一种水溶性上转换纳米颗粒及其制备方法

文档序号:3717687阅读:527来源:国知局
一种水溶性上转换纳米颗粒及其制备方法
【专利摘要】本发明公开了一种水溶性上转换纳米颗粒及其制备方法,首先采用高温热分解法合成六方相的上转换发光纳米颗粒UCNPs,然后采用四氟硼酸亚硝鎓NOBF4处理UCNPs,取代其表面的油酸分子,最后与亲水性超支化聚合物反应,得到水溶性上转换纳米颗粒。本发明制备的水溶性上转换纳米颗粒水溶性好,发光强度高,并且表面带有可供偶联生物大分子的氨基、羧基、羟基等活性基团,在生物成像、荧光标记、药物载体等方面具有良好的应用前景。
【专利说明】 一种水溶性上转换纳米颗粒及其制备方法

【技术领域】
[0001]本发明涉及一种水溶性上转换纳米颗粒及其制备方法,属于纳米材料领域。

【背景技术】
[0002]稀土上转换发光材料Up-convers1n(UC)是一种在近红外光激发下发出可见光的发光材料,即可通过多光子机制把长波辐射转换成短波辐射。这种材料发光违背Stokes定律,因此又被称为反Stokes定律发光材料。UC发光是基于稀土元素4f电子间的跃迁。发光过程可以分为三步:①基质晶格吸收激发能;②基质晶格将吸收的激发能传递给激发离子,使其激发被激发的稀土离子发出荧光而返回基质。上转换过程主要有激发态吸收、能量传递、直接双光子吸收和光子雪崩四种形式。
[0003]稀土发光材料主要有基质材料、激活剂(发光中心)、共激活剂和敏化剂等组成。上转换发光的效率在很大程度上取决于上转换的基质材料。基质材料本身不发光,但能为激活离子提供合适的晶体场,使其产生合适的发射。基质材料的选择一般要求具有与掺杂离子相匹配的晶格、较好的化学稳定性和较低的晶格振动声子能量等。根据基质材料组分的不同,可以将上转换发光材料的基质主要分为氧化物、卤化物和硫化物等。YF3、LaF3> NaYF4和LiYF4等材料都是非常好的基质,在近红外光激发下发射出可见光甚至是紫外光。
[0004]上转换发光纳米材料(UCNPs)具有高的化学稳定性、优异的光稳定性、窄带隙发射,在近红外激光激发下具有较强的组织穿透能力、对生物组织无损伤、无背景荧光的干扰,在生物医学等方面有着广泛的应用,如生物成像、生物检测、多模态成像、癌症光动力治疗、载药等。此外,除了在上述生物领域的应用广受关注之外,在非生物领域(如光信息存储、3D显示、安全防伪及太阳能电池等)也有着很好的应用前景。
[0005]到目前为止,合成UCNPs的方法主要有沉淀/共沉淀法,水热/溶剂热法,热裂解法,溶胶-凝胶法和自蔓延燃烧法等。但是这些方法大多获得油溶性的UCNPs,其水溶性和生物相容性差,限制了其在生物医学等领域的应用,故需要在合成纳米颗粒之后对其表面进行修饰。常用的表面修饰的方法主要有表面钝化、表面配体氧化法、表面配体交换法、聚合物包裹法、二氧化硅包覆法、静电吸引层层组装包覆法(LBL)等。同时为了进一步将UCNPs应用于成像中,对UCNPs表面功能化是必要的步骤。目前,UCNPs表面往往含有-C00H,-NH2或嫩,然后可以进一步链接生物分子,如叶酸、肽、蛋白、DNA等。例如中国发明专利CN201310153965.X以高发光强度的油酸修饰的NaYF4:Yb/Er上转换纳米粒子为基础,在PH3-5的酸性环境中,用溶剂萃取的方法将NaYF4: Yb/Er上转换纳米粒子表面的油酸除去,再用氨基酸对去除了油酸的稀土上转换纳米粒子进行功能化,得到水溶性的稀土上转换发光纳米粒子。
[0006]早在20世纪50年代Flory就提出了超支化大分子的概念,首先在理论上描述了ABx型单体分子间无控缩聚制备超支化大分子的可能性,并与线型高分子和交联高分子进行了比较。与线性大分子相比较,超支化大分子具有内部多孔的三维结构,表面富集大量的端基,使超支化大分子具有较佳的反应活性。其独特的分子内部的纳米微孔可以螯合离子,吸附小分子,或者作为小分子反应的催化活性点;由于具有高度支化的结构,超支化聚合物难以结晶,也无链缠绕,因而溶解性、相容性大大提高;与相同分子量的线性分子相比,超支化分子结构紧凑,熔融态粘度较低;并且分子外围的大量末端基团可以通过端基改性以获得所需的性能。此外超支化大分子的合成简单,无需繁琐耗时的纯化与分离过程,大大降低了成本。由于超支化聚合物具有新奇的结构、独特的性能和潜在的应用前景,受到了广大研究者的重视与青睐,被视为21世纪聚合物科学发展的重要方向。


【发明内容】

[0007]本发明采用亲水性超支化聚合物取代上转换纳米颗粒表面的油酸,制备了一种水溶性上转换纳米颗粒。
[0008]本发明通过下述技术方案予以实现:
(O首先采用高温热分解法合成六方相的上转换发光纳米颗粒UCNPs:将Immol的Ln (CF3COO) 3 (Ln = Y, Yb, Tm/Er),1mmol 氟化钠(NaF)和 20ml 有机溶剂(10 ml 油酸OA/10 ml碳十八烯0DE)加入到50 mL三颈烧瓶中并加热到120°C,持续通入氮气保护并加热lh,然后以1° C/min的速度升温到320° C并磁力搅拌lh,自然冷却到室温,加入无水乙醇,离心得到沉淀,再反复用水和乙醇洗涤,最终得到可溶解在环己烷等各种有机溶剂中的上转换纳米颗粒(UCNPs )。
[0009](2)将l-5g/L的5mL上转换发光纳米颗粒己烷分散溶液与0.1-0.6g/L的5mL四氟硼酸亚硝鎗NOBF4 二氯甲烷溶液在室温下混合,将混合物轻轻摇动,直至UCNPs沉淀,然后离心分离,除去上清液。
[0010](3)将步骤二中得到的上转换发光纳米颗粒重新分散于水中,按体积比1:1-1:10,加入0.01g/L-100g/L的亲水性超支化聚合物水溶液,超声反应10-120min,得到超支化聚合物修饰的UCNPs,离心得到沉淀,用蒸馏水和乙醇多次洗涤,干燥。
[0011]作为优选方案,所述步骤(I)中的Y:Yb:Er/Tm的摩尔比为69%-78%:20%-30%:1%_2%。
[0012]作为优选方案,所述步骤(I)制备的上转换纳米颗粒为六方相,粒径l-100nm。
[0013]作为优选方案,所述步骤(3)中的亲水性超支化聚合物的端基为羟基、胺基或羧基中的一种。
[0014]作为优选方案,所述步骤(3)中的离心是以10000-12000r/min的转速离心10_20min。
[0015]作为优选方案,所述步骤(3)中的干燥是指将干燥箱温度设定在40°C,真空的环境下干燥l-24h。
[0016]端氨基超支化聚合物的合成可参考下述公开文献:张峰,陈宇岳,张德锁,华琰蓉,赵兵.端氨基超支化聚合物及其季铵盐的制备与性能[J].高分子材料科学与工程,2009,25(8): 141-144 ;CN200710020794.8 —种超支化活性染料无盐染色助剂;Colorat1n technology, 2007,123(6): 351-357 ;AATCC REVIEW, 2010,10(6):56-60 ;B10MACR0M0LECULES, 2010, 11(1): 245-251;CHEMICAL RESEARCH IN CHINESEUNIVERSITIES, 2005, 21(3): 345-354。
[0017]端羧基超支化聚合物的合成可参考下述公开文献:强涛涛,陈小珂,王学川等.端羧基超支化聚合物-铝无铬鞣剂的制备及应用[J].精细化工,2012,29 (11): 1098-1102,1120;强涛涛,张国国,罗敏等.一代端羧基超支化聚合物的制备与表征[J].精细化工,2012,29(7):692-696 ;强涛涛.端羧基超支化聚合物的合成及助鞣效果的研究[D].陕西科技大学,2007。
[0018]端羟基超支化聚合物的合成可参考下述公开文献:杨保平,张鹏飞,崔锦峰等.端羟基超支化聚合物的改性研究及其在涂料中的应用[J].中国涂料,2011,26(3):53-57 ;王学川,胡艳鑫,郑书杰等.端羟基超支化聚合物对Fe3+吸附行为研究[J].化工新型材料,2011,39 (9): 26-29,47 ;强涛涛,张国国,王学川等.端羟基超支化聚合物的合成与改性[J].日用化学工业,2012,42(6):413-417。
[0019]与现有技术相比,本发明的优点在于:本发明利用配体交换的方法,首次采用亲水性超支化聚合物取代上转换纳米颗粒表面的油酸,制备了一种水溶性上转换纳米颗粒。制备的水溶性上转换纳米颗粒水溶性好,发光强度高,并且表面带有可供偶联生物大分子的氨基、羧基、羟基等活性基团,在生物成像、荧光标记、药物载体等方面具有良好的应用前旦
-5^ O

【专利附图】

【附图说明】
[0020]图1是本发明实施例1的SEM图片。
[0021]图2是本发明实施例1经NOBF4、超支化聚合物处理前后上转换纳米颗粒的荧光光
-1'TfeP曰。

【具体实施方式】
[0022]下面结合【具体实施方式】,进一步阐述本发明。
[0023]实施例1:
将 0.78mmol 的 Y (CF3COO) 3、0.2mmol 的 Yb (CF3COO) 3、0.02mmol 的 Er (CF3COO)3, 1mmol氟化钠(NaF)和20ml有机溶剂(10 ml油酸OA+10 ml碳十八烯0DE)加入到50mL三颈烧瓶中并加热到120°C,持续通入氮气保护并加热lh,然后以1° C/min的速度升温到320° C并磁力搅拌lh,自然冷却到室温,加入无水乙醇,离心得到沉淀,再反复用水和乙醇洗涤,最终得到可溶解在环己烷等各种有机溶剂中的上转换纳米颗粒(UCNPs )。
[0024]将lg/L的5mL上转换发光纳米颗粒己烷分散溶液与0.6g/L的5mL四氟硼酸亚硝鎗NOBF4 二氯甲烷溶液在室温下混合,将混合物轻轻摇动,直至UCNPs沉淀,然后离心分离,除去上清液,再重新分散于水中,按体积比1:10,加入lg/L的端氨基超支化聚合物水溶液,超声反应30min,得到端氨基超支化聚合物修饰的UCNPs,以10000r/min的转速离心1min,用蒸馏水和乙醇多次洗涤,并在40°C真空的环境下干燥4h。
[0025]图1是本实施例的SEM图片,从图中可以看出,端氨基超支化聚合物修饰的UCNPs水溶性良好,平均粒径40nm。图2是本实施例处理前后上转换纳米颗粒的荧光光谱,在520nm、550nm、660nm处出现了典型NaYF4 = Yb, Er的发射峰,但是端氨基超支化聚合物修饰后的UCNPs荧光变弱。
[0026]实施例2:
将 0.69mmol 的 Y (CF3COO) 3、0.3mmol 的 Yb (CF3COO) 3、0.0lmmol 的 Er (CF3COO)3, 1mmol氟化钠(NaF)和20ml有机溶剂(10 ml油酸0A+10 ml碳十八烯ODE)加入到50mL三颈烧瓶中并加热到120°C,持续通入氮气保护并加热lh,然后以1° C/min的速度升温到320° C并磁力搅拌lh,自然冷却到室温,加入无水乙醇,离心得到沉淀,再反复用水和乙醇洗涤,最终得到可溶解在环己烷等各种有机溶剂中的上转换纳米颗粒(UCNPs )。
[0027]将2g/L的5mL上转换发光纳米颗粒己烷分散溶液与0.3g/L的5mL四氟硼酸亚硝鎗NOBF4 二氯甲烷溶液在室温下混合,将混合物轻轻摇动,直至UCNPs沉淀,然后离心分离,除去上清液,再重新分散于水中,按体积比1:1,加入5g/L的端羧基超支化聚合物水溶液,超声反应60min,得到端羧基超支化聚合物修饰的UCNPs,以10000r/min的转速离心20min,用蒸馏水和乙醇多次洗涤,并在40°C真空的环境下干燥12h。
[0028]实施例3:
将 0.78mmol 的 Y (CF3COO) 3、0.2mmol 的 Yb (CF3COO) 3、0.02mmol 的 Tm(CF3COO)3, 1mmol氟化钠(NaF)和20ml有机溶剂(10 ml油酸OA+10 ml碳十八烯ODE)加入到50mL三颈烧瓶中并加热到120°C,持续通入氮气保护并加热lh,然后以1° C/min的速度升温到320° C并磁力搅拌lh,自然冷却到室温,加入无水乙醇,离心得到沉淀,再反复用水和乙醇洗涤,最终得到可溶解在环己烷等各种有机溶剂中的上转换纳米颗粒(UCNPs )。
[0029]将2g/L的5mL上转换发光纳米颗粒己烷分散溶液与0.6g/L的5mL四氟硼酸亚硝鎗NOBF4 二氯甲烷溶液在室温下混合,将混合物轻轻摇动,直至UCNPs沉淀,然后离心分离,除去上清液,再重新分散于水中,按体积比1:10,加入0.5g/L的端氨基超支化聚合物水溶液,超声反应30min,得到端氨基超支化聚合物修饰的UCNPs,以11000r/min的转速离心15min,用蒸馏水和乙醇多次洗涤,并在40°C真空的环境下干燥10h。
[0030]实施例4:
将 0.69mmol 的 Y (CF3COO) 3、0.3mmol 的 Yb (CF3COO) 3、0.0lmmol 的 Tm(CF3COO)3, 1mmol氟化钠(NaF)和20ml有机溶剂(10 ml油酸OA+10 ml碳十八烯ODE)加入到50mL三颈烧瓶中并加热到120°C,持续通入氮气保护并加热lh,然后以1° C/min的速度升温到320° C并磁力搅拌lh,自然冷却到室温,加入无水乙醇,离心得到沉淀,再反复用水和乙醇洗涤,最终得到可溶解在环己烷等各种有机溶剂中的上转换纳米颗粒(UCNPs )。
[0031]将5g/L的5mL上转换发光纳米颗粒己烷分散溶液与0.lg/L的5mL四氟硼酸亚硝鎗NOBF4 二氯甲烷溶液在室温下混合,将混合物轻轻摇动,直至UCNPs沉淀,然后离心分离,除去上清液,再重新分散于水中,按体积比1:1,加入20g/L的端羟基超支化聚合物水溶液,超声反应90min,得到端羟基超支化聚合物修饰的UCNPs,以12000r/min的转速离心20min,用蒸馏水和乙醇多次洗涤,并在40°C真空的环境下干燥24h。
[0032]显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。
【权利要求】
1.一种水溶性上转换纳米颗粒及其制备方法,其特征在于: 步骤一,将 Immol 的 Ln(CF3COO)3 (Ln = Y, Yb, Tm/Er), 1mmol 氟化钠(NaF)和 20ml有机溶剂(10 ml油酸0A/10 ml碳十八烯ODE)加入到50 mL三颈烧瓶中并加热到120。。,持续通入氮气保护并加热lh,然后以一定的升温速率升至320°C并磁力搅拌lh,自然冷却到室温,加入无水乙醇,离心得到沉淀,再反复用水和乙醇洗涤,最终得到可溶解在环己烷等各种有机溶剂中的上转换纳米颗粒(UCNPs); 步骤二,将l_5g/L的5mL上转换发光纳米颗粒己烷分散溶液与0.1-0.6g/L的5mL四氟硼酸亚硝鎗NOBF4 二氯甲烷溶液在室温下混合,将混合物轻轻摇动,直至UCNPs沉淀,然后离心分离,除去上清液; 步骤三,将步骤二中得到的上转换发光纳米颗粒重新分散于水中,按体积比1:1-1:10,加入0.01g/L-100g/L的亲水性超支化聚合物水溶液,超声反应10-120min,得到超支化聚合物修饰的UCNPs,离心分离,用蒸馏水和乙醇多次洗涤,干燥。
2.根据权利要求1所述的一种水溶性上转换纳米颗粒及其制备方法,其特征在于,步骤一所述的 Y:Yb:Er/Tm 的摩尔比为 69%_78%:20%_30%: 1%_2%。
3.根据权利要求1所述的一种水溶性上转换纳米颗粒的制备方法,其特征在于,步骤一所述的升温速率为1° C/min。
4.根据权利要求1所述的一种水溶性上转换纳米颗粒的制备方法,其特征在于,步骤一制备的上转换发光纳米颗粒为六方相,粒径l-100nm。
5.根据权利要求1所述的一种水溶性上转换纳米颗粒的制备方法,其特征在于,步骤三所述的亲水性超支化聚合物的端基为羟基、胺基或羧基中的一种。
6.根据权利要求1所述的一种纳米银的制备方法,其特征在于,步骤三中所述的离心是以 10000-12000r/min 的转速离心 10_20min。
7.根据权利要求1所述的一种纳米银的制备方法,其特征在于,步骤三中所述的干燥是指将干燥箱温度设定在40°C,真空的环境下干燥l_24h。
【文档编号】C09K11/02GK104371727SQ201410701945
【公开日】2015年2月25日 申请日期:2014年11月28日 优先权日:2014年11月28日
【发明者】赵兵 申请人:赵兵
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1