复合式车辆控制装置的制作方法

文档序号:3961490阅读:170来源:国知局
专利名称:复合式车辆控制装置的制作方法
技术领域
本发明涉及一种具有发动机和电动机作为动力源的复合式车辆的控制装置,具体来说,涉及一种利用电动机进行能量转换的复合式车辆控制装置。
以往就知道具有发动机和电动机作为动力源的复合式车辆的控制装置,也提出过电动机具有能量转换功能、在车辆减速状态下利用电动机进行能量转换时提高能量转换效率的复合式车辆的控制装置。例如特愿平8-112190号揭示的控制装置中,节流阀构成为可电气控制,在车辆减速状态下进行能量转换时,使节流阀几乎完全打开。由此,与能量转换时节流阀保持关闭状态的情形相比,可以增加发动机空气吸入量,所以,可以减小发动机泵损耗造成的机械能损耗,将车辆动能作为转换能量高效回收。
但存在这样的问题,能量转换时一旦将节流阀完全打开,便有大量较冷的新鲜空气通过发动机流入排气系统,因而排气系统设置的三元触媒温度下降,因此造成排气污染物排放特性变差。
本发明正是要解决现有技术上述问题,其目的在于,提供一种复合式车辆控制装置,该装置在具有内燃发动机和电动机的复合式车辆中将车辆减速时的动能转换为电能的时候,可以使发动机的泵损耗减小,转换效率提高,并且抑制空气流入发动机排气系统,防止排气触媒温度下降,进而防止排气污染物排放特性变差。
本发明目的在于,提供一种通过驱动控制排气回流阀以控制排气从排气管回流至吸入管,来减小发动机泵损耗的控制装置。
本发明目的还在于,提供一种通过驱动控制吸气阀或排气阀,来减小发动机泵损耗的控制装置。
本发明目的还在于,提供一种根据能量转换限制量对减小发动机泵损耗的排气回流阀或吸气阀或排气阀进行驱动控制的复合式车辆控制装置。
为了达到上述目的,本发明的复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;以及电动机的驱动控制电路和贮电手段,其特征在于包括用以控制所述发动机空气吸入量的空气吸入量控制手段;用以控制所述发动机排气回流量的排气回流控制阀;以及在所述车辆减速状态下由所述电动机进行能量转换时,按空气吸入量减少方向驱动所述空气吸入量控制手段,并按打开方向驱动所述排气回流控制阀的控制手段。
此外,本发明其特征在于包括包含根据车速设定减速时能量转换量的能量转换量设定手段和根据贮电手段所剩容量设定能量转换限制量的能量转换限制量设定手段在内,根据能量转换限制量使得排气回流控制阀处于打开方向的驱动控制手段。
为了达到上述目的,本发明的复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;以及电动机的驱动控制电路和贮电手段,其特征在于包括用以控制所述发动机空气吸入量的空气吸入量控制手段;用以驱动所述发动机吸气阀的吸气阀驱动手段;以及在所述车辆减速状态下由所述电动机进行能量转换时,按空气吸入量减少方向驱动所述空气吸入量控制手段,并通过所述吸气阀驱动手段按打开方向驱动所述吸气阀的控制手段。
此外,本发明的复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;以及电动机的驱动控制电路和贮电手段,其特征在于包括用以控制所述发动机空气吸入量的空气吸入量控制手段;用以驱动所述发动机排气阀的排气阀驱动手段;以及在所述车辆减速状态下由所述电动机进行能量转换时,按空气吸入量减少方向驱动所述空气吸入量控制手段,并通过所述排气阀驱动手段按打开方向驱动所述排气阀的控制手段。
另外,本发明的复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;以及电动机的驱动控制电路和贮电手段,其特征在于包括用以驱动所述发动机吸气阀的吸气阀驱动手段;用以驱动所述发动机排气阀的排气阀驱动手段;以及在所述车辆减速状态下由所述电动机进行能量转换时,通过所述吸气阀驱动手段和所述排气阀驱动手段分别按关闭方向驱动所述吸气阀和所述排气阀的控制手段。
图1是示意本发明复合式车辆驱动装置及其控制装置构成的框图。
图2是示意图1所示复合式车辆控制装置中发动机控制系统构成的框图。
图3是示意图1所示复合式车辆控制装置中电动机控制系统构成的框图。
图4是示意图1所示复合式车辆控制装置中变速机构控制系统构成的框图。
图5是示意图1所示复合式车辆控制装置中动力分配处理步骤的流程图。
图6是示意动力分配处理步骤(接图5)的流程图。
图7示出的是本发明一例输出分配率设定表。
图8示出的是本发明风门-节流特性设定表。
图9示出的是本发明电动机输出分配设定表。
图10示出的是本发明动力需求图。
图11示出的是本发明行驶状态量设定图。
图12示出的是本发明行驶阻力RUNRST表。
图13示出的是本发明电动机目标输出POWERmot和电动机转矩指令值TRQcom之间的关系。
图14示出的是示意发动机控制处理总体构成的流程图。
图15示出的是本发明减速能量转换量确定处理的流程图。
图16示出的是减速能量转换量确定处理(接图15)的流程图。
图17示出的是本发明所需减速阻力RUNRSTcom表。
图18示出的是本发明REGperm1表。
图19示出的是本发明REGperm2表。
图20示意的是本发明第一实施例的工作状态。
图21示出的是本发明第二实施例减速能量转换量确定处理(接图15)的流程图。
图22示意的是本发明第二实施例的工作状态。
图23示出的是本发明第三实施例减速能量转换量确定处理(接图15)的流程图。
图24示意的是本发明第三实施例的工作状态。
以下参照


本发明实施例。
图1用模块图示出的是本发明实施例复合式车辆驱动系统及其控制装置的构成(省略了传感器、致动器等组成部分)。内燃发动机(以下称为“发动机”)1驱动的驱动轴2构成为可通过变速机构4对驱动轮5进行驱动。电动机3配置成可直接旋转驱动驱动轴2,而且具有能量转换功能,将驱动轴2旋转产生的动能转化为电能输出。电动机3通过包含电动机驱动控制电路在内的功率驱动单元13与超大容量电容器(电容大的电容器)14连接,通过功率驱动单元13进行驱动、能量转换的控制。
设有控制发动机1的发动机控制单元11、控制电动机3的电动机控制单元12、根据对超大容量电容器14状态的判别进行能量分配控制的能量分配控制单元15、和控制变速机构4的变速控制单元16,这些控制单元通过数据总线21互相连接,互相传送检测数据、标志信息等。
图2示出的是发动机1、发动机控制单元11及其外围装置的构成。发动机1吸气管102的当中配置有节流阀103。节流阀103连接有节流阀开度传感器104,输出与该节流阀103开闭度相应的电信号,送至发动机控制单元11。节流阀103还连接有用以对其开闭度进行电气控制的节流致动器105。节流致动器105由发动机控制单元11控制其动作。
吸气管102在节流阀103下游一侧通过排气回流通路124与排气管114连接,排气回流通路124的当中设有排气回流控制阀(以下称为EGR控制阀)121以控制排气回流量。
EGR控制阀121是具有螺线管的电磁阀,该螺线管与发动机控制单元11连接,构成为其阀门开闭度随发动机控制单元11输出的控制信号变化。
节流阀103的下游还设有压力传感器108,以通过管子107检测吸气管内绝对气压,该压力传感器108变换为电信号的压力信号送至发动机控制单元11。
压力传感器108的下游装配有吸气温度传感器109,以检测吸气温度,输出相应的电信号,送至发动机控制单元11。
对每一汽缸均设有燃料喷射阀106,位于节流阀103的下游但在发动机1的吸气阀122稍稍上游一侧,每一燃料喷射阀106通过压力调节器(未图示)与燃料箱(未图示)连接,并与发动机控制单元11电连接,由该发动机控制单元11输出的信号控制燃料喷射阀106的打开时刻和打开时间。
发动机1的汽缸体中装有冷却水温度传感器110。冷却水温度传感器110由热敏电阻等组成,以检测发动机冷却水温度,输出相应的温度信号,送至发动机控制单元11。
发动机转速传感器111装配在发动机1的未图示凸轮轴或曲轴周围,发动机1的曲轴每隔180度旋转角在规定的曲柄角度位置,输出TDC信号脉冲,送至发动机控制单元11。
发动机1各汽缸的火花塞113与发动机控制单元11连接,由发动机控制单元11控制点火时间。
吸气阀122设置于在发动机1燃烧室(未图示)上开口的吸气口(未图示)上,吸气阀122连接有可以使吸气阀122保持开启状态或关闭状态、此外还可控制吸气阀122提升量或开启时间的吸气阀致动器125。吸气阀122构成为可通过未图示凸轮轴的旋转运动得到机械驱动以外,还由吸气阀致动器125得到与发动机1旋转不同步的电磁驱动。吸气阀致动器125由发动机控制单元11控制其动作。
在发动机1燃烧室上开口的排气口(未图示)设有排气阀123,排气阀123连接有可使排气阀123保持开启状态或关闭状态、此外还可控制排气阀123提升量或开启时间的排气阀致动器126。排气阀123构成为可通过未图示凸轮轴的旋转运动得到机械驱动以外,还由排气阀致动器126得到与发动机1旋转不同步的电磁驱动。排气阀致动器126由发动机控制单元11控制其动作。
发动机1的排气管114的当中装有对排气中HC、CO、NOx等进行净化的三元触媒115,其上游一侧还装有空燃比传感器117。空燃比传感器117输出与排气中氧浓度大致成正比的电信号,送至发动机控制单元11。空燃比传感器117可以在理论空燃比的低端至高端大范围内检测发动机1所提供的混合气空燃比。
三元触媒115设有触媒温度传感器118以检测其温度,该检测信号送至发动机控制单元11。检测该车辆车速Vcar的车速传感器119和检测加速踏板踩踏量(以下称为“风门开度”)θap的风门开度传感器120与发动机控制单元11连接,这些传感器的检测信号送至发动机控制单元11。112是每隔曲轴规定旋转角度即发出脉冲的传感器,用于识别进行燃料喷射的汽缸。
发动机控制单元11包括以下构成具有对各种传感器的输入信号波形进行整形,将电压电平修正为规定电平,将模拟信号值变换为数字信号值等功能的输入电路;中央运算处理电路(以下称为“CPU”);存储CPU所执行的各种运算程序和运算结果等的存储手段;以及向燃料喷射阀106和火花塞113提供驱动信号的输出电路等。其他各控制单元的基本构成也具有与发动机控制单元11相同的构成。
图3示出的是电动机3、电力驱动单元13、超大容量电容器14、电动机控制单元12和能量分配控制单元15的连接状态。
电动机3设有检测其转速用的电动机转速传感器202,其检测信号送至电动机控制单元12。在电力驱动单元13与电动机3之间连接的连接线设有检测送至电动机3或电动机3输出的电压和电流的电流电压传感器201,此外电力驱动单元13设有检测其温度、具体来说检测电动机3驱动控制电路的保护电阻温度的温度传感器203。这些传感器201、203的检测信号送至电动机控制单元12。
连接在超大容量电容器14与电力驱动单元13之间的连接线设有检测超大容量电容器14输出端子间电压和超大容量电容器14输出的或送至超大容量电容器14的电流的电压电流传感器204,其检测信号送至能量分配控制单元15。
图4示出的是变速机构4与变速控制单元16的连接状态。变速机构4设有齿轮位置传感器301以检测齿轮位置,其检测信号送至变速控制单元16。本实施例中,变速机构4是自动变速器,因而设有变速致动器302,由变速控制单元16控制其动作。
图5和图6是示意根据动力需求即驾车者要求车辆的动力计算电动机3所负担的电动机输出、确定动力需求在电动机3和发动机1之间如何分配的动力分配处理步骤的流程图。该处理由能量分配控制单元15每隔规定时间执行。
图5中,先在步骤S1中以下方法检测超大容量电容器14所剩容量。
具体来说,每隔规定时间累加所述电流电压传感器204检测出的电容器输出电流和输入电流(充电电流),计算放电量累加值CAPdis(正值)和充电量累加值CAPchg(负值),由下面式(1)计算电容器所剩容量CAPerm。
CAPerm=CAPful-(CAPdis+CAPchg) 式(1)其中CAPful是超大容量电容器14满充电状态时可放电量。
接着,根据随温度等变化的超大容量电容器14的内部电阻对这样计算得出的电容器所剩容量CAPerm进行修正,检测出最终超大容量14所剩容量。另外,也可以检测超大容量电容器14开路电压来推断所剩容量来替代上述检测方法。
接下来,在步骤S2根据检测出的所剩容量,检索输出分配率设定表确定电动机3的输出,即动力需求POWERcom当中电动机3所应负担的动力(由相对于目标动力的比例来表示,因而以下称为“分配率”)PRATIO。
图7示出的是一例输出分配率设定表,横轴表示超大容量电容器14所剩容量,纵轴表示分配率PRATIO。该输出分配率设定表中设定有该超大容量电容器14充放电效率最好的相对于所剩容量的分配率。
接下来在步骤S3根据所述风门开度传感器120检测出的风门开度θap,检索图8所示的风门-节流特性设定表,确定给节流致动器105的指令值(以下称为“节流阀开度指令值”)θthCOM。
图8所示的风门-节流特性设定表,将风门开度θap和节流阀开度指令值θthCOM设定为相同值,但勿用说,并不需要对此进行限制。
接着,在步骤S4,根据此确定的节流阀开度指令值θthCOM,检索图9所示与节流阀开度对应的电动机输出分配的设定表,确定分配率PRATIOth。
节流阀开度-电动机输出分配的设定表如图9所示,设定为节流阀开度指令值θthCOM超过50度时,便增大电动机3输出。
另外,本实施例中是根据节流阀开度指令值θthCOM确定分配率RRATIOth的,但不限于此,也可以根据车速Vcar或发动机转速NE中某一个或多个参数确定上述分配率PRATIOth。
接着,在步骤S5,根据节流阀开度指令值θthCOM和发动机转速NE检索图10所示的动力需求图,计算动力需求POWERcom。
动力需求图是用以确定驾车者要求的动力需求POWERcom的变换图,此变换图根据节流阀开度指令值θthCOM或风门开度θap和发动机转速NE,设定动力需求(POWERcom)。
接下来,在步骤S6计算用以产生该动力需求POWERcom的节流阀开度修正项θthADD(θthADD=θthCOM-θthi(前一次节流阀开度值))。在步骤S7,根据车速传感器119检测出的车速Vcar和发动机宽裕输出POWERex,检索图11所示的行驶状态量图,确定车辆的行驶状态量VSTATUS。行驶状态量VSTATUS设定为,车速Vcar越大,且宽裕输出POWERex越大,得出的值越大。
这里,发动机的宽裕输出POWERex由以下式(2)计算。
POWERex=POWERcom-RUNRST 式(2)其中RUNRST为该车辆行驶阻力,是车辆减速时发动机1泵损耗造成的减速转矩、能量变换阻力所产生的能量变换转矩和车轮旋转阻力、车辆空气阻力等所产生的制动转矩总和。行驶阻力RUNRST可由图12所示的RUNRST表检索。RUNRST表设定为,车速Vcar越大,所得出的行驶阻力RUNRST值越大,EGR控制阀121设定为全开启状态。
对于这样由车速Vcar和宽裕输出POWERex确定的行驶状态量VSTATUS,较好将电动机3相对于宽裕输出POWERex的助动分配比例设定为例如0至200的整数值(单位为%)。行驶状态量VSTATUS为“0”时,即不要助动的状态(减速状态或部分低速状态),而行驶状态量VSTATUS大于“0”时,即应助动状态(助动状态)。
接下来,在步骤S8判别行驶状态量VSTATUS是否大于“0”,VSTATUS>0时,即助动状态时,便为助动模式,进入图6步骤S9,而VSTATUS=0时,即减速状态或低速状态时,便为能量转换模式(减速能量转换方式或低速充电方式),进入图6步骤S12。
在步骤S9,由下面式(3)计算电动机输出POWERmot。
POWERmot=POWERcom×PRATIO×PRATIOth×VSTATUS 式(3)接下来在步骤S10,以电动机输出POWERmot为目标,变换为随时间常数的电动机转矩指令值TRQcom。
图13示出的是电动机输出POWERmot与所变换的电动机转矩指令值TRQcom之间的关系,实线示出一例电动机输出POWERmot随时间的变化,虚线示出该电动机转矩指令值TRQcom随时间的变化。
由该图可知,电动机转矩指令值TRQcom控制为以电动机输出POWERmot为目标,随时间常数即延时慢慢接近。这是因为,电动机转矩指令值TRQcom一旦设定为由电动机3直接输出电动机输出POWERmot,便因发动机输出的上升沿延迟而没有准备好接收该输出,导致驱动能力变差。因而,要将电动机3控制为等到能够准备接收后,才将电动机输出POWERmot输出。
接着在步骤S11,根据该电动机转矩指令值TRQcom,计算出用以按关闭方向控制节流阀开度的目标阀门开度θthO的修正量θthASSIST后,进入到步骤S18。
该修正量θthASSIST是用于使发动机1输出减少的量为电动机3输出因电动机转矩指令值TRQcom所增加的量,之所以计算该修正量θthASSIST是基于以下理由。
具体来说,根据步骤S3确定的节流阀开度指令值θthCOM和节流阀开度上一次值θthi,由上述步骤S6计算出的修正项θthADD之和,确定节流阀开度的目标阀门开度θthO,按照该目标阀门开度θthO控制上述节流致动器105的时候,仅按照发动机1的输出产生动力需求POWERcom。因而,在未按照修正量θthASSIST修正的情况下按目标值θthO控制发动机1的输出,并按照上述步骤S1θ变换的电动机转矩指令值TRQcom控制电动机3时,发动机1输出与电动机3输出的总和便超过动力需求POWERcom,产生的驱动力超过驾车者所需求的驱动力。因此,抑制与电动机3的输出量相当的发动机1的输出,由此计算修正量θthASSIST以便电动机3输出与发动机1输出之总和为动力需求POWERcom,确定节流阀103的目标值θthO,据此控制节流阀103,抑制发动机输出,(θthO=θthi+θthADD-θthASSIST)。
在步骤S12判别当前的能量变换模式是否是减速能量转换模式。这种判别例如是通过判别风门开度θap变化量Dap(=θapj(本次值)-θapi(上一次值))是否比负的规定量DapD小来进行的。另外,这种判别还可以根据宽裕输出POWERex进行。
在步骤S12,Dap<DapD时,或根据宽裕输出POWERex是否<0,判别为减速能量转换模式,将电动机输出POWERmot设定为减速能量转换输出POWERreg(步骤S13)。其中,减速能量转换输出POWERreg由后面述及的减速能量转换量确定处理(图15、图16)计算。
接着在步骤S14,读取设定减速能量转换模式中最佳的节流阀开度的目标阀门开度θthO,即后面述及的减速能量转换确定处理(图15、图16)中计算得出的节流阀开度的目标阀门开度θthO之后,进入步骤S19。
另一方面,在步骤S12,Dap≥DapD时,或宽裕输出POWERex在0附近且行驶状态量VSTATUS为0时,判别为低速充电模式,将电动机输出POWERmot设定为低速充电输出POWERcruise(步骤S15)。这里,低速充电输出POWERcruise采用的是未图示的低速充电处理子程序计算得出的结果。
接着在步骤S16,与上述步骤S10相同,以电动机输出POWERmot为目标,变换为随时间常数的电动机转矩指令值TRQcom,在步骤S17根据该电动机转矩指令值TRQcom,计算用以沿开启方向控制节流阀开度的目标阀门开度θthO的修正量(增量值)θthSUB后,进入步骤S18。
这里,之所以计算修正量θthSUB,是基于与计算上述修正量θthASSIST理由正好相反的理由。
具体来说,处于低速充电模式时,对于电动机输出POWERmot而言,设定的是与助动模式时电动机输出POWERmot相反符号的值。也就是说,根据低速充电模式时的电动机转矩指令值TRQcom,按照使动力需求POWERcom减少的方向控制电动机3。因此,为了在低速充电模式时保持动力需求POWERcom,必须由发动机1一侧输出来提供根据电动机转矩指令值TRQcom减少的输出量。
在步骤S18由下面式(4)计算节流阀开度的目标阀门开度θthO。
θthO=θth+θthADD+θthSUB 式(4)接着在步骤S19判别节流阀开度的目标阀门开度θthO是否超过规定值θthREF,当θthO<θthREF时,判别吸气管内绝对气压Pba是否在规定值PbaREF以下(步骤S20)。
在步骤S20,为否定的场合,即Pba>PbaREF时,该动力分配处理便结束,而在步骤S19中为肯定,即θthO≥θthREF时,或者在步骤20中为肯定的场合,Pba≤PbaREF时,便将变速机构4的变速比改变为低速比(Low)一侧后,结束该动力分配处理。
处理转移至步骤S21的状态是超大容量电容器14所剩容量减少,电动机输出POWERmot减少,需要在发动机1一侧提供该减少量,但在发动机1一侧无法提高输出以超过此数值这种状态。这种时候,通过将变速机构4的变速比改变至低速比一侧,保持所述驱动轴2所产生的转矩不变(与转移至步骤S21前相同转矩),防止驱动能力变差。
以下说明发动机控制单元11所执行的发动机控制。
图14是示意发动机控制处理总体构成的流程图,该处理由发动机控制单元11例如每隔规定时间执行。
先对发动机转速NE、吸气管内绝对气压PBA等各种发动机运行参数进行检测(步骤S131),接下来依次执行运行状态判别处理(步骤S132)、燃料控制处理(步骤S133)和点火时间控制处理(步骤S134)。
也就是说,通过燃料控制处理,根据上述读取的或上述计算出的节流阀开度的目标阀门开度θthO计算提供发动机1的燃料量。
图15和图16示出的是本发明第一实施例减速能量转换量确定处理的流程图,该处理由电动机控制单元12每隔规定时间执行。
先判别后面述及的燃料切断条件是否成立(步骤S1501),其判别结果当切断条件成立时,便判别燃料切断后的强制恢复条件是否成立(步骤S1502),其判别结果当燃料切断后的强制恢复条件不成立时,便判别燃料切断后的恢复条件是否成立(步骤S1503)。
这里,这些条件在上述图14的运行状态判别处理(步骤S132)中根据风门开度θap的变化量Dap来判别。例如Dap<DapD(负的规定量)时判别燃料切断条件成立,而Dap>DapH(比DapD大的正规定量)时判别燃料切断后的强制恢复条件成立,Dap≥DapD时则判别燃料切断后的恢复条件成立。
所述步骤S1503的判别结果当燃料切断后的恢复条件不成立时,便根据上述图12所示的RUNRST表检索行驶阻力(步骤S1504),根据RUNRSTcom表检索所需的行驶阻力RUNRSTcom(步骤S1505)。这里,所需行驶阻力RUNRSTcom即用以提供车辆适当的负加速度的制动转矩。RUNRSTcom表如图17所示,设定为车速Vcar或驱动轴转速越大,所对应的所需行驶阻力RUNRSTcom值越大。
接下来由下述式(5)计算减速能量转换量REGdec(步骤S1506)REGdec=RUNRSTcom-RUNRST式(5)接下来,根据REGperm1表检索第一允许能量转换量REGperm1(步骤S1507)。REGperm1表如图18所示,第一允许能量转换量REGperm1设定为,在超大容量电容器14所剩容量CAPerm在规定值以下时一定,而在所剩容量CAPerm超过规定值时,则所剩容量CAPerm越大,所对应的值越小。
接下来,根据REGperm2表检索第二允许能量转换量REGperm2(步骤S1508)。REGperm2表如图19所示,第二允许能量转换量REGperm2设定为,在电力驱动单元13电路温度(保护电阻温度)TD在规定值以下时一定,而在保护电阻温度TD超过规定值时,则保护电阻温度TD越大,所对应的值越小。
接下来,判别第一允许能量转换量REGperm1是否在第二允许能量转换量REGperm2以上(步骤S1509),其判别结果是REGperm1<REGperm2时,将允许能量转换量REGperm设定为REGperm1(步骤S1510),进入图16的步骤S2212,而REGperm1≥REGperm2时,将允许能量转换量REGperm设定为REGperm2(步骤S1511),进入图16的步骤S2212。
另外,也可以当超大容量电容器14所剩容量CAPreg或电动机驱动控制电路温度TD中任意一个超过规定阈值时,一律将允许能量转换量REGperm设定为“0”,以代替用表检索第一、第二允许能量转换量REGperm1、2。
接下来,在图16的步骤S2212判别允许能量转换量REGperm是否在减速能量转换量REGdec以上,其判别结果是REGperm≥REGdec时,将节流阀103的目标阀门开度θthO设定为“0”(步骤S2213),并且输出本实施例中为泵损耗控制手段的EGR控制阀121的全开启指令(步骤S2214)。由此可减小发动机1的泵损耗。
具体来说,通过如图20所示将EGR控制阀121设定为全开启状态,则吸气系统的减压度减少,而且高温的回流气体混入吸入管一侧,因而减小发动机1泵损耗的同时,还可以防止三元触媒115温度下降。
回到图16,接下来将减速能量转换输出POWERreg设定为减速能量转换量REGdec(步骤S2215),递减计时器tmF/C中设定规定时间TmF/C后开始计时(步骤S2221),结束该处理。规定时间TmF/C设定成从EGR控制阀121通常控制开始起排气回流率达到正常所需的充足时间。
而上述步骤S2212的判别结果是REGperm<REGdec时,将节流阀103的目标阀门开度θthO设定为“0”(几乎全关闭)(步骤S2216),由下面式(6)计算能量转换限制量REGlim(步骤S2217)。
REGlim=REGdec-REGperm式(6)接下来,计算EGR控制阀121的目标阀门开度θEGRO作为减速阻力(减速度)(步骤S2218)。此目标阀门开度θEGRO根据变换图计算,θEGRO图将能量转换限制量REGlim和车速Vcar设定为参数,并设定为能量转换限制量REGlim越大,车速Vcar越大,所对应的目标阀门开度θEGRO值越小。接下来,通过输出用以将EGR控制阀121控制为目标阀门开度θEGRO的指令,对减速阻力进行修正处理(步骤S2219)。由此,对能量转换限制时适当增加发动机1的泵损耗,在制动转矩不变动的情况下解除减速时的不适感。
接下来,将减速能量转换输出POWERreg设定为减速能量变换量REGdec(步骤S2220),执行上述步骤S2221,结束本次处理。
而在图15中上述步骤S1501燃料切断条件不成立时,或在上述步骤S1502燃料切断后的强制恢复条件成立时,对EGR控制阀121执行通常控制(步骤S2224),执行燃料切断后的恢复处理(步骤S2225),结束本次处理。
上述步骤S1503的判别结果当燃料切断后的恢复条件成立时,便判别递减计时器tmF/C是否到达“0”(步骤S2222),其判别结果当递减计时器tmF/C尚未达到“0”时,对EGR控制阀121执行通常控制(步骤S2223),结束本处理,而递减计时器tmF/C达到“0”时,则进入上述步骤S2224。
按照本实施例,车辆减速时,未对能量转换限制时,按开启方向(几乎全开启状态)驱动EGR控制阀121(步骤S2214)。因而,回流气体在发动机1中顺畅地循环,所以能够减小发动机1的泵损耗,能够提高能量转换效率。
同时按关闭方向(大致全关闭状态)驱动节流阀103(步骤S2213)。因而,靠发动机1的动作从节流阀103流入的冷的新鲜空气很少,因而可以防止高温排气回流致使三元触媒115温度下降,从而可以防止排气污染物排放特性变差。
而对能量转换加以限制时,与不对能量转换加以限制的场合相比,EGR控制阀121进一步沿关闭方向驱动,而且此时的目标阀门开度θEGRO根据能量转换限制量REGlim加以设定(步骤S2217~S2219)。因而,泵损耗相应于能量转换转矩的减少而增加,所以制动转矩没有变动。因而可以减小减速度变化所造成的不适感等,可以抑制能量转换限制所引起的驱动能力的下降。
以下说明本发明第二实施例。第二实施例中采用吸气阀或排气阀作为泵损耗控制手段,因而仅仅是减速能量转换量确定处理与第一实施例不同。因而,对于各装置和控制系统的构成以及其他各种处理来说,与第一实施例相同。
图15和图21示出的是第二实施例减速能量转换量确定处理的流程图。图15步骤S1501~S1511的处理如前文所述。
图21的步骤S2512判别允许能量转换量REGperm是否在减速能量转换量REGdec以上,其判别结果是REGperm≥REGdec时,将节流阀103目标阀门开度θthO设定为“0”(几乎全关闭)的同时(步骤S2513),输出吸气阀122的全开启指令(步骤S2514)。由此,如图22所示使吸气阀122保持开启状态,所以泵损耗完全减小,此外,可抑制新鲜空气流入排气系统,避免三元触媒过冷。
回到图21,接下来将减速能量转换输出POWERreg设定为减速能量转换量REGdec(步骤S2515),递减计时器tmF/C设定规定时间TmF/C后开始计时(步骤S2521),结束本次处理。规定时间TmF/C设定为从吸气阀122通常控制开始起足以确保适当新鲜空气流量所需的时间。
上述步骤S2512的判别结果是REGperm<REGdec时,将节流阀103的目标阀门开度θthO设定为“0”(几乎全关闭)(步骤S2516),由上述式(6)计算能量转换限制量REGlim(步骤S2517)。
接下来,计算吸气阀122的目标提升量LIFTin和阀门开启时间Tin作为减速阻力(减速度)的修正值(步骤S2518)。此目标提升量和阀门开启时间根据变换图计算。变换图将能量转换限制量REGlim和车速Vcar设定为参数,例如在几乎整个区域设定为,能量转换限制量REGlim越小,而车速Vcar越大,所对应的目标提升量LIFTin和阀门开启时间Tin分别越大。
接下来,通过输出用以按目标提升量LIFTin或阀门开启时间Tin控制吸气阀122的指令,进行对减速阻力的修正处理(步骤S2519)。由此,即便是对能量转换加以限制的场合,泵损耗也相应于能量转换转矩的减小而增加,所以在减速时制动转矩没有变动,可以防止驱动能力下降。
接下来,将减速能量转换输出POWERreg设定为减速能量转换量REGdec(步骤S2520),执行上述步骤S2521,结束本次处理。
在上述步骤S2514中,即使输出的是排气阀123全开启指令,也可获得同样效果。这时,在步骤S2518中从变换图中检索排气阀123目标提升量LIFTex或阀门开启时间Tex,通过按该目标提升量LIFTex或阀门开启时间Tex控制排气阀123,对减速阻力进行修正处理。
而图15中上述步骤S1501燃料切换条件不成立时,或者上述步骤S1502燃料切断后的强制恢复条件成立时,便对吸气阀122执行通常控制(步骤S2524),执行燃料切断后的恢复处理(步骤S2525),结束本次处理。
上述步骤S1503的判别结果,当燃料切断后的恢复条件成立时,判别递减计时器tmF/C是否为“0”(步骤S2522),其判别结果当递减计时器tmF/C尚未达到“0”时,对吸气阀122执行通常控制(步骤S25331),结束本处理,而递减计时器tmF/C达到“0”时,进入上述步骤S2524。
按照此第二实施例,车辆减速时,对能量转换没有限制时吸气阀122或排气阀123几乎保持全开启状态(步骤S2514)。因而,泵损耗减小,但新鲜空气流入排气系统受到抑制。因此,可以防止三元触媒115温度下降。从而获得能量转换效率提高和避免排气污染物排放特性变差的效果。
而对能量转换加以限制时,与能量转换没有限制时相比,使吸气阀122或排气阀123往关闭方向驱动,而且根据能量转换限制量REGlim设定此时的目标提升量和阀门开启时间(步骤S2517~S2519)。因而,相应于能量转换限制所导致的能量转换转矩的减少,泵损耗适当增加,从而制动转矩没有变动,可防止驱动能力下降。
本发明第三实施例与第二实施例相同,作为泵损耗控制手段是对吸排气阀进行控制的,但控制方法不同。
图15和图23示出的是本实施例减速能量转换量确定处理的流程图。图15中步骤S1501~S1511的处理如前文所述。
图23的步骤S3112中,判别允许能量转换量REGperm是否在减速能量转换量REGdec以上,判别结果REGperm≥REGdec时,将节流阀103的目标阀门开度θthO设定为“0”(几乎全关闭)的同时(步骤S3113),分别输出吸气阀122和排气阀123全关闭指令(步骤S3114)。由此,可以如图24所示减小发动机1的泵损耗,同时抑制新鲜空气流入至三元触媒115。
回到图23,接下来将减速能量转换输出POWERreg设定为减速能量转换量REGdec(步骤S3115),递减计时器tmF/C设定规定时间TmF/C后开始计时(步骤S3121),结束本次处理。规定时间TmF/C设定为,从吸气阀122和排气阀123通常控制开始起足以确保适当的新鲜空气流量所需的时间。
当上述步骤S3112的判别结果REGperm<REGdec时,将节流阀103的目标阀门开度θthO设定为“0”(几乎全关闭)(步骤S3116),由上述式(6)计算能量转换限制量REGlim(步骤S3117)。
接下来,计算吸气阀122的目标提升量LIFTin和阀门开启时间Tin以及排气阀123的目标提升量LIFTex和阀门开启时间Tex作为减速阻力(减速度)的修正值(步骤S3118)。这些目标提升量LIFTin、LIFTex和阀门开启时间Tin、Tex根据LIFTin·LIFTex图计算。变换图将能量转换限制量REGlim和车速Vcar设定为参数,在例如几乎整个区域区中设定为,能量转换限制量REGlim越小,车速Vcar越大,所得到的目标提升量LIFTin、LIFTex值和阀门开启时间Tin、Tex值分别越大。发动机1的泵损耗在吸气阀122和排气阀123全关闭时为最小,但在吸气阀122和排气阀123稍微开启的规定开启状态时为最大。在该规定的开启状态下一旦进一步开启吸气阀122和排气阀123,发动机1的泵损耗便逐渐减小。因而,上述变换图考虑到这种性质,设定有目标提升量LIFTin、LIFTex和阀门开启时间Tin、Tex。
接下来,通过分别输出用于按目标提升量LIFTin和阀门开启时间Tin控制吸气阀122的指令和用以按目标提升量LIFTex和阀门开启时间Tex控制排气阀123的指令,对减述阻力进行修正处理(步骤S3119)。由此,对能量转换限制时,发动机1的泵损耗相应于能量转换转矩的减小,适当增加,制动转矩没有变动。另外,减速阻力也可以由目标提升量LIFTin、LIFTex和阀门开启时间Tin、Tex中至少之一来修正。
接下来,将减速能量转换输出POWERreg设定为减速能量转换量REGdec(步骤S3120),执行上述步骤S3121,结束本次处理。
而图15上述步骤S1501中燃料切断条件不成立时,或者上述步骤S1502中燃料切断后的强制恢复条件成立时,对吸气阀122和排气阀123执行通常控制(步骤S3124),执行燃料切断后的恢复处理(步骤S3125),结束本次处理。
上述步骤S1503的判别结果当燃料切断后的恢复条件成立时,便判别递减计时器tmF/C是否达到“0”(步骤S3122),其判别结果当递减计时器tmF/C尚未达到“0”时,对吸气阀122和排气阀123执行通常控制(步骤S3123),结束本次处理,而当递减计时器tmF/C达到“0”时便进入上述步骤S3124。
按照本实施例,车辆减速时,能量转换没有限制的时候,吸气阀122和排气阀123均沿关闭方向(几乎全关闭状态)驱动(步骤S3114)。所以,气体几乎没有进出燃烧室,因而不仅可以减小发动机1的泵损耗,而且没有冷的新鲜空气流入至三元触媒115,故可以防止三元触媒115温度下降。从而获得提高能量转换效率和避免排气污染物排放特性变差的效果。
而对能量转换加上限制时,与能量转换没有限制的场合相比,进一步往开启方向驱动吸气阀122和排气阀123,而且根据能量转换限制量REGlim设定此时的目标提升量LIFTin、LIFTex和阀门开启时间Tin、Tex(步骤S3117~S3119)。所以,相应于能量转换限制所造成的能量转换转矩的减小,泵损耗适当增加,因而可以在制动转矩不变的情况下防止减速时驱动能力的下降。
本实施例场合,也可以采用公知的带阀门保持功能的提升量或开闭时间可变的可变阀门驱动装置来构成,以替代使吸气阀致动器125、排气阀致动器126动作将吸排气阀驱动处于关闭位置的构成。
另外,以上说明的实施例中采用的是由节流致动器以电气方式控制阀门开度的节流阀,但作为替代也可以将本发明应用于具有与加速踏板机械相联的通常节流阀的发动机。这时,根据能量转换限制量对空气吸入量的控制,只要通过对节流阀旁路的通道和该通道当中设置的控制阀进行即可。
另外,采用吸排气阀作为泵损耗控制手段的实施例中,说明的是使吸气阀122、排气阀123的提升量和阀门开启时间连续变化的构成,但也可以是仅当减速阻力修正值超过规定阀值时分阶段修改各个阀门提升量和开启时间的构成。
另外,作为贮电手段不仅是超大容量电容器14,也可以采用电池。
权利要求
1.一种复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;电动机的驱动控制电路;以及贮电手段,其特征在于包括用以控制所述发动机空气吸入量的空气吸入量控制手段;用以控制所述发动机排气从排气一侧回流至吸入一侧的排气回流控制阀;以及在所述车辆减速状态下由所述电动机进行能量转换时,按空气吸入量减少方向驱动所述空气吸入量控制手段,并按打开方向驱动所述排气回流控制阀的控制手段。
2.如权利要求1所述的复合式车辆控制装置,其特征在于包括包含根据车速设定减速时能量转换量的能量转换量设定手段和根据所述贮电手段所剩容量设定能量转换限制量以限制能量转换量的能量转换限制量设定手段在内,根据所述能量转换限制量设定手段设定的能量转换限制量按关闭方向驱动所述排气回流控制阀的控制手段。
3.一种复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;电动机的驱动控制电路;以及贮电手段,其特征在于包括用以控制所述发动机空气吸入量的空气吸入量控制手段;驱动所述发动机吸气阀的吸气阀驱动手段;以及在所述车辆减速状态下由所述电动机进行能量转换时,按空气吸入量减少方向驱动所述空气吸入量控制手段,并通过所述吸气阀驱动手段按打开方向驱动所述吸气阀的控制手段。
4.如权利要求3所述的复合式车辆控制装置,其特征在于包括包含根据车速设定减速时能量转换量的能量转换量设定手段和根据所述贮电手段所剩容量设定能量转换限制量以限制能量转换量的能量转换限制量设定手段在内,相应于所述能量转换限制量设定手段设定的能量转换限制量,根据阀门提升量或阀门打开时间控制所述吸气阀驱动手段或所述排气阀驱动手段的控制手段。
5.一种复合式车辆控制装置包括驱动车辆驱动轴的发动机;具有将所述驱动轴动能转化为电能的能量转换功能的电动机;电动机的驱动控制电路;以及贮电手段,其特征在于包括用以控制所述发动机空气吸入量的空气吸入量控制手段;驱动所述发动机排气阀的排气阀驱动手段;以及在所述车辆减速状态下由所述电动机进行能量转换时,按空气吸入量减少方向驱动所述空气吸入量控制手段,并通过所述排气阀驱动手段按打开方向驱动所述排气阀的控制手段。
6.一种复合式车辆控制装置包括驱动车辆驱动轴的发动机;以及具有将所述驱动轴动能转化为电能的能量转换功能的电动机,其特征在于包括驱动所述发动机吸气阀的吸气阀驱动手段;驱动所述发动机排气阀的排气阀驱动手段;以及在所述车辆减速状态下由所述电动机进行能量转换时,通过所述吸气阀驱动手段和所述排气阀驱动手段分别按关闭方向驱动所述吸气阀和所述排气阀的控制手段。
7.如权利要求5所述的复合式车辆控制装置,其特征在于包括包含根据车速设定减速时能量转换量的能量转换量设定手段和根据所述贮电手段所剩容量设定能量转换限制量以限制能量转换量的能量转换限制量设定手段在内,相应于所述能量转换限制量设定手段设定的能量转换限制量,根据阀门提升量或阀门打开时间控制所述吸气阀驱动手段或所述排气阀驱动手段的控制手段。
全文摘要
本发明的复合式车辆控制装置包括:驱动驱动轴的发动机;在能量转换模式中将驱动轴动能转化为电能的电动机;控制电动机的驱动控制电路;以及存贮电能的贮电手段。控制系统包括:用以控制发动机空气吸入量的空气吸入量控制手段;以及用以控制发动机排气从排气系统回流至吸入系统的排气回流控制阀。在所述车辆减速状态下电动机工作于能量转换模式时,控制手段按空气吸入量减少方向驱动空气吸入量控制手段,并按打开方向驱动排气回流控制阀。
文档编号B60W10/06GK1215004SQ9811964
公开日1999年4月28日 申请日期1998年9月17日 优先权日1997年9月17日
发明者大嶋义和, 南英树, 多多良裕介, 矢野亨, 玉川裕 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1