(-)-γ-内酰胺酶、基因、突变体、载体及其制备与应用

文档序号:10589088阅读:1398来源:国知局
(-)-γ-内酰胺酶、基因、突变体、载体及其制备与应用
【专利摘要】本发明涉及一种(?)?γ?内酰胺酶、其基因及突变体,含有该基因及突变体的重组表达质粒和重组表达转化体,该重组(?)?γ?内酰胺酶的制备,以及该(?)?γ?内酰胺酶在制备(+)?γ?内酰胺中的应用。与现有技术相比,本发明的(?)?γ?内酰胺酶具有酶活性高、底物浓度耐受性好的特点,使用该酶催化制备(+)?γ?内酰胺具有反应条件温和、底物浓度高、催化剂用量少等优势,因此在碳环核苷类药物中间体(+)?γ?内酰胺的工业生产中具有很好的应用前景。
【专利说明】
(-)-γ -内酰胺酶、基因、突变体、载体及其制备与应用
技术领域
[0001] 本发明属于生物工程技术领域,尤其是涉及一种(-)-γ-内酰胺酶、其基因及突变 体,含有该基因及突变体的重组表达质粒和重组表达转化体,该重组(-)-γ-内酰胺酶的制 备,以及该(-)-γ-内酰胺酶在制备(+)-γ-内酰胺中的应用。
【背景技术】
[0002] γ-内酰胺是化合物2-氮杂二环[2.2.1]庚-5-烯-3-酮的简称(亦俗称为文斯内 酯),其分子式为UHyNOj-内酰胺的两个对映异构体都是有用的医药中间体,其中(-)-γ-内酰胺可用于合成抗逆转录病毒药物阿巴卡韦和抗流感病毒药物帕拉米韦;而( + )-γ-内 酰胺可用于合成趋化因子受体CCR2拮抗剂ΜΚ-0812和二肽基肽酶抑制剂美罗利汀。
[0003] 采用生物催化法制备( + )-γ-内酰胺或(-)-γ-内酰胺,一般采用的是水解酶,目 前对(+)-γ-内酰胺酶研究比较广泛,其中许多已被用于(-)-γ-内酰胺的制备。例如:来源 于Comamonas acidovorans的( + )-γ -内酰胺酶能有效地催化拆分4.6M(500g L-D的消旋体 γ-内酰胺,剩余的(-)-γ-内酰胺 ee 值 >98 % (Bioorg.Med.Chem ·,1999,7,2163-2168)0 200g I/1纤维素固定化的来源于嗜热菌Sulfolobus solfataricus的( + )- γ -内酰胺酶能有 效地催化拆分〇.6M(65g I/1)的消旋γ -内酰胺,9h时消旋γ -内酰胺的转化率达到49.5%, 剩余(_)_ y _内酰胺的ee值可达到99 · 5%。将Sulfolobus solfataricus的( + )- γ -内酰胺 酶通过大肠杆菌表面展示技术固定在大肠杆菌细胞表面后,40g I/1的重组细胞可以催化 0 · 92M( 100g L-1)消旋 γ -内酰胺(Appl .Microbiol · Biotechnol ·,2014,98,6991-7001)的水 解拆分,4h时转化率达到49.5 %,(-)- γ -内酰胺的ee值可达到99.5 %。250g L-1 (+)- γ -内 酰胺固定化酶RutB可催化2.0M(218g L-〇消旋γ-内酰胺的水解拆分,4h转化率可达到 50%,(-)- γ -内酰胺的ee值可达到99.5% (Appl .Microbiol .Biotechnol · ,2015,99,4691-4700)。来源于Nocardia farcinica的酰胺酶NfpolyA在纯酶上载量为0.25g L-1时,可催化 水解0.46M(50g L-1)的底物(ChemCatChem, 2014,6,2517-2521 )<a〇g L-1 的Baci 11 ius subtilisl68/pMA5-delm冻干细胞可以水解0.92M(100g L-〇消旋γ-内酰胺,22.5h转化率 可达到55.2%,(-)-γ-内酰胺的ee 值达到99 % (Appl. Biochem. Biotechnol. ,2015,176, 1687-1699)。与(+)-γ-内酰胺酶相比,(-)-γ-内酰胺酶的研究较少,且目前已报道的(-)-γ-内酰胺酶的研究重点主要集中于酶学性质的表征,较少应用于(+)-γ-内酰胺的制备。 来源于Bradyrhizobium japonicum USDA 6的(-)-γ-内酰胺酶在0.5mL反应体系中拆分消 旋γ-内酰胺,37°C反应24h后,( + )-γ-内酰胺的ee值〉99% (中国发明专利,公开号CN 103966192六)。3(^ L-1商业化的Lipolase(CAL-B)在异丙醚-水两相体系中,可以拆分0.2M (22.2g L-1)消旋 γ-内酰胺(Eur.J.Org.Chem. ,2008,5263-5268;发明专利 W0 2009/ 007759A1)。经戊二醛交联的来源于Aureobacterium sp.的(-)-γ -内酰胺酶,在连续化反 应中可以拆分〇. 46M(50g L-1)消旋γ -内酰胺,96h转化率可达到50 %,( +)- γ -内酰胺的ee 值>99% (Tetrahedron-Asymmetry,1993,4,1117-1128)。这些酶都具有较高的立体选择性, 反应转化率达到50%时,剩余的( + )- γ -内酰胺的ee值〉99%。尽管如此,由于这些酶活性 低,底物浓度耐受性差,因此难以大规模应用。
[0004] 与传统化学合成法相比,生物催化消旋γ -内酰胺水解拆分制备(+)- γ -内酰胺的 方法具有反应条件温和、环境友好、操作简单等优点,但是目前(+)-γ -内酰胺的生物催化 合成方法仅限于实验室规模,存在酶活性低、催化剂使用量大、产物浓度不高的缺陷,不适 合工业化生产。因此,需要筛选活性高、稳定性好且能耐受高浓度产物/产物的酶,以满足工 业化生产(+)-γ-内酰胺的需求。

【发明内容】

[0005] 本发明针对现有技术中酶法制备( + )-γ-内酰胺上的不足,提供了一种催化活性 高、热稳定性好、对映选择性高以及底物耐受性高的(-)-γ -内酰胺酶SvGL及其突变体,含 有该酶及突变体基因的重组表达质粒和重组表达转化体,重组SvGL及其突变体酶粉的制 备,以及在制备( + )- Y _内酰胺中的应用。
[0006] 本发明的目的可以通过以下技术方案来实现:
[0007]技术方案之一:
[0008] -种(-)-γ-内酰胺酶,其是如下(a)或(b)的蛋白质:
[0009]蛋白质(a):如序列表中SEQ ID No. 2所不氣基酸序列构成的蛋白质;
[0010]蛋白质(b):在(a)的氨基酸序列中经过一个或几个氨基酸取代且(-)-γ-内酰胺 酶活性提高的衍生蛋白质。
[0011 ] 所述蛋白质(a)的制备可以是从产绿色链霉菌Streptomyces viridochromogenes CGMCC 4.692中分离获得,或者从重组表达该(-)-γ -内酰胺酶的转化体中分离获得,也可 以是人工合成获得。
[0012] 所述产绿色链霉菌Streptomyces viridochromogenes CGMCC 4.692为本实验室 从中国普通微生物菌种保藏管理中心购买,并自行保藏。本发明中,发明人对实验室保藏的 100余株细菌进行培养,培养液离心,取适量静息细胞,悬浮于含有10mM消旋γ-内酰胺的磷 酸钾缓冲液(l〇〇mM,pH 7.0)中,振摇反应,检测水解反应底物的转化率,对这些菌株催化水 解反应的活性进行评价,其中Streptomyces viridochromogenes CGMCC 4.692表现出最好 的反应效果。进而采用鸟枪法对Streptomyces viridochromogenes CGMCC 4.692的(-)-γ-内酰胺酶进行了克隆,获得一个具有高活性的重组(-)-γ-内酰胺酶,命名为SvGL,其氨 基酸序列如序列表中SEQ ID No.2所示。
[0013] 所述蛋白质(b)是在蛋白质(a)的基础上经过一个或几个氨基酸取代而得到的 (-)-γ -内酰胺酶活性显著提高的衍生蛋白质。在筛选获得高活性及高立体选择性(-)-γ-内酰胺酶SvGL的基础上,发明人对野生型SvGL进行蛋白质改造,以进一步提高该酶的活性。
[0014] 将野生型SvGL在Genebank数据库中进行同源搜索,将获得的序列进行同源比对, 对保守位点进行定点饱和突变,发现在SEQ ID No. 2所示氨基酸序列的基础上对第188位的 苯丙氨酸进行单点替换后,具有较高的(-)-γ-内酰胺酶活性。此外通过对SvGL的活性口袋 和底物通道附近的氨基酸残基进行半理性设计和单点饱和突变,发现在SEQ ID No.2所示 氨基酸序列的第188位的苯丙氨酸进行单点替换的基础上对第130位的亮氨酸进行单点替 换后,同样具有更高的(-)-γ-内酰胺酶活性。其中,将SEQ ID No.2所示氨基酸序列的第 188位的苯丙氨酸残基替换为色氨酸残基获得的突变体蛋白SvGLF1884崔化(-)-γ-内酰胺水 解的活性提高了 1.3倍。将SEQ ID No.2所示氨基酸序列第188位的苯丙氨酸残基替换为色 氨酸残基、第130位的亮氨酸残基替换为异亮氨酸残基获得的突变体蛋白SvGLmoimssW崔化 (-)-γ-内酰胺水解的活性提高了2.2倍,将SEQ ID No.2所示氨基酸序列第188位的苯丙氨 酸残基替换为色氨酸残基、第130位的亮氨酸残基替换为酪氨酸残基,获得的突变体蛋白 SVGLl13qY/f188W催化(-) -γ -内酰胺水解的活性提高了3 · 2倍。
[0015] 其中(-)-γ -内酰胺酶的活性测定在30°C下进行,反应体系:10mM磷酸钾缓冲液 (pH 7 · 0)、1 OmM的消旋γ -内酰胺,及适量的(-)-γ -内酰胺酶,反应20min后,通过液相色谱 (HPLC)测定γ -内酰胺的减少量从而确定初始反应速率。一个酶活单位(U)的定义为在上述 反应条件下,每分钟催化水解1 .Owiiol的γ -内酰胺所需要的酶量。
[0016] 技术方案之二:
[0017] -种分离的核酸,所述核酸是编码如技术方案一所述(-)-γ-内酰胺酶的核酸。具 体的,其是如下(1)或(2)的核酸:
[0018] (1)如序列表中SEQ ID No. 1所示核苷酸序列组成的核酸;
[0019] (2)编码如下蛋白质(a)或蛋白质(b)的核酸:
[0020]蛋白质(a):由序列表中SEQ ID No.2所不氣基酸序列组成的蛋白质;
[0021] 蛋白质(b):在(a)的氨基酸序列中经过一个或几个氨基酸取代且(-)-γ-内酰胺 酶活性提高的衍生蛋白质。
[0022] 本发明所述核酸的制备方法为本领域常规制备方法,所述制备方法较佳地为:从 Streptomyces viridochromogenes CGMCC 4.692中提取编码SvGL的核酸分子,或通过基因 克隆技术获得编码SvGL及其突变体的基因核酸分子,或通过人工全序列合成的方法得到编 码SvGL及其突变体的核酸分子。
[0023]本发明所述通过基因克隆技术获得编码SvGL及其突变体的基因核酸分子的方法 为:以正向引物(Primer F) 5 '-CGGAATTCATGCCGTACATCACCGTG-3 '(EcoR I),反向引物 (Primer R)5'-CCCAAGCTTTCACTTCTCCAGGAAGGC-3'(Hind III),利用PCR技术对技术方案一 中获得的SvGL及其突变体的的基因 DNA序列进行扩增。
[0024] PCR体系(50yL):rTaq 0.25yL,10XBuffer 5yL,dNTP Mix 4yL,模板质粒约 100ng,Primer F 2yL,Primer R 2yL,ddH2〇补足至50yL〇
[0025] PCR 反应程序:(1)98°C 变性 3min;(2)98°C 变性 30s;(3)55°C 退火 30s;(4)72°C 延伸 lmin;步骤(2)~(4)共进行30个循环,最后72°C延伸10min,4°C保存产物。
[0026]技术方案之三:
[0027] -种包含本发明(-)-γ-内酰胺酶的核酸序列的重组表达质粒。
[0028] 其可通过本领域常规方法将本发明的(-)-γ-内酰胺酶基因的核酸序列连接于各 种常规质粒载体上构建而成。所述质粒优选ρΕΤ系列质粒,更优选质粒pET28a。所述(-)-γ -内酰胺酶基因可以操作性地连接于适合表达的调控序列的下游,以实现所述(-)-γ-内酰 胺酶的诱导型表达。
[0029]技术方案之四:
[0030] -种包含本发明(-)-γ-内酰胺酶基因或其重组表达质粒的重组表达转化体。
[0031] 其可通过将本发明的重组表达质粒转化至合适的宿主细胞中来制得所述重组表 达转化体。所述宿主细胞可以是本领域的各种常规宿主细胞,前提是能使所述重组表达载 体稳定地自行复制,且其所携带的(-)-γ-内酰胺酶基因可被有效表达。本发明优选大肠杆 菌,更优选大肠杆菌BL21 (DE3)或大肠杆菌DH5a。
[0032]技术方案之五:
[0033] -种重组(-)-γ -内酰胺酶的制备方法,其包括如下步骤:培养本发明的重组表达 转化体,获得重组(-)-γ-内酰胺酶。其中,培养所述重组表达转化体所用的培养基可选自 本领域的常规培养基,前提是可使重组表达转化体生长并产生本发明所述的(-)-γ-内酰 胺酶。其他培养转化体的具体操作均可按本领域常规操作进行。优选的,将上述技术方案构 建的含有(-)-γ-内酰胺酶基因的重组大肠杆菌,接种至含50yg ml/1硫酸卡那霉素的LB培 养基(蛋白胨l〇g Γ1,酵母膏5g L'NaCl g L'pH 7.0)中,按1%(v/v)的接种量接入装有 100mL LB培养基的500mL三角瓶中,置于37°C、180rpm摇床振荡培养,当培养液的OD600达到 0.6时,加入终浓度为0.2mM的异丙基-β-D-硫代半乳糖苷(IPTG)作为诱导剂,16°C诱导24h 后,将培养液离心,收集细胞,并用生理盐水洗涤两次,获得静息细胞。将所得的静息细胞悬 浮于10mL的缓冲液(pH 8.0)中,在冰浴中超声破碎,离心收集上清液,即得到重组(-)-γ-内酰胺酶的粗酶液。
[0034] 本发明获得的(-)-γ-内酰胺酶在Ν端含有组氨酸标签,故采用镍柱进行蛋白纯 化。以下为缓冲液配方:Α液:Tri s-HCl缓冲液(20mM,pH 8.0),含有0.5Μ NaCl、20mM咪唑和 10% (w/v)的甘油;B液:Tris-HCl缓冲液(20mM,pH 8·0),含有0· 5M NaCl、500mM咪唑和 10% (w/v)的甘油。将表达的(-)-γ-内酰胺酶的粗酶液上样到镍柱上,首先用A液洗脱杂蛋白, 随后用B液洗脱目标蛋白,根据SDS-PAGE检测的结果收集纯化的蛋白质,加入终浓度为20% (w/V)的甘油,于-70°C保存备用。
[0035]技术方案之六:
[0036] 将本发明的(-)-γ-内酰胺酶应用于催化消旋γ-内酰胺的水解反应以制备光学 活性的(+)-γ-内酰胺,(+)-γ-内酰胺可作为制备碳环核苷类药物中间体使用。
[0037] 水解反应的底物为消旋γ-内酰胺。反应条件如反应温度、底物浓度、缓冲液组成、 ΡΗ、酶用量等可按本领域此类反应的常规条件进行优化、选择。
[0038]比如反应温度为30°C时,消旋γ -内酰胺底物浓度为10mM,考察了SVGLL13QY/F188W(指 的是如序列表中SEQ ID No.2所示氨基酸序列的第188位苯丙氨酸替换为色氨酸,同时第 130位亮氨酸替换为酪氨酸后所得氨基酸序列构成的蛋白质)在不同pH缓冲液中的活性。所 用的缓冲液体系为:柠檬酸钠缓冲液(pH 5.0-6.0);磷酸钠缓冲液(pH 6.0-8.5);Tris-HCl 缓冲液(pH 8.0-9.0)和Gly-NaOH缓冲液(9.0-12.0)。结果如表1所示,SvGLli3〇y/fi88w的最适 pH在8.0左右。
[0039] 表1(-)- γ -内酰胺酶SvGLl13QY/F188W在不同pH缓冲液中的活性
[0042] 典型的酶促消旋γ -内酰胺水解的条件如下:将0.2~lmg重组SvGL或其突变体溶 解于10ml缓冲液中,优选pH 7.0的磷酸钾缓冲液,加入底物外消旋γ -内酰胺的浓度为1~ 4Μ,反应液充分混合反应。反应在20°C~70°C下进行,优选30°C。反应结束后用二氯甲烷萃 取4次,合并萃取液,加无水硫酸钠干燥过夜。旋转蒸发除去溶剂即可得到(+)-γ-内酰胺。
[0043] 与现有技术相比,本发明的积极进步效果在于:使用本发明的(-)-γ-内酰胺酶 SvGL及其突变体催化(-)-γ-内酰胺水解,制备光学活性( + )-γ-内酰胺具有催化剂活性 高,用量少的显著优势。底物γ -内酰胺浓度高达4Μ,催化剂使用量为0.2g Γ1时,反应1 lh转 化率接近50%,产物的分离得率高于47.5%。相对于其它制备方法,使用本发明方法制备所 得的(-)-γ-内酰胺酶具有催化剂用量少、底物浓度高、反应条件温和,产品光学纯度好,工 艺环境友好,操作简便,易于工业放大等优势,因此具有很好的工业应用前景。
【具体实施方式】
[0044]下面结合具体实施例对本发明进行详细说明。
[0045] 实施例内酰胺酶SvGL基因的克隆
[0046] 将菌株Streptomyces viridochromogenes CGMCC 4.692在1^5培养基中进行培养, 采用高盐法提取高纯度、大片段的基因组总DNA,溶于TE缓冲液(pH8.0)中,置于-20°C保藏, 具体方法参考F ·奥斯伯等编的《精编分子生物学实验指南》。
[0047] 采用限内酶Sau3AI对提取的总DNA进行部分酶切,酶切后的DNA片段通过电泳进行 纯化,采用胶回收纯化试剂盒回收大约4~6kb的片段,回收的DNA溶解于TE缓冲液(10mM,pH 8.0)中,置于_20°C保藏。
[0048]按如下反应体系与载体pUCl 18进行连接:
[0051 ] 16°C温育6小时,取10yL酶连产物转化200yL大肠杆菌DH5a感受态细胞(TaKaRa, Code: D9057),挑取单克隆到加有300yL含有100yg ml/1氨苄青霉素的LB培养基的深孔板,37 °C振荡培养过夜,接种50yL至加有600yL含有100yg ml/1氨苄青霉素的LB培养基的二级深孔 板,37°C振荡培养3h后加入终浓度为0.2mM的IPTG,16°C诱导24h。取50yL菌液加入到300yL 含有终浓度为10mM消旋γ -内酰胺的反应混合液中,37°C振荡反应lh,加入等体积甲醇终止 反应,薄板层析检测产物的生成,有明显产物生成的定义为阳性克隆子。将阳性克隆子委托 上海桑尼生物技术有限公司进行序列测定,对获得的DNA序列进行分析,对其中的开放阅读 框编码序列进行表达、反应比较,最终获得如SEQ ID NO. 1所示的核苷酸序列,根据该核苷 酸序列所推测的氨基酸序列如SEQ ID N0.2所示,将该序列表达的(-)-γ-内酰胺酶命名为 SvGL〇
[0052]以正向引物(Primer F)5'-CGGAATTCATGCCGTACATCACCGTG-3',反向引物(Primer R) 5 ' -CCCAAGCTTTCACTTCTCCAGGAAGGC-3 ',利用聚合酶链式反应(PCR)技术对阳性克隆子中 的SvGL核苷酸序列进行扩增,将获得的含有SvGL基因序列的DNA片段分别用EcoR I和Hind III双酶切,随后与同样经过EcoR I和Hind III双酶切的质粒pET28a进行连接,获得质粒 pET28a-SvGL。将获得的质粒pET28a-SvGL转化到大肠杆菌E.coli BL21中,并均匀涂布于含 有50yg ml/1卡那霉素的LB琼脂平板。37°C过夜培养后,挑选单克隆送上海桑尼生物科技有 限公司进行测序,结果正确。
[0053]实施例2 188位苯丙氨酸的定点饱和突变
[0054] 米用QuikChange? II Site-Directed Mutagenesis Kit(Stratagene,Catalog# 200522 )所述方案进行操作。设计含有突变点的引物:正向引物(?4111^?)5'-GCCGTCCGCAACAGCNNKAACGTCGCCGCGGGC-3 ' 和反向弓| 物(Primer R)5'_ GCCCGCGGCGACGTTMNNGCTGTTGCGGACGGC-3' JCR反应体系(50yL):模板0.5~20ng,5yL 10X K0D plus buffer,5yL dNTP(各2.0mM),2yL MgS〇4(25mM),一对突变引物各1μL(20μΜ),1个 单位的K0D酶(Τ0Υ0Β0 CO.,LTD.,0saka,Japan),加灭菌蒸馏水至50yL。其中所述的模板为 实施例1获得的质粒pETSSa-SvGLlCR反应程序 :(1)94°(:变性5!1^11;(2)94°(:变性3(^(3,(3) 55°C退火lmin,(4)68°C延伸7min,步骤(2)~(4)共进行30个循环,最后68°C延伸10min,4°C 保存产物。扩增得到的PCR产物在37°C经内切酶Dpn I消化2h后转化E.coli BL21感受态细 胞,并均匀涂布于含有50yg ml/1卡那霉素的LB琼脂平板。37°C过夜培养后,挑选单克隆,进 行活性检测,其中活性最高者送上海桑尼生物科技有限公司进行测序,结果表明第188位苯 丙氨酸替换为色氨酸,将其命名为SvGLfissw。
[0055] 实施例3 130位亮氨酸的定点饱和突变
[0056] 米用QuikChange?.II Site-Directed Mutagenesis Kit(Stratagene,Catalog# 200522 )所述方案进行操作。设计含有突变点的引物:正向引物(?4111^?)5'-TCGCTGGAGCCCTGCNNKCTCAAGTCCGACGAC-3 ' 和反向弓| 物(Primer R)5'_ GTCGTCGGACTTGAGMNNGCAGGGCTCCAGCGA-3 ' JCR反应体系(50yL):模板0 · 5~20ng,5yL 10 X KOD plus buffer,5yL dNTP(各2.0mM),2yL MgS〇4(25mM),一对突变引物各1μL(20μΜ),1个 单位的K0D酶(Τ0Υ0Β0 CO.,LTD.,0saka,Japan),加灭菌蒸馏水至50yL。其中所述的模板为 实施例 2 获得的质粒 pET28a-SvGLFi88LPCR 反应程序:(1)94°(:变性5!1^11;(2)94°(:变性3(^(3, (3)55°C退火lmin,(4)68°C延伸7min,步骤(2)~(4)共进行30个循环,最后68°C延伸lOmin, 4 °C保存产物。扩增得到的PCR产物在37 °C经内切酶Dpn I消化2h后转化E. co 1 i BL21感受态 细胞,并均匀涂布于含有50yg ml/1卡那霉素的LB琼脂平板。37°C过夜培养后,挑选单克隆进 行活性检测,其中活性最高者送上海桑尼生物科技有限公司进行测序,结果表明活性最高 的两个突变体中亮氨酸分别突变为酪氨酸和异亮氨酸,分别命名为SvGLL13QY/F188W和 SvGLl130I/F188W〇
[0057]实施例4重组酶的制备以及活性测定
[0058]将如实施例1-3所述方法获得的表达野生型以及突变体SvGL的重组大肠杆菌接种 至含50yg ml/1硫酸卡那霉素的LB培养基中,37°C振荡培养过夜,按1 % (v/v)的接种量接入 装有600mL LB培养基的2L三角瓶中,置37°C、180rpm摇床振荡培养,当培养液的OD600达到 1.5时,加入终浓度为0.2mM的IPTG作为诱导剂,16 °C诱导24h后,将培养液离心,收集细胞, 并用生理盐水洗涤两次,获得静息细胞。将所得的静息细胞悬浮于磷酸钾缓冲液(20mM,pH 7.0) 中,高压匀浆机破碎,冷冻干燥即得相应的重组酶粉。
[0059] 采用镍柱进行蛋白纯化。以下为缓冲液配方:A液:Tr i s-HC1缓冲液(20mΜ,pΗ 8.0) ,含有0.5Μ NaCl、20mM咪唑和 10% (w/v)的甘油;Β液:Tris-HCl缓冲液(20mM,pH 8.0), 含有0.5Μ NaCl、500mM咪唑和10%(w/v)的甘油。将表达的(-)-γ-内酰胺酶的粗酶液上样 到镍柱上,首先用Α液洗脱杂蛋白,随后用Β液洗脱目标蛋白,根据SDS-PAGE检测的结果收集 纯化的蛋白质,加入终浓度为20% (w/v)的甘油,于-70°C保存备用。
[0060] 用磷酸钾缓冲液(100mM,pH 7.0)将经过镍柱纯化的纯酶稀释至O.lmg ml/1,吸取 1 〇yL酶液加到lmL含有1 OmM消旋γ -内酰胺的磷酸钾缓冲液(100mM,pH7.0)中,30 °C、 lOOOrpm振摇反应20min,加入600yL乙酸乙酯萃取,加无水硫酸钠干燥过夜,HPLC (Chiralpark AS-H)分析测定γ -内酰胺的减少量从而确定初始反应速率。一个酶活单位 (U)的定义为在上述条件下,每分钟水解Ι.Ομ mol的γ-内酰胺所需要的酶量。各重组纯酶的 比活力列于表2中。
[0061] 表2野生型(-)-γ-内酰胺酶与其突变体的纯酶活性比较
[0063] 实施例5温度对重组(-)_ γ -内酰胺酶SvGLmQY/Fissw活性的影响
[0064] 用磷酸钾缓冲液(100mM,pH 7.0)将经过镍柱纯化的纯酶稀释至0.5mg ml/1,吸取 1 OOyL酶液加到0.5mL含有1 OOmM消旋γ -内酰胺的磷酸钾缓冲液(1 OOmM,pH 7.0)中,不同温 度(20~70°C )下,lOOOrpm振摇反应20min,加入600yL乙酸乙酯萃取,加无水硫酸钠干燥过 夜,HPLC(Chiralpark AS-H)分析测定γ -内酰胺的减少量从而确定初始反应速率。结果如 表3所不,SvGLli3〇y/fi88w在40 °C时催化活性最尚。
[0065] 表3(-)- γ -内酰胺酶SvGLli3〇y/fi88w在不同温度下的活性
[0068] 实施例6pH对重组(-)-γ -内酰胺酶SvGLli3〇y/fi88w活性的影响 [0069] 将0.2mg重组SvGLli3〇y/fi88w酶加入到10mL磷酸钾缓冲液(100mM,pH 7.0)中,加入 ( + )-γ-内酰胺至终浓度为3.4M,在40°C下混匀反应。反应8h后取样500yL,加入600yL乙酸 乙酯萃取,加无水硫酸钠干燥过夜,手性HPLC(Chiralpark AS-H)分析测定转化率和立体选 择性。具体分析条件为:检测波长230nm,柱温30°C,流动相为乙腈:异丙醇(9:l,v/v),流速 为0.8mL mirT1。结果如表4所示,pH 5.0-7.0反应条件下,缓冲液的pH对反应的转化率没有 明显的影响,当pH>7时反应速率开始急剧下降。
[0070] 表4不同pH对重组酶SvGLli3〇y/fi88w催化(+ )- γ -内酰胺水解反应的影响
[0072]实施例7重组酶SvGL催化消旋体γ -内酰胺的水解反应
[0073] 将O.lmg如实施例4获得的重组E.coli BL21(DE3)pET28a-SvGL冻干酶粉、1Μ (1. lg)消旋体γ -内酰胺加入到10mL磷酸钾缓冲液(100mM,pH 7.0)中,在40°C下混匀反应。 定时取样5yL,加入600yL乙酸乙酯萃取,加无水硫酸钠干燥过夜,手性HPLC(Chiralpark AS-H)分析测定转化率和立体选择性。具体分析条件为:检测波长230nm,柱温30°C,流动相 为乙腈:异丙醇(9:1,v/v),流速为0.8mL mirT1。转化8h,反应转化率接近50%,剩余( + )- γ - 内酰胺的光学纯度高于99%。
[0074] 实施例8重组酶SvGL L13QY/F188W催化消旋体γ -内酰胺的水解反应 [0075]将0.2mg如实施例4获得的重组E.coli BL21(DE3)pET28a-SvGL L13QY/F188W冻干酶 粉、4M(4.4g)消旋γ -内酰胺加入到10mL磷酸钾缓冲液(100mM,pH 7.0)中,在40°C下混匀反 应。定时取样5yL,加入600yL乙酸乙酯萃取,加无水硫酸钠干燥过夜,手性HPLC(Chiralpark AS-H)分析测定转化率和立体选择性。具体分析条件为:检测波长230nm,柱温30°C,流动相 为乙腈:异丙醇(9:1,v/v),流速为0.8mL mirT1。转化llh,反应转化率接近50%,终止反应, 反应液用10mL二氯甲烷萃取4次,分离有机相,加入无水硫酸钠干燥过夜,旋转蒸发除去溶 剂,重结晶,获得2.1 g(+) - γ -内酰胺,分离得率47.7 %,光学纯度为99 %。
[0076] 实施例9重组酶SvGUi3〇y/fi88w催化消旋体γ -内酰胺的水解反应
[0077]将2mg如实施例5获得的重组E.coli BL21(DE3)pET28a-SvGLLi3QY/Fi88w冻干酶粉、2Μ (22g)消旋体γ -内酰胺加入到100mL磷酸钾缓冲液(lOOmM,pH 7.0)中,在40°C下混匀反应。 定时取样5yL,加入600yL乙酸乙酯萃取,加无水硫酸钠干燥过夜,手性HPLC(Chiralpark AS-H)分析测定转化率和立体选择性。具体分析条件为:检测波长230nm,柱温30°C,流动相 为乙腈:异丙醇(9:1,v/v),流速为0.8mL mirT1。转化6h,反应转化率接近50%,终止反应,反 应液用100mL二氯甲烷萃取4次,分离有机相,加入无水硫酸钠干燥过夜,旋转蒸发除去溶 剂,重结晶,获得10.5g(+) - γ -内酰胺,分离得率47.7 %,光学纯度为99 %。
[0078] 实施例10重组酶SvGUi3〇y/fi88w催化消旋体γ -内酰胺的水解反应
[0079]将20mg如实施例5获得的重组E.coli BL21(DE3)pET28a-SvGLLi3QY/Fi88w冻干酶粉、 3.4M(370g)消旋体γ -内酰胺加入到1L磷酸钾缓冲液(100mM,pH 7.0)中,在40°C下混匀反 应。定时取样5yL,加入600yL乙酸乙酯萃取,加无水硫酸钠干燥过夜,手性HPLC(Chiralpark AS-H)分析测定转化率和立体选择性。具体分析条件为:检测波长230nm,柱温30°C,流动相 为乙腈:异丙醇(9:1,v/v),流速为0.8mL mirT1。转化8h,反应转化率接近50%,终止反应,反 应液用1L二氯甲烷萃取,分离有机相,加入无水硫酸钠干燥过夜,旋转蒸发除去溶剂,重结 晶,获得18(^( + )-丫-内酰胺,分离得率48.6%,光学纯度为99%。
[0080]上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。 熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般 原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领 域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的 保护范围之内。


【主权项】
1. 一种(-)-γ-内酰胺酶,其特征在于,其是如下(a)或(b)的蛋白质: (a) :如序列表中SEQ ID No.2所示氨基酸序列构成的蛋白质; (b) :在(a)的氨基酸序列中经过一个或几个氨基酸取代且(-)-γ-内酰胺酶活性提高 的衍生蛋白质。2. 根据权利要求1所述的一种(-)-γ-内酰胺酶,其特征在于,所述蛋白质(b)为由SEQ ID No. 2所示氨基酸序列的第130位的亮氨酸、第188位的苯丙氨酸经过一个或几个氨基酸 取代后形成的新氨基酸序列构成的衍生蛋白质。3. 根据权利要求1或2所述的一种(-)-γ-内酰胺酶,其特征在于,所述蛋白质(b)具有 如下序列: (1) 将如序列表中SEQ ID No.2所示氨基酸序列的第188位苯丙氨酸替换为色氨酸;或, (2) 将如序列表中SEQ ID No. 2所示氨基酸序列的第188位苯丙氨酸替换为色氨酸,同 时第130位亮氨酸替换为异亮氨酸;或, (3) 将如序列表中SEQ ID No. 2所示氨基酸序列的第188位苯丙氨酸替换为色氨酸,同 时第130位亮氨酸替换为酪氨酸。4. 一种分离的核酸,其特征在于,所述的核酸是编码如权利要求1-3中任一项所述(-)-γ-内酰胺酶的核酸分子。5. -种包含如权利要求4所述核酸的重组表达质粒。6. -种包含如权利要求5所述重组表达质粒的重组表达转化体。7. -种如权利要求1-3中任一项所述(-)-γ-内酰胺酶的制备方法,其特征在于,包含 如下步骤:培养如权利要求6所述的重组表达转化体,获得重组表达的(-)-γ-内酰胺酶。8. -种如权利要求1-3中任一项所述(-)-γ-内酰胺酶催化消旋γ-内酰胺对映选择性 水解,制备( +)_ Y _内酰胺的应用。9. 根据权利要求8所述的应用,其特征在于,包括以下步骤:使用如权利要求1-3中任一 项所述的(-)-γ -内酰胺酶作为催化剂,催化消旋γ -内酰胺对映选择性水解,然后从反应 液中提取、纯化未反应的高光学纯度的(+)-γ-内酰胺。10. 根据权利要求9所述的应用,其特征在于,(-)-γ-内酰胺酶催化消旋γ-内酰胺对 映选择性水解反应的条件为:γ -内酰胺酶的浓度为1~l〇〇mg/L,消旋γ -内酰胺的浓 度为1~4Μ,反应温度为20~80°C,反应液pH为5~9。
【文档编号】C12P41/00GK105950595SQ201610331002
【公开日】2016年9月21日
【申请日】2016年5月18日
【发明人】许建和, 殷金岗, 郑高伟, 潘江
【申请人】华东理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1