混合式车辆的控制装置的制作方法

文档序号:3961487阅读:138来源:国知局
专利名称:混合式车辆的控制装置的制作方法
技术领域
本发明涉及备有发动机和电动机作为原动机的混合式车辆的控制装置。
以往,备有发动机及电动机作为原动机的混合式车辆已为人们所知,作为这种混合式车辆原动机的驱动力控制装置,如特开平5-229351号公报中有记载。
该装置根据车辆运行条件确定发动机效率最高时的最佳转矩,同时检测发动机的实际驱动转矩(实际转矩)并按照最佳转矩及实际转矩确定辅助驱动转矩。然后,由电动机适时(如加速时)进行对应于辅助驱动转矩的辅助驱动。
但是,在上述已有技术的控制装置中,电动机的辅助驱动是通过这样的控制进行的,即根据由对应于驾驶者的风门开度操作唯一确定的节流阀开度产生的最佳转矩和实际转矩的差,来简单地追加对应于此时蓄电装置剩余容量的电动机的输出。因此存在下面的问题。
即,当蓄电装置剩余容量减少、电动机输出下降时,全驱动力,即发动机输出与电动机输出的合计输出也下降,故实际转矩不足,引起驱动能力下降。
与此相反也可以考虑,例如,采用按加速踏板的操作量信号对执行机构(actuator)进行电气开度控制的节流阀来代替与加速踏板机械联接的一般形式的节流阀,当电动机输出下降时,通过节流阀开度控制,在发动机侧产生与该下降相等的输出,以补偿驱动能力下降。
用该方法虽能解决驱动能力的问题,但仍留有下面的问题。
利用电动机作为辅助驱动力的一个优点是减少了发动机的燃料消耗。也即,对所需驱动力而言,在仅以发动机为原动机的车辆中,只有发动机承担其全部的驱动力,与此相比,在备有发动机及电动机的混合式车辆中,所需驱动力中一部分由电动机负担,剩余部分由发动机负担。而且,在所需驱动力时,电动机负担越大,则发动机负担越小,即能减轻发动机的工作量,从而减少了发动机的燃料消耗。在上述已有技术的控制装置中,由于发动机不管蓄电装置的剩余容量如何总要维持最佳转矩,故使混合式车辆的所谓减少发动机工作量从而减少燃料消耗的优点受到了限制。
在上述已有技术的控制装置中,如上所述,由于发动机输出首先取决于节流阀的开度,故除了节流阀开度为全闭外,发动机总是维持在一定的输出。即使在蓄电装置中剩有的电气容量能够使电动机输出足以维持全部所需驱动力的情况下,上述状况也不会改变,故即使在这种情况下,在上述已有技术的控制装置中,所需驱动力也不会全由电动机负担。因此,不可能充分减少发动机的工作量。
本发明是鉴于上述情况完成的,其目的在于提供一种混合式车辆控制装置,该装置按车辆所需驱动力和蓄电装置剩余容量算出电动机输出,并根据车辆所需驱动力和算出的电动机输出对发动机输出进行修正控制,这样能提高驱动能力,同时能进一步减少发动机燃料消耗。
为实现上述发明目的,本发明的混合式车辆的控制装置备有驱动车辆驱动轴的发动机,对所述驱动轴进行辅助驱动的电动机,向所述电动机供电的蓄电手段,其特征在于,进一步备有根据所述车辆运动状态算出该车辆所需驱动力的所需驱动力运算手段,算出所述发动机对应于所述所需驱动力的输出的发动机输出运算手段,检测所述蓄电手段剩余容量的剩余容量检测手段,根据所述所需驱动力和所述蓄电手段剩余容量算出所述电动机输出的电动机输出运算手段,使所述算出的电动机输出与所述发动机输出的和与所述所需驱动力相等而算出发动机输出减少修正量的发动机修正量运算手段,根据所述算出的电动机输出控制所述电动机的驱动力、根据所述算出的发动机的修正量控制减少所述发动机输出的输出控制手段。
其特征在于,算出电动机输出的电动机输出运算手段,根据按车辆车速和行走阻力设定的行走状态量算出电动机输出。
其特征在于,所述输出控制手段,在所需驱动力小于所述算出的电动机输出时,控制得仅由电动机输出产生所需驱动力。
附图概述图1为表示本发明一实施形态例混合式车辆的驱动装置及其控制装置的基本结构框图;图2为本发明发动机控制系统结构例的框图;图3为本发明电动机控制系统结构例的框图;图4为本发明变速机控制系统结构例的框图;图5为表示算出电动机输出过程的流程图;图6为表示确定电动机和发动机对所需驱动力的输出分配的处理过程流程图;图7为表示蓄电装置的剩余容量与电动机输出分配间关系例的曲线图;图8为表示加速踏板操作量与节流阀开度间关系例的曲线图;图9为表示节流阀开度与电动机输出分配间关系例的曲线图;图10为表示设定所需驱动力一例的图表;图11为表示设定行走状态量一例的图表;图12为表示电动机输出与电动机转矩指令值间关系的曲线图;图13为表示控制发动机整个处理结构的流程图。
下面,参照


本发明的实施形态。
图1为用方块表示(省略了传感器、执行机构等结构要素)本发明一实施形态例混合式车辆的驱动系统及其控制装置的结构图。内燃发动机(下面称为“发动机”)1驱动的驱动轴2,按照能够经变速机构4驱动驱动轮5那样构成。电动机3设置得能直接驱动驱动轴2旋转,具有将驱动轴2旋转产生的动能变换为电能加以输出的再生功能。电动机3通过电力驱动单元13连接于作为蓄电装置的超大容量电容器(电容量大的电容器)14,并通过电力驱动单元13进行驱动、再生控制。
还设置有控制发动机1的发动机控制单元11,控制电动机3的电动机控制单元12,根据对超大容量电容器14状态的判别进行能量管理的能量分配控制单元15,及控制变速机构4的变速控制单元16。这些控制单元经数据总线21相互连接并相互传递检测数据或标志信息等。
图2为表示发动机1、发动机控制单元11及它们外围装置的结构图。发动机1的吸气管102的中间置有节流阀103。节流阀103连结着节流阀开度传感器104,该传感器104输出对应于该节流阀103开度的电气信号,供给发动机控制单元11。节流阀103还连结着电气控制其开度的节流阀执行机构(actuator)105。
节流阀执行机构105由发动机控制单元11控制其动作。
燃料喷射阀106设置在节流阀103的下游靠近吸入管102中未图示的吸气阀的上游侧,每个气缸都设置燃料喷射阀,各燃料喷射阀106经压力调节器(Pressureregulator)(未图示)连接于燃料箱(未图示),同时电气连接于发动机控制单元11,由该发动机控制单元11来的信号控制燃料喷射阀106的开阀时刻及开阀时间。
在靠近节流阀103的下游,经管107设有吸气管内绝对压传感器108,经该绝对压传感器108变换为电信号的绝对压信号加给发动机控制单元11。
绝对压传感器108下游安装有吸气温度传感器109,检测吸气温度,输出对应的电信号加给发动机控制单元11。安装于发动机1主体的发动机水温传感器110由热敏电阻等构成,检测发动机水温(冷却水的温度),输出对应的温度信号供给发动机控制单元11。
发动机转速(NE)传感器111安装于发动机1未图示的凸轮(cam)轴附近或曲柄(crank)轴附近,发动机1的曲柄轴每旋转180度就在规定的曲柄角度位置输出信号脉冲(下面,称为“TDC信号脉冲),该TDC信号脉冲加给发动机控制单元11。
发动机1各气缸的点火塞113连接于发动机控制单元11,由发动机控制单元11控制点火时间。
发动机1排气管114中间装有净化排气中HC、CO、NOx等的三元催化剂115,其上游侧装有空气燃料比(下面简称为“空燃比”)传感器117。空燃比传感器117输出与排气中氧浓度(或氧不足程度)大致成比例的电信号加给发动机控制单元11。空燃比传感器117按照理论空燃比在从低到高的很宽范围内能够检测供给发动机1的混合气空燃比。
三元催化剂115设有检测其温度的催化剂温度传感器118,该检测信号加给发动机控制单元11。检测该车辆车速Vcar的车速传感器119及检测加速踏板的踏入量θap的加速器(风门accel)开度传感器120连接于发动机控制单元11,这些传感器的检测信号加给发动机控制单元11。且112是每隔曲柄的规定旋转角度发送脉冲的传感器,用于识别喷射燃料的气缸。
发动机控制单元11由输入电路、中央运算处理电路(下面称为“CPU”)、存储手段、燃料喷射阀106、将驱动信号加给点火塞113的输出电路等构成;所述输入电路的功能是对各种传感器来的输入信号波形进行整形,将电压电平修正到规定电平,将模拟信号值变换为数字信号值等;所述存储手段存储CPU运行的各种运算程序及运算结果等。其它控制单元的基本结构具有与发动机控制单元11同样的结构。
图3为表示电动机3、电力驱动单元13、超大容量电容器14、电动机控制单元12及能量分配控制单元15的连接状态图。
电动机3设有检测其转速的电动机转速传感器202,其检测信号加给电动机控制单元12。在连接电力驱动单元13和电动机3的连线上设有检测供给电动机3或从电动机3输出的电压及电流的电流电压传感器201,电力驱动单元13设有检测其温度的温度传感器203,具体而言可检测电动机3驱动电路中保护电阻的温度TD。这些传感器201、203的检测信号加给电动机控制单元12。
在连接超大容量电容器14和电力驱动单元13的连线上设有电压电流传感器204,用以检测超大容量电容器14输出端子间的电压及从该电容器14输出的或加给该电容器14的电流,该检测信号加给能量分配控制单元15。
图4为表示变速机构4与变速控制单元16的连接状态图。变速机构4设有检测齿轮(gear)位置的齿轮位置传感器301,该检测信号加给变速控制单元16。在本实施形态中变速机构4为自动变速机,故设有变速执行机构(actuator)302,由变速控制单元16控制其动作。
图5及图6为表示根据所需驱动力(即驾驶者对车辆要求的驱动力)算出电动机3负担的电动机输出以确定将所需驱动力怎样分配给电动机3和发动机1的驱动力分配处理过程的流程图,每隔规定时间由能量分配控制单元15执行本处理。
在图5中,首先由步骤S1用如下方法检测超大容量电容器14的剩余容量。
也即,每隔规定时间对所述电流电压传感器204所检测的电容器输出电流及输入电流(充电电流)进行累计,算出放电量累计值CAPdis(正值)及充电量累计值CAPchg(负值),用下式(1)算出电容器剩余容量CAPrem。
CAPrem=CAPful-(CAPdis+CAPchg)…(1)其中,CAPful为超大容量电容器14满充电状态时的可放电量。
然后,根据随温度化的超大容量电容器14的内部电阻对所算出的电容器剩余容量CAPrem实施修正,检测超大容量电容器14的最终剩余容量。
在本实施形态中,虽可如上检测超大容量电容器14的剩余容量,他也可检测超大容量电容器14的开路端电压以代替上述方法。
接着在步骤S2,根据所检测的剩余容量检索输出分配率设定表,以确定电动机3侧的分配量,即所需驱动力POWERcom中电动机3应负担的驱动力(该量以相对于所需驱动力的比率来表达,故下面称为“分配率”)。
图7为表示输出分配率设定表的举例,横轴表示超大容量电容器14的剩余容量,纵轴表示分配率PRATIO。该输出分配率设定表按照该超大容量电容器14中的充放电效率最佳来构成,并预先对剩余容量设定分配率。
接着在步骤S3,从图8所示风门(accel)-节流阀特性的设定表检索对应于所述风门开度传感器120检测到的风门开度θap的对于节流阀执行机构105的指令值(下面,称为“节流阀开度指令值”)θthCOM。
图8所示风门-节流阀特性设定表,是设定为风门开度θap与指令值θthCOM相等,不言而喻,未必要这样限定。
在步骤S4,根据所确定的节流阀开度指令值θthCOM检索图9所示的对应于节流阀开度的电动机输出分配设定表,以确定分配率PRATIOth。
如图9所示,当节流阀开度指令值θthCOM如在50度以上时,对应于节流阀开度的电动机输出分配设定表被设定得使电动机输出增加。
在本实施形态中,虽根据节流阀开度指令值θthCOM来确定分配率PRATIOth,但并不限定于此,也可取车速或发动机转速等某一个或多个作为参数来确定所述分配率。
接着在步骤S5,根据节流阀开度指令值θthCOM及发动机转速NE,检索图10所示的所需驱动力图,以确定所需驱动力POWERcom。
所谓所需驱动力图就是用于确定驾驶者要求的所需驱动力POWERcom的图,由此,根据节流阀开度指令值θthCOM(在本实施例中,由于节流阀开度指令值与风门开度θap一一对应,故也可用风门开度θap)及发动机转速NE设定所需驱动力POWERcom。
在步骤S6,算出用于产生所述所需驱动力POWERcom的节流阀开度的修正项θthADD(也即,θthADD=θthCOM-θthi(前次节流阀开度))。在步骤S7,根据所述车速传感器119检测的车速Vcar及发动机的余量输出POWERex检索图11所示行走状态量设定图,以确定车辆行走状态量VSTATUS。
这里,发动机的余量输出POWERex用下式(2)算出。
POWERex=POWERcom-RUNRST…(2)其中,RUNRST就是该车辆的行走阻力,按车速Vcar检索已设定的RUNRST表(未图示)来确定。所需驱动力POWERcom及行走阻力RUNRST,如分别以KW(千瓦)为单位进行设定。
这样一来,由车速Vcar及余量输出POWERex确定的行走状态量VSTATUS相当于电动机3对于余量输出POWERex的助推分配比率,如可设定为从0至200的整数值(单位为%)。当行走状态量VSTATUS为“0”时,为不应有助推的状态(减速状态或低速状态),行走状态量VSTATUS大于“0”时,为应助推的状态。
在步骤S8,判别行走状态量VSTATUS是否大于“0”,当VSTATUS>0,即为助推状态时,作为助推模式进入图6的步骤S9。相反,当VSTARUS≤0时,即为减速状态或低速状态时,作为再生模式(减速再生模式或低速充电模式)进入图6中步骤S12。
在步骤S9,用下式(3)算出电动机输出POWERmot。
POWERmot=POWERcom×PRATIO×PRATIOth×VSTATUS(3)在步骤S10,以电动机输出POWERmot为目标,用时间常数将它变换为电动机转矩指令值TRQcom。
图12为表示电动机输出POWERmot与变换后电动机转矩指令值TRQcom之间的关系图,图中,实线表示电动机输出POWERmot随时间变化例,虚线表示该电动机转矩指令值TRQcom随时间的变化例。
从图12可知,电动机转矩指令值TRQcom被控制得以时常数(即以时间延迟)惭惭接近目标值(即电动机输出POWERmot)。这样一来,当将电动机转矩指令值TRQcom设定得使电动机3很快输出电动机输出POWERmot时,由于发动机输出上升沿的延迟而不能准备好接受该输出,从而引起驱动能力(driveability)下降。因此,有必要控制电动机3使得在作好上述准备之后输出电动机输出POWERmot。
在步骤S11,根据该电动机转矩指令值TRQcom算出修正量θthASSIST用以朝闭合方向控制节流阀开度的目标值θthO,此后进入步骤S18。
该修正量θthASSIST用于对发动机1侧输出抑制因电动机转矩指令值TRQcom引起电动机3侧输出的增加部分,算出该修正量θthASSIST的理由如下。
也即,根据在步骤S6由在步骤S3中确定的节流阀开度指令值θthCOM及前次节流阀开度θthi算出的修正项θthADD,确定节流阀开度目标值θthO,在用该目标值θthO控制所述节流阀执行机构105的情况下,仅利用发动机1侧的输出产生所需驱动力POWERcom。因此,不利用修正量θthASSIST进行修正,用目标值θthO控制发动机输出,在用所述步骤S10中变换的电动机转矩指令值TRQcom控制电动机3的情况下,发动机1的输出和电动机3的输出的总和会超过所需驱动力POWERcom,所产生的驱动力会大于驾驶者要求的所需驱动力。为此,抑制与电动机3输出部分相当的发动机1的输出,这样,算出修正量θthASSIST确定节流阀103的目标值θthO使得电动机3的输出与发动机1的输出的总和变为所需驱动力POWERcom,由此,控制节流阀103抑制发动机输出(θthO=θthi+θthADD-θthASSIST)。
在所需驱动力POWERcom小于电动机输出POWERmot情况下,由于节流阀开度的目标值θthO≤θthCOM-θthASSIST,故目标值θthO=0,所需驱动力POWERcom全由电动机3负担,发动机1输出保持0。
在超大容量电容器14的剩余容量减少使电动机输出减少情况下,或根据行走状态量VSTATUS电动机3的输出分配下降情况下,算出修正量θthASSIST确定节流阀开度目标值θthO使得按照电动机输出POWERmot的减少增加发动机1的输出,通过控制发动机输出,来获得所需驱动力POWERcom。(θthO=θthi+θthADD+θthASSIST)节流阀执行机构105接受对应于发动机控制单元11算出的修正量θthASSIST的目标值θthO信号,控制节流阀103的动作,控制发动机输出而与加速踏板的操作无关。
在步骤S12,判别当前的再生模式是减速再生模式还是低速充电模式。该判别是通过如判别风门开度θap的变化量Dap(=θapi(本次值)-Qapi(前次值)是否小于负的规定量DapD来进行的。这种判别也可根据余量输出POWERex来进行。
在步骤S12,当Dap<DapD时,或根据余量输出POWERex是否<0,判断为减速再生模式,并将电动机目标输出POWERmot设定为减速再生输出POWERreg(步骤S13)。这里,减速再生输出POWERreg可用未图示的减速再生处理子程序(routine)算出。
在步骤S14,读入减速再生模式中最佳的节流阀开度的目标值θthO,也即读入上述减速再生处理子程序算出的节流阀开度的目标值θthO,并加以设定后,进入步骤S19。
相反,在步骤S12中当Dap≥DapD时或余量输出POWERex近似为0且行走状态量VSTATUS为0时,判别为低速充电模式,将电动机输出POWERmot设定为低速充电输出POWERcruis(步骤S15)。这里,低速充电输出POWERcruise用未图示的低速充电处理子程序算出。
在步骤S16,与所述步骤S10一样,以电动机输出POWERmot为目标,变换为具有时常数的电动机转矩指令值TRQcom。在步骤S17,根据该电动机转矩指令值TRQcom算出修正项θthSUB,用于朝打开方向控制节流阀开度的目标值θthO,之后进入步骤S18。
这里,算出修正项θthSUB的理由与算出前述修正项θthASSIST的理由恰好相反。
也即,为低速充电模式时,作为电动机输出POWERmot,设定为与助推模式时电动机输出POWERmot符号相反的值。也即,用低速充电模式时负的电动机转矩指令值TRQcom,朝着减小所需驱动力POWERcom的方向控制电动机。为此,在低速充电模式情况下,有必要利用发动机1输出来补偿电动机转矩指令值TRQcom引起输出减少的部分,以便维持所需驱动力POWERcom。
在步骤S18,用下式(4)算出节流阀开度的目标值θthO。
θthO=θthi+θthADD+θthSUB(4)接着在步骤S19,判别节流阀开度的目标值是否大于规定值θthREF,当θthO<θthREF时,判别吸气管内绝对压Pba是否不大于PbaREF(步骤S20)。
在步骤S20为NO时,即Pba>PbaREF时,结束该驱动力分配处理。相反,在步骤S19为YES,θthO≥θthREF时,或在步骤20中为YES时,即Pba≤PbaREF时,将变速机构4的变速比改变为低速比(LOW)侧(步骤S21)后,结束该驱动力分配处理。
在处理进入步骤21的情况下,超大容量电容器14的剩余容量下降,电动机输出POWERmot减小,虽有必要让发动机1负担该减小部分,但也可在发动机1侧为不使输出上升大于所述部分的状态。此时,将变速机构4的变速比变到低速比侧,维持所述驱动轴2产生的转矩不变(与进入步骤S21前相同的转矩),以便维持驱动能力。
下面,说明发动机控制单元11执行的发动机控制。
图13为表示发动机控制处理整体结构的流程图,该处理由所述发动机控制单元11如每隔规定时间进行。
首先检测发动机转速NE,吸气管内绝对压Pba等各种发动机运行参数(步骤S131),接着依次执行运行状态判别处理(步骤S132),燃料控制处理(步骤S133)及点火时间控制处理(步骤S134)。
也即,由燃料控制处理根据所述读入或算出的节流阀开度的目标值θthO算出供给发动机1的燃料量。
本发明不限定于上述实施形态,可以各种形态进行实施。例如,作为蓄电装置,不仅可用超大容量电容器,而且也可应用蓄电池。
也可用具有与一般加速踏板机械联结的节流阀替代由执行机构电气控制开度类型的节流阀的发动机。此时,可用旁通节流阀的通路和设置在该通路中间的控制阀来控制对应于电动机输出的吸入空气量。也可在具有电磁驱动型吸气阀(不是凸轮机构,而是由电磁驱动的吸气阀)的发动机中通过改变吸气阀的开阀时间来控制吸入空气量。
变速机构4也可以是无级改变变速比的无级变速机构,此时可根据驱动轴和从动轴的转速比求得变速比来替代对齿轮(gear)位置GP的检测。
如上详细所述,按照本发明的控制装置,由于根据车辆运行状态算出其所需驱动力,检测蓄电手段的剩余容量,根据所需驱动力和剩余容量算出电动机输出,再根据该电动机输出和所需驱动力对发动机输出进行修正,故对于所需驱动力当电动机输出大时,能减少发动机的驱动量。因此,能够减少发动机的燃料消耗,减少排气量,而不损害驱动能力,同时能集中使用蓄电手段充放电效率高的电压区及容量区。
按照本发明的控制装置,由于考虑到车辆行走负载算出所述电动机输出,故如当行走负荷为高负荷时能增加助推量,当行走负荷为低负荷时能减少助推量,这样一来,能提高行走性能,同时能减少发动机的燃料消耗。
按照本发明的控制装置,当车辆所需驱动力不大于算出的电动机输出时,由于所需驱动力仅由所述电动机输出产生,故能进一步减少发动机的燃料消耗。
权利要求
1.一种混合式车辆的控制装置,备有驱动车辆驱动轴的发动机,对所述驱动轴进行辅助驱动的电动机,向所述电动机供电的蓄电手段,其特征在于,进一步备有根据所述车辆运行状态算出该车辆所需驱动力的所需驱动力运算手段;算出所述发动机对应于所述所需驱动力的输出的发动机输出运算手段;检测所述蓄电手段剩余容量的剩余容量检测手段;根据所述所需驱动力和所述蓄电手段剩余容量算出所述电动机输出的电动机输出运算手段;使所述算出的电动机输出与所述发动机输出的和与所述所需驱动力相等而算出发动机输出减少修正量的发动机修正量运算手段;根据所述算出的电动机输出控制所述电动机的驱动力、根据所述算出的发动机的修正量控制减少所述发动机输出的输出控制手段。
2.如权利要求1所述的混合式车辆的控制装置,其特征在于,所述电动机输出运算手段根据所述所需驱动力、所述蓄电手段的剩余容量、由所述车辆的车速和行走阻力确定的行走状态算出电动机输出。
3.如权利要求1所述的混合式车辆的控制装置,其特征在于,所述输出控制手段,在算出的所需驱动力不大于所述算出的电动机输出时,控制得仅由所述电动机的驱动力产生所需驱动力。
4.如权利要求1所述的混合式车辆的控制装置,其特征在于,进一步备有控制供给所述发动机的吸入空气量的吸入空气量控制阀和电气控制所述吸入量控制阀的阀开度的执行机构,所述输出控制手段在因所述蓄电手段剩余容量减少而减少电动机输出情况下,经所述执行机构控制吸入空气量控制阀的阀开度来增加吸入空气量。
5.如权利要求1所述的混合式车辆的控制装置,其特征在于,所述剩余容量检测手段根据每隔规定时间对所述蓄电手段的输出电流及充电电流进行累计求得的放电量累计值及充电量累计值,检测剩余容量。
6.如权利要求1所述的混合式车辆的控制装置,其特征在于,所述控制装置备有控制变速机的变速比的变速比控制手段,所述变速比控制手段在因所述蓄电手段的剩余容量减少而使所述电动机输出减小情况下,将所述变速机的变速比改变控制到低变速比一侧。
7.如权利要求1所述的混合式车辆的控制装置,其特征在于,所述电动机具有将所述车辆的动能变换为电能的再生功能,所述控制手段备有确定进行再生控制的判定手段,同时当电动机进行再生控制时,根据所述发动机修正量运算手段算出的修正控制量对发动机输出进行增量修正。
8.一种混合式车辆的控制装置,备有驱动车辆驱动轴的发动机,对所述驱动轴进行辅助驱动的电动机,向所述电动机供电的蓄电手段,其特征在于,进一步备有根据所述车辆运行状态算出该车辆所需驱动力的所需驱动力运算手段;算出所述发动机对应于所述所需驱动力的输出的发动机输出运算手段;检测所述发动机运行参数的运行参数检测手段;检测所述蓄电手段剩余容量的剩余容量检测手段;根据所述车辆行走负载设定行走状态量的设定手段;根据所述所需驱动力、所述运行参数、所述剩余容量和所述行走状态量算出所述电动机输出的电动机输出运算手段;使所述算出的电动机输出与所述发动机输出的和与所述所需驱动力相等而算出发动机输出修正控制量的发动机修正量运算手段;根据所述算出的电动机输出控制所述电动机的驱动力的电动机输出控制手段;根据所述算出的发动机的修正量修正控制所述发动机输出的发动机输出控制手段。
9.如权利要求8所述的混合式车辆的控制装置,其特征在于,所述行走状态量设定手段根据车速和行走阻力设定行走状态量。
10.如权利要求8所述的混合式车辆的控制装置,其特征在于,进一步备有控制供给所述发动机的吸入空气量的吸入空气量控制阀和电气控制所述吸入量控制阀的阀开度的执行机构,所述输出控制手段在因所述蓄电手段剩余容量减少而减少电动机输出情况下,经所述执行机构控制吸入空气量控制阀的阀开度来增加吸入空气量。
11.如权利要求8所述的混合式车辆的控制装置,其特征在于,所述剩余容量检测手段根据每隔规定时间对所述蓄电手段的输出电流及充电电流进行累计求得的放电量累计值及充电量累计值,检测剩余容量。
12.如权利要求8所述的混合式车辆的控制装置,其特征在于,所述运行参数就是车速、发动机转速、吸入空气量控制手段的阀开度的任一个。
13.如权利要求8所述的混合式车辆的控制装置,其特征在于,所述控制装置备有控制变速机的变速比的变速比控制手段,所述变速比控制手段在因所述蓄电手段的剩余容量减少而使所述电动机输出减小情况下,将所述变速机的变速比改变控制到低变速比一侧。
14.如权利要求8所述的混合式车辆的控制装置,其特征在于,所述电动机具有将所述车辆的动能变换为电能的再生功能,所述控制手段备有确定进行再生控制的判定手段,同时当电动机进行再生控制时,根据所述发动机修正量运算手段算出的修正控制量对发动机输出进行增量修正。
全文摘要
一种混合式车辆的控制系统,具有辅助发动机使驱动轴旋转的电动机和向电动机供电的蓄电手段;算出所需驱动力的所需驱动力运算手段;算出发动机对应于所需驱动力的发动机输出运算手段;检测蓄电手段剩余容量的剩余容量检测手段;算出电动机输出的电动机输出运算手段;算出发动机输出减少修正量的发动机修正量运算手段;根据算出的电动机输出控制电动机的驱动力、根据算出的发动机的修正量控制减少发动机输出的输出控制手段。
文档编号B60W10/10GK1211512SQ98119609
公开日1999年3月24日 申请日期1998年9月17日 优先权日1997年9月17日
发明者矢野亨, 玉川裕, 大岛义和, 石川元士 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1