用于混合动力电动车辆的车桥总成的制作方法

文档序号:10585240阅读:513来源:国知局
用于混合动力电动车辆的车桥总成的制作方法
【专利摘要】公开了一种用于混合动力电动车辆的车桥总成。混合动力电动车辆车桥包括与单个锥形齿圈啮合的两个单独的小齿轮。一个小齿轮从内燃动力传动系统传递动力,而另一个小齿轮从电动马达传递动力。通过电动马达和第二小齿轮之间的双速齿轮箱调节来自电动马达的动力。齿轮箱可利用诸如Ravigneaux齿轮组的副轴齿轮传动装置或行星齿轮传动装置。
【专利说明】用于混合动力电动车辆的车桥总成
[0001 ]本申请要求于2015年3月9日提交的第62/130,322号美国临时申请的权益,上述申请公开的全部内容通过引用被包含于此。
技术领域
[0002]本公开涉及混合动力电动车辆领域。更具体地讲,本公开涉及具有双速齿轮箱以及与单个齿圈啮合的两个小齿轮的混合动力电动车辆。
【背景技术】
[0003]传统上,大部分通用的道路车辆是由诸如汽油或柴油燃料的液体燃料提供动力的。在车辆需要动力时,内燃发动机将燃料中的化学能转化为机械能,并且动力传动系统将所述机械能传递到车辆车轮。车辆在包括前进和倒车运动两者的宽范围的车辆速度下使用。然而,某些类型的内燃发动机只能在窄的速度范围内高效运行。因此,动力传动系统通常包括可变传动比变速器。另外,差速器总成可将变速器输出轴连接到车辆车轮,提供额外的固定传动比并允许在车辆转弯时左车轮和右车轮以略有不同的转速旋转。
[0004]为了减少液体燃料的消耗,一些被称为混合动力电动车辆的车辆利用诸如电池的电能储存器。能量储存能力提供了灵活性,以在化学能的转换能够被最高效地完成时执行该转换,而不是在需要动力时总是执行该转换。一些被称为插电式混合动力电动车辆的混合动力电动车辆还适于直接以电的形式获得能量。

【发明内容】

[0005]根据本公开,提供一种混合动力电动车辆车桥,包括:锥形齿圈,被配置为通过差速器驱动左半轴和右半轴;第一锥形小齿轮,与所述齿圈接合并适于从内燃发动机接收动力;第二锥形小齿轮,与所述齿圈接合并适于从电动马达接收动力。
[0006]根据本公开,提供一种混合动力电动车辆,包括:差速器,包括齿圈;第一小齿轮和第二小齿轮,均与齿圈接合;第一变速器,被配置为以多种转速比将动力从发动机传递到第一小齿轮;电动马达;第二变速器,被配置为以两种不同的转速比将动力从电动马达传递到第二小齿轮。
[0007]根据本公开的一个实施例,所述齿圈是被支撑为围绕车桥轴线旋转的锥形齿轮,并且第一小齿轮和第二小齿轮是被支撑为分别围绕第一轴线和第二轴线旋转的锥形齿轮;第一轴线和第二轴线与车桥轴线垂直。
[0008]根据本公开的一个实施例,第一轴线和第二轴线不共线。
[0009]根据本公开的一个实施例,所述第二变速器包括:马达轴,固定地结合到电动马达的转子;第一副轴齿轮和第二副轴齿轮,结合到马达轴;副轴,固定地结合到第二小齿轮;第三副轴齿轮和第四副轴齿轮,连接到副轴,第三副轴齿轮和第四副轴齿轮分别与第一副轴齿轮和第二副轴齿轮连续啮合接合。
[0010]根据本公开的一个实施例,第一副轴齿轮和第二副轴齿轮通过联结器交替地选择性地结合到所述马达轴;第三副轴齿轮和第四副轴齿轮固定地结合到所述副轴。
[0011]根据本公开的一个实施例,所述第二变速器包括:马达轴,固定地结合到电动马达的转子;齿轮传动装置,在马达轴、第二小齿轮、第一旋转元件和第二旋转元件之间建立固定的线性转速关系;制动元件,被配置为交替地选择性地保持第一旋转元件和第二旋转元件不旋转。
[0012]根据本公开,提供一种车桥,包括:锥形齿圈,被配置为驱动左半轴和右半轴;第一锥形小齿轮,与齿圈接合并适于从内燃发动机接收动力;电动马达;第二锥形小齿轮,与齿圈接合;双速齿轮箱,被配置为将动力从电动马达传递到第二锥形小齿轮。
[0013]根据本公开的一个实施例,第一锥形小齿轮被支撑为围绕第一小齿轮轴线旋转,所述第一小齿轮轴线从齿圈轴线偏移第一偏移距离;第二锥形小齿轮被支撑为围绕第二小齿轮轴线旋转,所述第二小齿轮轴线从齿圈轴线偏移第二偏移距离。
[0014]根据本公开的一个实施例,第一偏移距离等于第二偏移距离;第一锥形小齿轮和第二锥形小齿轮具有实质上相同的准双曲面齿轮几何结构。
【附图说明】
[0015]图1是第一混合动力电动车辆车桥的示意图;
[0016]图2是第二混合动力电动车辆车桥的示意图;
[0017]图3是第三混合动力电动车辆车桥的示意图。
【具体实施方式】
[0018]在此描述本公开的实施例。然而,应理解公开的实施例仅为示例并且其它实施例可以采用各种替代形式。附图不一定按比例绘制;一些特征会被夸大或最小化,以显示特定部件的细节。所以,在此公开的具体结构和功能细节不应被解释为限制,而仅作为教导本领域技术人员以多种形式使用本发明的代表性基础。如本领域普通技术人员将理解的,参考任一附图示出和描述的各种特征可以与一个或更多个其它附图中示出的特征组合以产生未明确示出或描述的实施例。示出的特征的组合提供用于典型应用的代表性实施例。然而,与本公开的教导一致的特征的多种组合和变型可能期望用于特定应用或实施方式。
[0019]齿轮传动装置是旋转元件和换挡元件的集合,换挡元件被配置为在旋转元件之间施加特定的转速关系。如果元件在至少一些工况下相对于变速器壳体旋转,则该元件被称为旋转元件。无论任意离合器的状态如何,都施加被称为固定转速关系的一些转速关系。仅在特定的离合器完全接合时,才施加被称为选择性的转速关系的其它转速关系。
[0020]如果一组元件被约束为在所有工况下均以相同转速围绕相同轴线旋转,则该组元件彼此固定地结合。可以通过花键连接、焊接、压装、由共同固体机加工或其它方式固定地结合元件。固定地结合的元件之间可能出现旋转位移的轻微变化,比如由于花键间隙(spline lash)或轴柔量所产生的位移。相比之下,两个元件通过换挡元件选择性地结合,每当换挡元件完全接合时,换挡元件便约束这两个元件以相同转速围绕相同轴线旋转,并且在至少一些其它工况下这两个元件以不同的转速自由旋转。如果两个旋转元件被固定地结合或选择性地结合,则这两个旋转元件被结合。换挡元件包括诸如液压或电致动的离合器的主动控制的装置以及诸如单向离合器的被动装置。换挡元件可以使用摩擦来使旋转元件结合或者可以建立诸如牙嵌(interlocking teeth)的刚性接合。通过将旋转元件选择性地结合到壳体而保持旋转元件不旋转的换挡元件可称为制动器。
[0021]图1示意性地示出了利用副轴传动装置的双速混合动力电动车桥。来自内燃发动机的动力最好经由多速变速器被传递到轴头(stub shaft) 10。轴头10通过轴承12和14被支撑为相对于壳体(未示出)旋转。例如,轴承12和14可以是圆锥滚柱轴承、滚针轴承、滚珠轴承或衬套。固定地结合到轴头10的第一小齿轮16与齿圈18啮合,齿圈18被支撑为围绕与轴头10的旋转轴线垂直的轴线相对于壳体旋转。小齿轮16和齿圈18是锥形齿轮并且齿轮齿可以是螺旋齿轮齿。在使用准双曲面齿轮轮廓的情况下,轴头10的轴线可在齿圈18的轴线下方偏移。齿圈18经由差速器(未示出)驱动左半轴和右半轴20、22,差速器允许轻微转速差(比如在车辆转弯时)。
[0022]来自电动马达24的动力经由齿轮箱28被传递到第二小齿轮26。小齿轮26与齿圈18上的和第一小齿轮16所啮合的齿轮齿相同的齿轮齿啮合,但处于不同的周向位置。小齿轮26的周向位置基于电动马达24和齿轮箱28相对于半轴20和22的物理位置,该物理位置可根据车辆内可用的封装空间而变化。对于后轮驱动的车辆,小齿轮16可以在后桥半轴的前面而小齿轮26在后桥半轴的后面。小齿轮26可在齿圈18的轴线上方偏移。如果小齿轮16和26的偏移的大小相同,那么可使用相同的齿轮轮廓以降低制造成本。
[0023]马达24包括被固定到壳体的定子30以及被固定到由轴承支撑用以旋转的转子轴34的转子32。马达可以是直流(DC)马达或交流(AC)马达,诸如同步永磁马达或感应马达。这里所使用的术语马达包括既能够将电能转化为机械能又能够将机械能转化为电能的可逆电机。在图1中示出的AC马达中,由转子32施加在轴34上的扭矩与流经定子30的绕组的电流有关。在电动操作中,逆变器36从电池38汲取直流电能并将三相交流电提供到定子30的绕组。控制器40将信号发送到逆变器36,指示逆变器36调节每个绕组中的电压、频率和相,以使转子32施加期望的扭矩。在发电操作中,控制器40指示逆变器36控制电压、频率和相,以使施加的扭矩与旋转方向相反。产生的电能被转化为直流电并储存在电池38中。
[0024]齿轮箱28包括固定地结合到第二小齿轮26以及齿轮44和46的副轴42。副轴42大体上平行于马达轴34。马达轴34可物理地位于副轴42上方(如图1所示),或者马达轴34可以在下方、向车辆的左侧或右侧或对角地偏移,这由可用封装空间决定。齿轮48和50由马达轴34支撑,使得齿轮48和50能够相对于马达轴34旋转,并且齿轮48和50分别与齿轮44和46啮合。联结器52交替地将齿轮48和50选择性地结合到马达轴34。换言之,联结器52每次将两个齿轮中的任一个齿轮选择性地结合到轴。当联结器52向右移动时,联结器52将齿轮50选择性地结合到马达轴34,以建立从转子轴34经由齿轮50、齿轮46、轴42和小齿轮26到齿圈18的低挡动力流路径。当联结器52向左移动时,联结器52将齿轮48选择性地结合到马达轴34,以建立从转子轴34经由齿轮48、齿轮44、轴42和小齿轮26到齿圈18的高挡动力流路径。在联结器52处于图1所示的中间位置时,动力流路径没有被建立。对于低挡推荐齿轮比为大约3.0:1,对于高挡推荐齿轮比为大约1.4:1。在替代实施例中,齿轮48和50可被固定地结合到轴34并且联结器可以将齿轮44和46选择性地结合到轴42。联结器52可以是通常用于手动变速器中的类型的同步器,包括在刚性接合之前使齿轮和轴的转速同步的锁环。或者,联结器52可以是简单的牙嵌式离合器并且可以通过马达24的主动转速控制来执行同步。
[0025]通过包括致动器54、导轨56和拨叉58的致动机构来控制联结器52的位置。响应于来自控制器40的控制信号,致动器54使拨叉58沿导轨56轴向移动。可以利用各种类型的线性致动器。例如,导轨56可具有与拨叉58中的螺纹啮合的螺纹,并且致动器54可以是使导轨56旋转的马达。拨叉58以如下方式接合联结器52:迫使拨叉58和联结器52具有相同的轴向位置但允许联结器52随轴34—起旋转。
[0026]图2示意性地示出了利用行星齿轮传动装置的双速混合动力电动车桥。图1的副轴实施例和图2的行星实施例两者共有的元件以相同的标号标记。在行星实施例中,转子32被固定地结合到与第二小齿轮26同轴的轴60。齿轮箱62包括RavigneauX(拉威挪)行星齿轮组。第一中心齿轮64固定地结合到轴60。齿圈66固定地结合到第二小齿轮26。齿轮架68和第二中心齿轮70两者都被支撑为围绕轴60和第二小齿轮26的轴线旋转。一组长行星齿轮72被支撑为相对于齿轮架68旋转。每个长行星齿轮72均与第二中心齿轮70和齿圈66两者啮合。一组短行星齿轮74也被支撑为相对于齿轮架68旋转。每个短行星齿轮74均与第一中心齿轮64和长行星齿轮72之一啮合。Ravigneaux齿轮组建立了固定的线性转速关系。具体地,中心齿轮64和70总是具有最极端的转速,并且齿轮架68和齿圈66的转速具有中间转速。齿轮架68和齿圈66的转速是中心齿轮64的转速和中心齿轮70的转速的加权平均数,其固定的加权因子是通过相对齿轮齿数确定的。
[0027]制动元件76随拨叉58轴向地移动但不旋转。当制动元件76向左移动时,制动元件76接合齿轮架68以保持齿轮架68不旋转。这在轴60和齿圈18之间建立低挡动力流路径。当制动元件76向右移动时,制动元件76接合第二中心齿轮70以保持第二中心齿轮不旋转,并建立高挡动力流路径。其它行星齿轮传动装置在四个旋转元件之间施加固定的线性转速关系。如果加权因子与图2的Ravigneaux齿轮组的加权因子相似,那么这样的齿轮组可代替图
2的Rav i gneaux齿轮组而实现可比较的结果。例如,每个齿轮架固定地结合到相对的齿圈的两个简单行星齿轮组施加这样的关系,其中,两个中心齿轮又有最极端的转速。作为另一个示例,两个中心齿轮彼此固定地结合且一个齿轮架固定地结合到相对的齿圈的两个简单行星齿轮组施加适当的固定的线性转速关系,其中,连接的中心齿轮和未连接的齿圈具有最极端的转速。为了降低制造成本(特别是当生产量低时),使用为其它目的(诸如在用于将动力从内燃发动机传递到轴头10的变速器中使用)开发的行星齿轮传动装置具有优势。
[0028]图3示出了一个实施例,在该实施例中,马达和齿轮箱已被旋转90度,以使它们围绕平行于齿圈轴线的轴线旋转。除与第一小齿轮16啮合的准双曲面齿轮齿之外,齿圈18还包括螺旋齿轮齿80。具有螺旋齿轮齿的小齿轮82与齿圈18的螺旋齿轮齿啮合并固定地结合到Ravigneaux 齿圈 66。
[0029]在使用中,控制器40指示致动器54是接合低挡、高挡还是空挡,并指示逆变器36是提供正的马达扭矩还是负的马达扭矩。控制器40可与车辆系统控制器集成或与车辆系统控制器通信,以使控制器40具有对关于车辆状况、其它车辆系统的状况和关于驾驶员意图的各种信息的访问权。例如,控制器40接收关于车辆速度、发动机扭矩、制动扭矩、加速踏板位置和制动踏板位置的信息。控制器40还维护关于电池38的荷电状态的信息。
[0030]在车辆处于低速时,控制器40指示致动器54接合低挡。低挡的选择使马达扭矩倍增,从而对于给定的马达扭矩,与处于高挡时相比,更多的扭矩在齿圈18处被传递。在车辆处于高速时,控制器40指示致动器54接合高挡。高挡的选择相对于车辆速度而言降低了转子32的转速。过渡或换挡出现时的阈值转速可基于诸如加速踏板位置的因素。另外,当马达正被用于提供或收回动力时可推迟换挡。为了执行换挡,控制器首先指示逆变器36将马达扭矩设置为零。然后,控制器指示致动器54脱离当前选择的挡位。然后,控制器指示逆变器36控制马达的转速接近目标挡位的转速。一旦所述转速可接受地接近目标转速,控制器40便指示致动器54接合目标挡位。可接受的转速公差可取决于联结器52或制动元件76是否包括帮助同步的锁环。
[0031]当加速踏板位置指示驾驶员的加速需求时,控制器40可指示逆变器36提供扭矩以提高性能。该动作可与发动机控制器和变速器控制器协调,以使齿圈18处的总扭矩与驾驶员的需求相符。在提高性能期间,从电池38汲取电能,使得荷电状态降低。
[0032]当制动踏板指示驾驶员的减速需求时,控制器40可指示逆变器36沿旋转的相反方向提供扭矩。这种再生制动扭矩趋向于给电池38再充电。当驾驶员未踩加速踏板或制动踏板时,也可控制某种再生制动扭矩。再生制动扭矩可与制动控制器协调,以使总的车轮负扭矩与制动踏板压力或运动适当地关联。为了确保前车轮和后车轮上的制动扭矩的相对比例是可接受的,协调也会是必需的。最后,再生制动可与防抱死制动系统协调。
[0033]如果电池的荷电状态变得过低,则控制器40可指示逆变器产生与旋转方向相反的扭矩,以达到给电池再充电的目的。该动作可与发动机控制器协调,使得发动机产生额外的扭矩并且传递至车辆车轮的总扭矩满足驾驶员需求。
[0034]虽然上文描述了示例性实施例,但是并不意味着这些实施例描述了权利要求所包含的所有可能的形式。说明书中使用的词语为描述性词语而非限制,并且应理解不脱离本公开的精神和范围可以做出各种改变。如上所述,可以组合多个实施例的特征以形成本发明的可能没有明确描述或说明的进一步的实施例。尽管多个实施例可能已经被描述为提供优点或者就一个或更多个期望特性来说优于其它实施例或现有技术的实施方式,但是本领域普通技术人员应该认识到,取决于具体应用和实施方式,为了达到期望的整体系统属性,可以对一个或更多个特点或特性进行折衷。因此,被描述为在一个或更多个特性上相比于其它实施例或现有技术的实施方式不令人满意的实施例也未超出本公开的范围,并且这些实施例对于特定应用能够令人满意。
【主权项】
1.一种混合动力电动车辆车桥,包括: 锥形齿圈,被配置为通过差速器驱动左半轴和右半轴; 第一锥形小齿轮,与所述齿圈接合并适于从内燃发动机接收动力; 第二锥形小齿轮,与所述齿圈接合并适于从电动马达接收动力。2.如权利要求1所述的混合动力电动车辆车桥,进一步包括: 齿轮箱,被配置为经由两个动力流路径将动力从电动马达交替地传递到第二锥形小齿轮,所述两个动力流路径建立电动马达转速和第二锥形小齿轮转速的两个不同的转速比。3.如权利要求2所述的混合动力电动车辆车桥,其中,所述齿轮箱包括: 马达轴,固定地结合到电动马达的转子; 第一副轴齿轮和第二副轴齿轮,结合到马达轴; 副轴,固定地结合到第二锥形小齿轮; 第三副轴齿轮和第四副轴齿轮,结合到副轴,第三副轴齿轮和第四副轴齿轮分别与第一副轴齿轮和第二副轴齿轮连续啮合接合。4.如权利要求3所述的混合动力电动车辆车桥,其中: 第一副轴齿轮和第二副轴齿轮通过联结器交替地选择性地结合到马达轴; 第三副轴齿轮和第四副轴齿轮固定地结合到副轴。5.如权利要求4所述的混合动力电动车辆车桥,其中,所述联结器是同步器。6.如权利要求2所述的混合动力电动车辆车桥,其中,所述齿轮箱包括: 马达轴,固定地结合到电动马达的转子; 齿轮传动装置,在马达轴、第二锥形小齿轮、第一旋转元件和第二旋转元件之间建立固定的线性转速关系; 制动元件,被配置为交替地选择性地保持第一旋转元件和第二旋转元件不旋转。7.如权利要求6所述的混合动力电动车辆车桥,其中,建立固定的线性转速关系的齿轮传动装置包括: 第一中心齿轮,固定地结合到马达轴; 齿圈,固定地结合到第二锥形小齿轮; 齿轮架,作为第一旋转元件; 第二中心齿轮,作为第二旋转元件; 多个长行星齿轮,被支撑为相对于齿轮架旋转,每个长行星齿轮与齿圈和第二中心齿轮两者连续啮合接合; 多个短行星齿轮,被支撑为相对于齿轮架旋转,每个短行星齿轮与第一中心齿轮和所述长行星齿轮之一两者连续啮合接合。8.如权利要求1所述的混合动力电动车辆车桥,其中: 第一锥形小齿轮被支撑为围绕第一小齿轮轴线旋转,所述第一小齿轮轴线从齿圈轴线偏移第一偏移距离; 齿圈和第一锥形小齿轮利用准双曲面齿轮几何结构。9.如权利要求8所述的混合动力电动车辆车桥,其中: 第二锥形小齿轮被支撑为围绕第二小齿轮轴线旋转,所述第二小齿轮轴线从齿圈轴线偏移第二偏移距尚; 第二锥形小齿轮利用准双曲面齿轮几何结构。10.如权利要求9所述的混合动力电动车辆车桥,其中,第一偏移距离等于第二偏移距离。11.如权利要求10所述的混合动力电动车辆车桥,其中,第一锥形小齿轮的准双曲面齿轮几何结构和第二锥形小齿轮的准双曲面齿轮几何结构实质上相同。
【文档编号】B60K6/36GK105946544SQ201610134292
【公开日】2016年9月21日
【申请日】2016年3月9日
【发明人】戴维·艾伦·贾森, 格雷戈里·丹尼尔·格莱斯基, 克里斯托弗·约瑟夫·古阿拉奇诺
【申请人】福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1