ar选自取代或未取代的c6-c30的芳胺、取代或未取代的c4-c30的芳杂环中的任意一种。所述芳杂环中的杂原子优选为n、o、s和si中的一种或两种;进一步的,所述芳杂环优选为六元稠和芳杂环。

按照本发明,再优选所述ar选自如下结构中的任意一种:

其中,r1、r2独立地选自c1-c10的烷基、取代或未取代的c6-c30的芳基中的一种;r3、r4独立地选自h、c1-c10的烷基、取代或未取代的c6-c30的芳基中的一种,或者r3或r4与所在的基团形成稠环。优选的,r1、r2独立地选自甲基、乙基、丙基、丁基、苯基、联苯基或三联苯基,更优选为甲基、乙基或苯基;优选的,r3、r4独立地选自h、甲基、乙基、丙基、丁基、苯基或联苯基,或者r3或r4与所在的基团形成稠环,更优选为h、甲基、乙基或苯基,或者为苯基与所在的基团形成萘环。

作为举例,没有特别限定,本发明所述基于苯基吲唑衍生物的热激活延迟荧光材料如下所示:

以上列举了本发明所述基于苯基吲唑衍生物的热激活延迟荧光材料的一些具体的结构形式,但本发明并不局限于所列的这些化学结构,凡是以式(i)所示结构为基础,ar为如上所限定的基团都应该包含在内。

本发明以苯基吲唑基团作为电子受体,以苯环为连接桥,以芳胺或含有氮原子的六元稠和芳杂环作为电子给体,使分子中兼具吸电子和推电子基团,实现homo和lumo的电子云分离,有效地诱导产生分子内电荷转移,有利于载流子在器件中传输,进而提高有机电致发光器件的发光特性。

本发明基于苯基吲唑衍生物的热激活延迟荧光材料的制备方法,可通过将式(ⅱ)所示的化合物与式(ⅲ)所示的化合物反应得到式(i)所示的基于苯基吲唑衍生物的热激活延迟荧光材料。

本发明对上述反应的反应条件没有特殊要求,以本领域技术人员熟知的此类反应的常规条件即可。本发明对上述各类反应中所采用的原料的来源没有特别的限制,可以为市售产品或采用本领域技术人员所熟知的制备方法制备得到。其中,所述ar的选择同上所述,在此不再赘述。

本发明还提供一种有机电致发光器件,所述有机电致发光器件为本领域技术人员所熟知的有机电致发光器件即可,本发明所述有机电致发光器件包括阳极、阴极以及位于所述阳极与阴极之间的若干个有机功能层,所述有机功能层中包括所述的基于苯基吲唑衍生物的热激活延迟荧光材料的任意一种或至少两种的组合。所述有机功能层可以包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层与电子注入层中的至少一层,优选所述有机功能层包括发光层,所述发光层包括所述的基于苯基吲唑衍生物的热激活延迟荧光材料的任意一种或至少两种的组合。更优选所述基于苯基吲唑衍生物的热激活延迟荧光材料在发光层中用作掺杂材料、共同掺杂材料或主体材料。

本发明有机电致发光器件中的基板可使用传统的有机电致发光器件中的基板,例如玻璃或塑料,优选的,本发明中使用的是玻璃基板。

阳极材料可使用具有大功函数的电极材料,可以是诸如氧化铟、氧化锌、氧化铟锡(ito)、氧化铟锌(izo)或其混合物的金属氧化物等。优选地,本发明中使用的是氧化铟锡(ito)作为阳极材料。

空穴传输层可以采用各种三芳胺类材料。优选地,本发明中使用的是npb。

阴极材料可使用具有低功函数的电极材料,可以采用金属或其混合物结构,如mg、ag、ca,也可以是电子注入层/金属层结构,如lif/al、li2o/al等常见阴极结构。优选地,本发明中使用的电子注入材料是lif,阴极是al。

本发明对以下实施例中所采用的原料的来源没有特别的限制,可以为市售产品或采用本领域技术人员所熟知的制备方法制备得到。

实施例1:化合物1的合成

首先,将1-苯基-3-(三叔丁基锡烷基)-1-吲唑(0.021mol,10g),10-(4-溴苯)-9,9-二甲基吖啶(0.021mol,7.50g)置于圆底烧瓶中,加入1g氯化锂,加入20ml甲苯,0.5g三苯基氯化钯,氮气保护下,回流48小时后,停止反应,抽滤,得到黄色固体。产物经过萃取,干燥后,用柱层析法进行提纯,得到5.01g产物。产率:49.9%。

质谱m/z:477.25(计算值:477.22)。理论元素含量(%)c34h27n3:c,85.50;h,5.70;n,8.80;实测元素含量(%):c,85.58;h,5.75;n,8.86。

实施例2:化合物3的合成

合成步骤同实施例1的步骤,只是将其中的一种原料10-(4-溴苯)-9,9-二甲基吖啶改变为10-(4-溴苯)-10h-吩噻嗪。

质谱m/z:467.21(计算值:467.15)。理论元素含量(%)c31h21n3s:c,79.63;h,4.53;n,8.99;s,6.86实测元素含量(%):c,79.67;h,4.52;n,8.98;s,6.90。

实施例3:化合物4的合成

合成步骤同实施例1的步骤,只是将其中的一种原料10-(4-溴苯)-9,9-二甲基吖啶改变为10-(4-溴苯)-10h-吩噁嗪。

质谱m/z:451.22(计算值:451.17)。理论元素含量(%)c31h21n3o:c,82.46;h,4.69;n,9.31;o,3.54实测元素含量(%):c,82.50;h,4.69;n,9.33;o,3.57。

实施例4:化合物5的合成

合成步骤同实施例1的步骤,只是将其中的一种原料10-(4-溴苯)-9,9-二甲基吖啶改变为n-(4-溴苯)-n-苯基萘基-1-胺。

质谱m/z:487.32(计算值:487.20)。理论元素含量(%)c35h25n3:c,86.21;h,5.17;n,8.62;实测元素含量(%):c,86.29;h,5.15;n,8.68。

实施例5:化合物6的合成

合成步骤同实施例1的步骤,只是将其中的一种原料10-(4-溴苯)-9,9-二甲基吖啶改变为4-溴-n,n-二苯基苯胺。

质谱m/z:437.28(计算值:437.19)。理论元素含量(%)c31h23n3:c,85.10;h,5.30;n,9.60;实测元素含量(%):c,85.19;h,5.33;n,9.65。

实施例6:有机电致发光器件的制备

将涂布了ito透明电极的玻璃基板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境中烘烤至完全除去水分,用紫外光和臭氧清洗。

把上述涂布了ito透明电极的玻璃基板置于真空腔内,抽真空至10-5–10-3pa,蒸镀空穴传输层npb,蒸镀速率为0.1nm/s,厚度为20nm。在空穴传输层上蒸镀本发明中的基于苯基吲唑衍生物的热激活延迟荧光材料作为发光层,蒸镀速率为0.1nm/s,厚度为30nm。在发光层上真空蒸镀一层alq3作为电子传输层,蒸镀速率为0.1nm/s,厚度为20nm。在电子传输层上蒸镀lif和al作为器件的电子注入层和阴极,厚度分别1nm和100nm。测量器件的发光性能,结果见表1。

表1本发明实施例制备的发光器件的发光特性

可以看出,使用本发明提供的基于苯基吲唑衍生物的热激活延迟荧光材料制备的有机电致发光器件,外量子效率高,最大电流效率可达18.63cd/a,最大功率效率可达20.31lm/w,具有较高的发光效率,并且驱动电压低,是一种优异的oled材料。

显然,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1