基于金属氢化物和共价有机框架材料的热能存储方法与流程

文档序号:14247110阅读:439来源:国知局

本发明属于能源存储技术领域,涉及一种化学反应热能存储方法,用于解决高温储热问题;尤其是一种基于金属氢化物和共价有机框架材料(covalentorganicframeworkcof)的热能存储方法。



背景技术:

热能存储在工业界具有广泛的应用,比如聚光太阳能热发电,核电厂移峰错谷,钢铁厂余热利用等。目前热能存储的方法主要分为三大类:显热储存、相变储存和化学反应储存。显热储存是利用储热材料的热容量,通过升高或降低材料的温度而实现热量的储存或释放的过程。相变储存是利用储热材料在热作用下发生相变而产生热量储存的过程。化学反应储存是利用化学反应的反应热的形式来进行储热。其中化学反应储存相对具有储能密度高,可长期储存等优点,是当前工程界热能存储研究的一个重要方向。

金属氢化物(氢化锂,氢化钠,氢化钾,氢化镁)的分解和合成可以吸收和释放大量热量;不同金属氢化物分解的温度的不同也可以满足不同温度的热源的热能存储需求。所以金属氢化物是理想的化学反应型的热能存储介质。但是反应分解出来的氢气的密度很低,导致热能存储密度很低。为了提高能量存储密度,必须提高氢气的存储密度。目前通用的做法是把氢气转化成另一种低温金属氢化物来储存。但是低温金属氢化物由相对不活泼金属与氢气结合生成,反应速率不高,限制了热能存储功率的提高;另外,氢气释放过程需要消耗很多额外热能,从而影响整体高温储能的效率。

自从2005年问世以来发展迅速且可在气体存储中广泛应用的共价有机框架(covalentorganicframeworkcof)材料是当下研究的热点材料。cof材料是一类多孔结晶有机物,由c、o、n、b等轻元素以共价键连接而构建,并经热力学控制的可逆聚合形成的晶形多孔材料,是一类重要的新型多孔材料,并且cof材料热稳定性和化学稳定性十分突出,可以广泛的用于气体的存储。因为cof对氢气的吸附能比金属氢化物的化学键能要小很多,因此,氢气释放过程消耗的热能也少很多;另外,特定类型的cof吸附和解吸氢气可以在常温下进行,这样就大大降低了氢气存储的成本,提高了存储效率。所以为了增加金属氢化物化学反应储热的实用性,与cof材料的结合就势在必行。



技术实现要素:

本发明的目的在于提供一种高温热能存储方法,以实现高温热能的存储。为实现上述发明目的,本发明采用了如下技术方案:

一种基于金属氢化物和共价有机框架(cof)材料的高温储热方法,特点是:通过密闭空间中的金属氢化物高温下分解来吸收热能,产生金属和氢气,氢气通过导管导入具有cof材料的封闭空间,cof材料发挥吸附作用,对氢气进行高密度存储;待需要热能输出时,适当升高cof材料温度,使cof材料解吸氢气,然后氢气沿导管回到盛有金属的密闭空间并与之反应生成金属氢化物从而放出大量热能。

所述金属氢化物是氢化锂(lih)、氢化钠(nah)、氢化钾(kh)或氢化镁(mgh2);共价有机框架(cof)材料是li-cof-105、li-cof-108、3d-cacof-d、cof-105、cof-108或sc-pbbacof。

所述氢气在金属氢化物分解所产生的自然压强下被共价有机框架(cof)材料吸附,该自然压强上限是100个大气压。

所述共价有机框架(cof)材料吸附和解吸氢气在室温~100℃之间进行。

所述金属氢化物与共价有机框架(cof)材料的质量比要满足如下条件:

若选用氢化锂与li-cof-105、li-cof-108、3d-cacof-d、cof-105、cof-108或sc-pbbacof搭配时,则氢化锂与所述cof的质量比分别介于0.0564~0.587之间、0.0483~0.577之间、0.0008~0.41之间、0.008~0.392之间、0.004~0.378之间、0.006~0.386之间;若选用氢化钠,则氢化钠与所述cof的质量比分别介于0.1692~1.762之间、0.1449~1.732之间、0.0024~1.229之间、0.024~1.176之间、0.012~1.134之间、0.018~1.157之间;若选用氢化钾,则氢化钾与所述cof的质量比分别介于0.282~2.937之间、0.2414~2.886之间、0.004~2.048之间、0.04~1.96之间、0.02~1.889之间、0.03~1.929之间;若选用氢化镁,则氢化镁与所述cof的质量比分别介于0.0916~0.954之间、0.0785~0.938之间、0.0013~0.666之间、0.013~0.637之间、0.0065~0.614之间、0.0098~0.627之间。

本发明利用金属氢化物高温下分解与合成的可逆化学反应,结合cof吸附与解吸氢气特点实现热能与化学能的相互转换,从而实现高温储热的目的。

本发明金属氢化物可以是氢化锂(lih),氢化钠(nah),氢化钾(kh),氢化镁(mgh2)的任意一种或多种的混合物,取决于储热温度。若储热温度为300-550度之间,可选用氢化镁;若储热温度为450-700度之间,则可选氢化钠和氢化钾及其混合物;若储热温度为950-1400度之间,可选用氢化锂。cof材料可以是li-cof-105、li-cof-108、3d-cacof-d、cof-105、cof-108或sc-pbbacof。

本发明的存储方法具有热能存储温度范围广,能量密度高,储热时间长等优点,在聚光太阳能热发电,核电厂移峰错谷,钢铁厂余热利用等领域具有潜在的应用价值。

附图说明

图1为本发明实施例1热能存储流程图;图中,(a)为储热模式,(b)为放热模式。

具体实施方式

以下结合附图及实施例对本发明的技术方案作进一步的说明。

参阅图1,实现本发明热能存储方法所基于的系统包括储热端、cof端以及连接两端的导管装置。图中,(a)为储热模式,右侧方框为盛有金属氢化物(氢化钠)的封闭空间;箭头管线为用于输送氢气的导管装置,导管上设有阀门和冷却器;左侧方框为盛有cof材料的封闭空间;图中,(b)为放热模式,左侧方框为盛有cof材料及其所吸附的氢气的封闭空间;箭头管线为用于输送氢气的导管装置,导管上设有阀门;右侧方框为盛有金属(钠)的封闭空间;两侧箭头分别表示低温热能和高温热能流动方向。

储热端的金属氢化物,可以是氢化锂(lih),氢化钠(nah),氢化钾(kh),氢化镁(mgh2)的任意一种或多种的混合物,取决于储热温度。若储热温度为300-550度之间,可选用氢化镁;若储热温度为450-700度之间,则可选氢化钠和氢化钾及其混合物;若储热温度为950-1400度之间,可选用氢化锂。cof材料可以是li-cof-105、li-cof-108、3d-cacof-d、cof-105、cof-108或sc-pbbacof。

具体而言,该方法的储热过程如下:密闭空间中的金属氢化物高温下吸热分解为金属和高温氢气,金属以液体或固体的状态留在原密闭空间,高温氢气则经过导管先冷却至室温,然后输送到cof端的密闭空间进行吸附存储;随着产生的氢气的增多,氢气压强以及cof对氢的吸附率的也会持续增加。因为吸附能的原因,氢气吸附过程中可能会产生的少量热量导致cof温度升高,为提高吸附率和保护cof,必要情况下需要给cof降温从而维持cof温度低于100度。

该方法放热过程如下:适当升高cof温度(低于100度),使氢气解吸,氢气经导管传输到盛有金属的密闭空间;预热金属至反应温度(大于300度),使之与氢气反应产生高温释放热量。

cof材料和金属氢化物的比例需适中,确保产生的所有氢气均能在规定的条件下(室温,1~100个大气压之间)被cof材料吸收。为此,若储热端选用氢化锂,cof端选用li-cof-105、li-cof-108、3d-cacof-d、cof-105、cof-108或sc-pbbacof中一种,则氢化锂与6种cof的质量比应该分别介于0.0564~0.587之间、0.0483~0.577之间、0.0008~0.41之间、0.008~0.392之间、0.004~0.378之间、0.006~0.386之间;若选用氢化钠,则氢化钠与上述6种cof的质量比应该分别介于0.1692~1.762之间、0.1449~1.732之间、0.0024~1.229之间、0.024~1.176之间、0.012~1.134之间、0.018~1.157之间;若选用氢化钾,则氢化钾与上述6种cof的质量比应该分别介于0.282~2.937之间、0.2414~2.886之间、0.004~2.048之间、0.04~1.96之间、0.02~1.889之间、0.03~1.929之间;若选用氢化镁,则氢化镁与上述6种cof的质量比应该分别介于0.0916~0.954之间、0.0785~0.938之间、0.0013~0.666之间、0.013~0.637之间、0.0065~0.614之间、0.0098~0.627之间。

另外,在储热过程中,为保护cof免受高温损伤,高温氢气到达cof之前需要冷却至室温。

放热过程中热能输出功率可以通过控制cof的温度来调节。因为金属与氢气反应的速率跟氢气的压强成正比,氢气压强可以由cof的解吸速率来控制,而cof的解吸速率跟温度成正比,所以要提高热能输出功率,只需要升高cof的温度既可。

储热完毕时要关闭导管的氢气阀门,使储热端与cof端处于各自封闭状态。由于是以化学能的形式存储热能,所以热能存储时间不受限制,可以存储任意长时间。另外,如果是热能短时间存储,则储热端可以采用绝热系统。储热结束后产生的金属可以一直维持高温,那么放热时就不需要预热。

实施本发明具体步骤如下:

步骤1:设置两个密闭空间,并通过导管将两密闭空间连通,导管上设一阀门,阀门一侧设一冷却器,密闭空间和导管要能够承受至少100个大气压;

步骤2:在两密闭空间中分别放入金属氢化物及cof材料,其金属氢化物及cof材料的物质量的比要落在如前所述的范围;打开阀门,将两密闭空间和导管内剩余的空气抽出或者通入氢气将空气排出。

步骤3:打开冷却器,高温热源对置有金属氢化物的密闭空间升温;氢气经过导管先冷却至室温,然后输送到置有cof的密闭空间进行吸附存储;保持置有cof材料的密闭空间在室温;3-6小时后,储热完毕,关闭阀门;

步骤4:当需放热时,打开阀门,保持cof材料的密闭空间不低于室温,从而使氢气解吸,氢气经导管传输到盛有金属的密闭空间;预热金属至400℃-600℃,使之与氢气反应产生高温释放热能。若氢气压强太低而影响到热输出功率,则可适当升高cof材料的温度(不高于100℃),使氢气加速解吸以加大氢气压强从而提高热量输出功率。

实施例1

储热温度为950~1400℃

a:储热端密闭空间放入氢化锂,cof材料端密闭空间放入li-cof-105材料,两者质量比为0.587。打开阀门,将两密闭空间和导管内剩余的空气抽出或者通入氢气将空气排出。

b:打开冷却器,高温热源加热氢化锂至1400℃;氢气经过导管先冷却至室温,然后输送到置有li-cof-105材料的密闭空间进行吸附存储;保持置有li-cof-105材料的密闭空间在室温;3-6小时后,储热完毕,关闭阀门;

c:当需放热时,打开阀门,保持cof材料的密闭空间不低于室温,从而使氢气解吸,氢气经导管传输到盛有金属锂的密闭空间;预热金属锂至600℃,使之与氢气反应产生高温释放热量。当氢气压强低于50个大气压时,可适当升高li-cof-105材料的温度(不高于100℃),使氢气加速解吸以加大氢气压强从而提高热输出功率。

实施例2

储热温度为450-700℃

a:储热端密闭空间放入氢化钠,cof材料端密闭空间放入li-cof-108材料,两者质量比为1.732。打开阀门,将两密闭空间和导管内剩余的空气抽出或者通入氢气将空气排出。

b:打开冷却器,高温热源加热氢化钠至700℃;氢气经过导管先冷却至室温,然后输送到置有li-cof-108的密闭空间进行吸附存储;保持置有li-cof-108材料的密闭空间在室温;3-6小时后,储热完毕,关闭阀门;

c:当需放热时,打开阀门,保持cof材料的密闭空间不低于室温,从而使氢气解吸,氢气经导管传输到盛有金属钠的密闭空间;预热金属钠至400℃,使之与氢气反应产生高温释放热量。当氢气压强低于50个大气压时,可适当升高li-cof-108材料的温度(不高于100℃),使氢气加速解吸以加大氢气压强从而提高热输出功率。

实施例3

储热温度为300-550℃

a:储热端密闭空间放入氢化镁,cof材料端密闭空间放入3d-cacof-d材料,两者质量比为0.666。打开阀门,将两密闭空间和导管内剩余的空气抽出或者通入氢气将空气排出。

b:打开冷却器,高温热源加热氢化镁至550℃;氢气经过导管先冷却至室温,然后输送到置有3d-cacof-d材料的密闭空间进行吸附存储;保持置有3d-cacof-d材料的密闭空间在室温;3-6小时后,储热完毕,关闭阀门;

c:当需放热时,打开阀门,保持cof材料的密闭空间不低于室温,从而使氢气解吸,氢气经导管传输到盛有金属镁的密闭空间;预热金属镁至400℃,使之与氢气反应产生高温释放热量。当氢气压强低于50个大气压时,可适当升高3d-cacof-d材料的温度(不高于100℃),使氢气加速解吸以加大氢气压强从而提高热输出功率。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1