一种多工况汽车电控悬架系统的制作方法_2

文档序号:10149060阅读:来源:国知局
方法;
[0046]步骤3),采用相应的具体控制策略来实现悬架系统的控制调节。
[0047]具体来说,汽车行驶工况的判定过程如下:
[0048]步骤1.1)当汽车方向盘转向转角传感器测得的方向盘转角δ在小于设定值δ ρ汽车加/减速度在小于某一参考值a。之间变动,电控单元即判定为一般直线行驶工况;
[0049]步骤1.2)当汽车方向盘转向转角传感器测得的方向盘转角δ在小于设定值δ ρ汽车加/减速度在短时间内突然超过某一设定参考值a。,且制动开关亮或者油门踏板开关亮,电控单元即判为变速直线行驶工况紧急制动或者突然起步/加速;
[0050]步骤1.3)汽车方向盘转向转角传感器测得的方向盘转角δ大于设定值δ ρ电控单元即判定为转向行驶工况。
[0051]确定汽车此刻的行驶工况后,所述的根据汽车的不同行驶工况,电控单元确定悬架系统的控制调整方法如下:
[0052]1)在一般直线行驶工况下,在车门已关好的情况下,若汽车的行驶速度V大于设定的高速临界值vH,持续时间t大于参考值t。,则表示汽车在较好路面上高速行驶,为了提高汽车的行驶稳定性和减少空气阻力,系统判定此时应控制悬架降低车身高度,减振器阻尼设置为“硬”状态,;若汽车的行驶速度V小于设定的低速临界值持续时间t大于参考值t。,车身位移传感器连续输出大幅度振动信号,则表示汽车在较差路面上低速行驶,为了提高汽车的通过性能,此时应控制悬架升高车身高度减振器阻尼设置为“软”状态,;若汽车的行驶速度介于高速临界值VH和低速临界值V 间,持续时间t大于参考值t。,此时应控制车身高度保持不变,减振器阻尼设置为“中”状态;
[0053]2)在变速直线行驶工况下,若汽车行驶速度V大于设定的高速临界值V’ H,检测到驾驶员猛踩制动踏板,且汽车纵向加速度大于0.2g时,则表示汽车进入制动工况,为了抑制车身点头,提高乘坐舒适性,此时应控制相应增大悬架前空气弹簧的刚度和阻尼,即此时电子控制单元发出指令给前侧空气弹簧充气,后侧空气弹簧放气,以保持汽车在水平位置;若汽车行驶速度V小于设定的低速临界值V’ p检测到驾驶员猛踩油门踏板,节气门开度突然变大,则表示汽车突然起步或加速,为了减少车身俯仰,提高乘坐舒适性,应控制相应增大悬架后空气弹簧的刚度和阻尼,即此时电子控制单元发出指令给后侧空气弹簧充气,前侧空气弹簧放气;
[0054]3)在转向行驶工况下,为抑制车身侧倾,应控制相应增大悬架外侧空气弹簧的刚度和阻尼,即电子控制单元发出指令给悬架执行机构,对外侧空气弹簧充气,内侧空气弹簧放气。
[0055]在本实施例中,考虑到汽车驾驶的实际情况和车辆的性能等因素,将进入转向工况的参考方向盘转角定为20度,持续时间参数确定为8秒。
[0056]在确定汽车的行驶工况和调整方法后,采用具体的控制方法如下:
[0057]建立分别建立悬架控制力与车身高度和气压腔内压力之间的非线性关系,并在此基础上建立直线行驶工况和转向工况下的电控悬架整车动力学模型和路面模型,通过试验验证此模型的准确性,同时根据不同工况下的动力学模型和控制指标,分别设计相应的局部控制器。
[0058]—般直线行驶工况下,各车身高度控制器为模糊PID控制器,如图3所示,将实际输出车身高度与参考输出之间的差值提供给模糊控制器,然后模糊控制器对PID控制器的参数进行实时整定。
[0059]如图4所示,为电控悬架控制方法示意图,我们分别设计垂直运动、侧倾运动和俯仰运动三个局部的力控制器,且三种都采用模糊PID控制器,其中垂直运动控制器的输入为车身垂向加速度与其参考值之间的差值及其差值变化率,PID控制器的输出为四个悬架控制力;侧倾运动控制器的输入为车身侧倾加速度与其参考值之间的差值及其差值变化率,PID控制器的输出为左右两对悬架控制力;俯仰运动控制器的输入为车身俯仰加速度与其参考值之间的差值及其变化率,PID控制器的输出为前后两对弹簧控制力。
[0060]在汽车的不同行驶工况下,为了保证悬架的操纵稳定性和行驶平顺性,需要对这三种力进行叠加和分配。这里设计上层协调控制器通过对传感器信号的分析计算,判断汽车所处的工况,以输出在各种工况下期望的悬架控制力,当上层控制目标作用与下层实际控制作用存在偏差时,采用模糊规则自整定三个控制器输出值的权重,以协调分配三个子控制器的控制作用,保证悬架在各个工况下都能准确输出控制力,使在全局性能最优。
[0061]如图2所示,为电控悬架控制主程序流程图,该电子控制悬架系统工作时,在不同的行驶工况下,信号处理单元采集车身状态传感器的信号,进行分析处理后,进而传送给电子控制单元,单片机经过运算处理,并按照事先计算好的悬架控制力与空气弹簧气压腔的压力之间的关系,把控制信号送给悬架执行器通过调整变阻尼器的调节杆旋转,实现悬架阻尼系数的改变,通过改变空气弹簧气压缸的气阀控制杆的旋转,从而改变主辅气室的压缩气流量,用来实现悬架刚度的调节,通过调节空气压缩机,从而调节空气弹簧主气室的压缩空气量,用来实现车身高度的改变。
[0062]本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本实用新型所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
[0063]以上所述的【具体实施方式】,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本实用新型的【具体实施方式】而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
【主权项】
1.一种多工况汽车电控悬架系统,其特征在于,包括信号处理模块、电子控制模块、驱动电路和悬架调节执行机构; 所述的信号处理模块包括方向盘转向转角传感器、车速传感器、车身高度传感器、节气门位置传感器、垂直加速度传感器、侧向加速度传感器、制动踏板传感器、油门踏板传感器、车门开关传感器、电荷放大器和A/D转换器,所述电荷放大器的输入端分别和方向盘转向转角传感器、车速传感器、车身高度传感器、节气门位置传感器、垂直加速度传感器、侧向加速度传感器、制动踏板传感器、油门踏板传感器、车门开关传感器相连,输出端通过A/D转换器和所述电子控制模块相连; 所述电子控制模块通过驱动电路和悬架调节执行机构相连,用于根据接受到的信号控制驱动电路驱动悬架调节执行机构工作; 所述悬架调节执行机构包含刚度调节执行器、高度调节执行器和阻尼调节执行器; 所述刚度调节执行器用于实现悬架刚度的调节; 所述高度调节执行器用于实现车身高度的调节; 所述阻尼调节执行器用于实现悬架阻尼系数的调节。2.根据权利要求1所述的多工况汽车电控悬架系统,其特征在于,所述的电子控制单元采用飞思卡尔MC9S08GB60型单片机。
【专利摘要】本实用新型公开了一种多工况汽车电控悬架系统,包括信号处理模块、电子控制模块和悬架调节执行机构,其中信号处理模块先对车速信号、车身状态信号等进行采集、处理和分析,并将车辆行驶工况分为一般直线行驶、变速直线行驶和转向行驶三种;电子控制模块根据不同的行驶工况,确定出最优的调整方式和控制策略,并通过驱动电路分别与悬架高度、刚度和阻尼调节执行机构相连。本实用新型采用单片机控制车辆悬架,具有安全性能高,成本低、响应快速、控制准确等优点,利用一种多工况控制方法来控制悬架系统,使车辆在整个行驶过程中具有良好的操纵稳定性和平顺性,提高了在全局工况下的整体性能。
【IPC分类】B60G17/018, B60G17/016
【公开号】CN205059121
【申请号】CN201520706798
【发明人】邓珂, 王春燕, 赵万忠
【申请人】南京航空航天大学
【公开日】2016年3月2日
【申请日】2015年9月11日
当前第2页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1