一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置的制作方法

文档序号:18906856发布日期:2019-10-18 22:50阅读:199来源:国知局
一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置的制作方法

本发明涉及一种深冷分离装置,更具体一点说,涉及一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置,属于化工领域。



背景技术:

乙二醇生产能力和产量远不能满足国内聚酯等日益增长的市场需求,其自给率不足60%,主要依赖进口。目前以合成气为原料制取乙二醇技术取得了重大突破,并具有很大的经济优势,得到了蓬勃发展,极大的促进了co深冷分离装置需求量的快速增长。乙二醇的生产原料有煤气化的合成气、天然气转化的合成气、焦炉气转化的合成气、电石炉尾气的合成气,煤气化的合成气经变换、低温甲醇洗净化后的原料气通常比较干净,但天然气、焦炉气、电石炉尾气转化的合成气中通常含有少量的烯烃组分,将造成深冷分离装置中分子筛吸附存在二氧化碳和烯烃存在竞争吸附和冷箱内烯烃低温下冻结设备和管道,所以需要采用新型的分子筛吸附剂及具有脱除乙烯功能,并脱除氢气、甲烷、氮气的co深冷分离装置冷箱得到高纯度的co产品气。

目前,co深冷分离方法所发表的专利有co/h2两元组分的单塔流程,中国专利文献cn200980113560.5)中记载实现氢气的脱除,但co纯度最大达到98.5%,纯度比较低,无法满足高纯度co产品气(≥99%以上)的要求,而对于杂质n2、ch4的进一步提纯分离,中国专利cn201480063530.9中记载采用的双塔、三塔流程,中国专利cn201611184618.3中记载在氮气循环制冷过程中采用三塔流程进行co的提纯分离,但目前市场上并未研发出一种深冷分离装置以用于对含有烯烃、h2、n2、ch4的混合气进行分离得到高纯度的co。



技术实现要素:

本发明的目的在于提供了一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置,主要对含有的烯烃、氢气、一氧化碳、氮气、甲烷混合气的分离处理,该混合气主要来源于电石炉尾气、天然气、焦炉尾气等转化的合成气,本发明具有脱乙烯功能,能够分离获得的高纯度的co产品气,纯度达到99%以上,其中h2和ch4含量均小于50ppm,回收率比较高,同时副产高纯度的ch4产品气可以满足多种合成装置要求,而且可以解决了分离过程中乙烯、甲烷在低温下易冻结问题,能耗低、投资小、易于调节。

为了实现上述目的,本发明是通过以下技术方案实现的:

一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置,包括分子筛吸附单元、深冷分离装置冷箱单元、co循环压缩机单元,所述分子筛吸附单元、深冷分离装置冷箱单元间连通,所述深冷分离装置冷箱单元、co循环压缩机单元间连通,混合气体送至分子筛吸附单元净化,净化后的气体进入深冷分离装置冷箱单元进行分离,所述co循环压缩机单元为深冷分离装置冷箱单元提供压力。

作为一种改进,所述深冷分离装置冷箱单元包括一号主板翅式换热器、二号主板翅式换热器、脱乙烯塔、富氢气分离罐、脱氢塔、脱甲烷塔、脱氮塔塔顶冷凝器、脱氮塔回流罐以及多个管道、多个节流阀门,所述一号主板翅式换热器、二号主板翅式换热器、脱乙烯塔、富氢气分离罐、脱氢塔、脱甲烷塔、脱氮塔塔顶冷凝器、脱氮塔回流罐间通过管道、节流阀门连通,脱乙烯塔上部内腔中设置有脱乙烯塔冷凝器,脱乙烯塔下部内腔设置有脱乙烯塔再沸器,脱氢塔下部内腔内设置有脱氢塔再沸器,脱甲烷塔上部内腔设置脱甲烷塔冷凝器,下部内腔设置有脱甲烷塔塔顶再沸器,所述主板翅式换热器中设置有12个相互独立的流道,其包括流道a、流道b、流道c、流道d、流道e、流道f、流道g、流道h、流道i、流道j、流道k、流道l,二号主板翅式换热器中设置有13个相互独立的流道,其包括流道a、流道b、流道c、流道d、流道e、流道f、流道g、流道h、流道i、流道j、流道k、流道l、流道m,所述脱氮塔塔顶冷凝器中设置有3个相互独立的流道,其包括流道o、流道p、流道q。

作为一种改进,深冷分离装置冷箱单元入口管道与一号主板翅式换热器中流道b上端相连通,流道b下端通过管道与脱乙烯塔中部进料口相连通,脱乙烯塔上部内腔中设置有脱乙烯塔冷凝器用于塔顶气体的冷凝,脱乙烯塔冷凝器分别与一号co循环制冷管道、二号co循环制冷管道相连通,脱乙烯塔下部内腔设置有脱乙烯塔再沸器,脱乙烯塔再沸器分别与三号co循环制冷管道、四号co循环制冷管道相连通,用于co循环气对塔底液体进行加热,脱乙烯塔底部通过带有阀门的后,与一号主板翅式换热器的流道c下端相连通,流道c上端通过管道与乙烯尾气收集装置相连接,脱乙烯塔顶部通过管道与二号主板翅式换热器的流道b的上端相连接,流道b下端通过管道与富氢气分离罐的中部入口相连通,经二号主板翅式换热器冷却冷凝后的气体在富氢气分离罐中进行气液分离。

作为一种改进,所述富氢气分离罐通过管道与主板翅式换热器的流道c的下端相连接,流道c的上端通过管道与主板翅式换热器的流道e的下端相连通,经一号主板翅式换热器、二号主板翅式换热器回收冷量后通过管道与富氢气收集装置相连接,富氢气分离罐底部通过管道引出来的液体分为两个支路,一条支路通过管道、节流阀后,与二号主板翅式换热器的流道d的下端相连通,流道d的上端出口通过管道与脱氢塔的中部入口相连接进行,另一条支路通过管道、节流阀后与脱氢塔的上部入口相连接。

作为一种改进,脱氢塔下部内腔内设置有脱氢塔再沸器,脱氢塔再沸器分别与五号co循环制冷管道、六号co循环制冷管道相连通,用于co循环气体为脱氢塔提供再沸热量,脱氢塔顶部通过管道与二号主板翅式换热器的流道e的下端相连通,流道e上端通过管道与一号主板翅式换热器的流道f的下端相连通,经一号主板翅式换热器、二号主板翅式换热器回收冷量后通过管道与含氢尾气收集装置相连接;脱氢塔底部通过管道引出来的液体经节流阀、管道后与二号主板翅式换热器的流道f的下端相连通,经过二号主板翅式换热器复热通过管道脱甲烷塔的中部入口相连接,在脱甲烷塔中将气体中的甲烷组分进行脱除。

作为一种改进,脱甲烷塔上部内腔设置脱甲烷塔冷凝器,用于脱甲烷塔塔顶气体的冷凝,脱甲烷塔冷凝器分别与七号co循环制冷管道、八号co循环制冷管道相连通;脱甲烷塔下部内腔设置脱甲烷塔再沸器,脱甲烷塔再沸器分别与九号co循环制冷管道、十号co循环制冷管道相连通;脱甲烷塔底部通过管道与一号主板翅式换热器的流道k的下端相连通,经过一号主板翅式换热器复热后的甲烷气通过管道与甲烷气cng收集装置相连接;脱甲烷塔顶部通过管道与脱氮塔中部入口相连接。

作为一种改进,脱氮塔顶部出口通过管道与脱氮塔塔顶冷凝器的流道o上端相连通,流道o下端通过管道与脱氮塔回流罐的中部入口相连接,脱氮塔回流罐顶部通过管道与二号主板翅式换热器的流道k的下端相连通,流道k上端通过管道与一号主板翅式换热器的流道j的下端相连通,经一号主板翅式换热器、二号主板翅式换热器回收冷量后的富氮气体通过管道与富氮尾气收集装置相连接,脱氮塔回流罐底部通过管道与脱氮塔上部液相入口相连接,用于脱氮塔调节塔内回流比。

作为一种改进,脱氮塔底部管道分为两个支路,其中,一条支路中管道与二号主板翅式换热器的流道m下端相连通,流道m中部出口通过管道与脱氮塔的下部气相入口相连接;脱氮塔底部通过另一条支路中管道、节流阀门后与脱氮塔塔顶冷凝器的流道p下端相连通,经节流膨胀后的co液体管道与汇合管道相连通。

作为一种改进,来自co循环压缩机单元高压出口管道的高压co气体与主板翅式换热器的流道a相连通,在一号主板翅式换热器中流道a的上部支流道出口通过管道与脱乙烯塔塔底再沸器相连通,脱乙烯塔塔底再沸器出口管道与一号主板翅式换热器流道a中下部支流道相连通,上部支流道、下部支流道均与流道a汇合,一号主板翅式换热器流道a下端出口管道分为一号支管道、二号支管道,一号支管道与脱氢塔塔底再沸器入口相连通,脱氢塔塔底再沸器出口通过管道与管道汇合,二号支管道与脱甲烷塔塔底再沸器入口相连通,脱甲烷塔塔底再沸器出口通过管道与管道汇合,管道汇合后分为两个支路,其中一条支路通过节流阀门、管道后与脱乙烯塔塔顶冷凝器入口相连通,脱乙烯塔塔顶冷凝器出口通过管道与二号主板翅式换热器中部入口流道a相连通,流道a上端通过管道与主板翅式换热器流道d下端入口相连通,经回收冷量后的较高压力co气体通过管道(20)与co循环压缩机单元的三级入口相连通;另一条支路通过管道与二号主板翅式换热器的流道g上端入口相连通,流道g下端出口通过管道分为一号支管路,二号支管路,二号支管路中通过节流阀门、管道后与脱甲烷塔塔顶冷凝器入口管道相连通,脱甲烷塔塔顶冷凝器出口通过管道与汇合管道相连通,节流阀门分流出有管道,管道与管道相连通,为脱氮塔塔顶冷凝器提供冷量;一号支管路中通过阀门、管道后与汇合管道相连通;来自co循环压缩机单元的低压出口管道分为两股,一股通过管道与co产品气收集装置相连通,另一股通过管道与一号主板翅式换热器的流道g上端入口相连通,流道g下端通过管道与二号主板翅式换热器的流道h上端入口相连通,经过冷凝后的co循环液体通过管道分为两个支路,一条支路依次通过管道、节流阀门后与汇合管道相连通;汇合管道与二号主板翅式换热器的流道i下端入口相连通,流道i上端出口通过管道与一号主板翅式换热器流道h下端入口相连通,经一号主板翅式换热器、二号主板翅式换热器回收冷量后的中压等级co循环气体通过管道与co循环压缩机单元二级入口相连接;另一条支路依次通过管道、节流阀门后与二号主板翅式换热器的流道j下端入口相连通,流道j上端出口通过管道与一号主板翅式换热器的流道i下端入口相连通,经回收冷量后的低压等级的co循环气体通过管道与co循环压缩机单元一级入口相连接。

作为一种改进,一号主板翅式换热器、二号主板翅式换热器设置有液氮补充通道,外部液氮通过管道、节流阀后与液氮虹吸罐相连通,液氮虹吸罐罐底液体通过管道与二号主板翅式换热器的流道l的中部入口相连通,液氮虹吸罐罐顶气体依次通过流道l、管道后与一号主板翅式换热器中的流道k下端入口相连通,经一号主板翅式换热器、二号主板翅式换热器回收冷量后的低压氮气通过管道与低压氮气收集装置相连接;

脱乙烯塔为填料精馏塔,脱氢塔为板式精馏塔或填料精馏塔,脱甲烷塔为填料精馏塔,脱氮塔为填料精馏塔。

有益效果:深冷分离装置冷箱单元入口管道与一号主板翅式换热器的流道1b相连通,并在流道1b中冷却后通过管道与脱乙烯塔中部进料口相连通,在脱乙烯塔中将工艺气中的乙烯脱除干净,避免乙烯在低温部分冻结设备和管道;具有脱乙烯功能,并且能够分离获得的高纯度的co产品气,纯度可以达到99%以上,气体中中h2和ch4含量均小于50ppm,回收率比较高,同时副产高纯度的ch4产品气可以满足多种合成装置要求;可以解决分离过程中乙烯、甲烷在低温下易冻结问题,具有能耗低、投资小、易于调节等特点。

附图说明

图1是深冷分离装置的连接结构示意图。

具体实施方式

以下结合说明书附图,对本发明作进一步说明,但本发明并不局限于以下实施例。

如图1所示为一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置的具体实施例,该实施例一种集成脱乙烯、脱氢、脱甲烷、脱氮功能为一体的深冷分离装置,包括分子筛吸附单元ⅰ、深冷分离装置冷箱单元ⅱ、co循环压缩机单元ⅲ,分子筛吸附单元ⅰ、深冷分离装置冷箱单元ⅱ间连通,深冷分离装置冷箱单元ⅱ、co循环压缩机单元ⅲ间连通,混合气体送至分子筛吸附单元ⅰ净化,净化后的气体进入深冷分离装置冷箱单元ⅱ进行分离,co循环压缩机单元ⅲ为深冷分离装置冷箱单元ⅱ提供压力;

将含有乙烯、一氧化碳、氢气、甲烷和少量氮气的混合气首先通过管道送至分子筛吸附单元ⅰ,分子筛吸附单元ⅰ内装填分子筛,分子筛在不吸附乙烯的前提下,吸附混合气中的二氧化碳、甲醇或水等低温下易凝固组分,防止这些物质冻结管道及设备,净化后的气体引入深冷分离装置冷箱ⅱ进行分离提纯,co循环压缩机单元ⅲ为深冷分离装置冷箱单元ⅱ提供压力。

深冷分离装置冷箱单元ⅱ包括一号主板翅式换热器1、二号主板翅式换热器2、脱乙烯塔3、富氢气分离罐6、脱氢塔7、脱甲烷塔9、脱氮塔塔顶冷凝器13、脱氮塔回流罐14以及多个管道、多个节流阀门,一号主板翅式换热器1、二号主板翅式换热器2、脱乙烯塔3、富氢气分离罐6、脱氢塔7、脱甲烷塔9、脱氮塔塔顶冷凝器13、脱氮塔回流罐14间通过管道、节流阀门连通,脱乙烯塔3上部内腔中设置有脱乙烯塔冷凝器5,脱乙烯塔3下部内腔设置有脱乙烯塔再沸器4,脱氢塔7下部内腔内设置有脱氢塔再沸器8,脱甲烷塔9上部内腔设置脱甲烷塔冷凝器11,下部内腔设置有脱甲烷塔塔顶再沸器10,主板翅式换热器1中设置有12个相互独立的流道,其包括流道a101、流道b102、流道c103、流道d104、流道e105、流道f106、流道g107、流道h108、流道i109、流道j110、流道k111、流道l112,二号主板翅式换热器2中设置有13个相互独立的流道,其包括流道a201、流道b202、流道c203、流道d204、流道e205、流道f206、流道g207、流道h208、流道i209、流道j210、流道k211、流道l212、流道m213,所述脱氮塔塔顶冷凝器13中设置有3个相互独立的流道,其包括流道o301、流道p302、流道q303;

所述管道具有70个,以自然数15至84标记,所述节流阀门有11个,依次序以v1至v11进行标记,管道用于塔、换热器等间进行连通,节流阀安装在管道上用于节流。

深冷分离装置冷箱单元ⅱ入口管道15与一号主板翅式换热器1中流道b102上端相连通,流道b102下端通过管道16与脱乙烯塔3中部进料口相连通,首先在一号主板翅式换热器1中将工艺气冷却至-135℃左右,然后在脱乙烯塔3中将工艺气中的乙烯脱除干净,避免乙烯在低温部分冻结设备和管道,脱乙烯塔3上部内腔中设置有脱乙烯塔冷凝器5用于塔顶气体的冷凝,脱乙烯塔冷凝器5分别与一号co循环制冷管道63、二号co循环制冷管道18相连通,脱乙烯塔3下部内腔设置有脱乙烯塔再沸器4,脱乙烯塔再沸器4分别与三号co循环制冷管道54、四号co循环制冷管道55相连通,用于co循环气对塔底液体进行加热,脱乙烯塔3底部通过管道21、阀门v1、管道22后,与一号主板翅式换热器1的流道c103下端相连通,流道c103上端通过管道23与乙烯尾气eth收集装置相连接,脱乙烯塔3顶部通过管道17与二号主板翅式换热器2的流道b202的上端相连接,流道b202下端通过管道24与富氢气分离罐6的中部入口相连通,经二号主板翅式换热器2冷却冷凝至-175℃-181℃后的气体在富氢气分离罐6中进行气液分离。

富氢气分离罐6通过管道25与主板翅式换热器2的流道c203的下端相连接,流道c203的上端通过管道26与主板翅式换热器1的流道e105的下端相连通,经一号主板翅式换热器1、二号主板翅式换热器2回收冷量后通过管道27与富氢气hg收集装置相连接,富氢气分离罐6底部通过管道28引出来的液体分为两个支路,一条支路通过管道29经节流阀v2、管道30后,与二号主板翅式换热器2的流道d204的下端相连通,流道d204的上端出口通过管道31与脱氢塔7的中部入口相连接进行,另一条支路通过节流阀v3、管道32后与脱氢塔7的上部入口相连接,在脱氢塔7中将气体中的氢气组分进行脱除。

脱氢塔7下部内腔内设置有脱氢塔再沸器8,用于塔底液体的加热,脱氢塔再沸器8分别与五号co循环制冷管道57、六号co循环制冷管道58相连通,用于co循环气体为脱氢塔7提供再沸热量,脱氢塔7顶部通过管道33与二号主板翅式换热器2的流道e205的下端相连通,流道e205上端通过管道34与一号主板翅式换热器1的流道f106的下端相连通,经一号主板翅式换热器1、二号主板翅式换热器2回收冷量后通过管道35与含氢尾气fhg收集装置相连接;脱氢塔7底部通过管道36引出来的液体经节流阀v4、管道37后与二号主板翅式换热器2的流道f206的下端相连通,经过二号主板翅式换热器2复热通过管道38脱甲烷塔9的中部入口相连接,在脱甲烷塔9中将气体中的甲烷组分进行脱除。

脱甲烷塔9上部内腔设置脱甲烷塔冷凝器11,用于脱甲烷塔9塔顶气体的冷凝,脱甲烷塔冷凝器11分别与七号co循环制冷管道69、八号co循环制冷管道70相连通,用于co循环液为脱甲烷塔9提供冷量;脱甲烷塔9下部内腔设置脱甲烷塔再沸器10,用于塔底液体的加热,脱甲烷塔再沸器10分别与九号co循环制冷管道59、十号co循环制冷管道60相连通,用于co循环气体为脱甲烷塔9提供再沸热量;脱甲烷塔9底部通过管道39与一号主板翅式换热器1中流道k111的下端相连通,经过一号主板翅式换热器1复热后的甲烷气cng通过管道40与甲烷气cng收集装置相连接;脱甲烷塔9顶部通过管道41与脱氮塔12中部入口相连接,然后在脱氮塔12中将工艺气中的氮气组分进行脱除。

脱氮塔12顶部出口通过管道47与脱氮塔塔顶冷凝器13的流道o301上端相连通,流道o301下端通过管道48与脱氮塔回流罐14的中部入口相连接,脱氮塔回流罐14顶部通过管道44与二号主板翅式换热器2的流道k211的下端相连通,流道k211上端通过管道45与一号主板翅式换热器1的流道j110的下端相连通,经一号主板翅式换热器1、二号主板翅式换热器2回收冷量后的富氮气体fng通过管道46与富氮尾气fng收集装置相连接,脱氮塔回流罐14底部通过管道49与脱氮塔12上部液相入口相连接,用于脱氮塔12调节塔内回流比。

脱氮塔12底部管道50分为两个支路,其中,一条支路中管道42与二号主板翅式换热器2的流道m213下端相连通,流道m213中部出口通过管道43与脱氮塔12的下部气相入口相连接,其作用在于利用主板翅式换热器2为脱氮塔12提供再沸热量;脱氮塔12底部通过另一条支路中经过节流阀门v5、管道51后与脱氮塔塔顶冷凝器13的流道p302下端相连通,流道p302上端与管道52相连通,经节流膨胀后的co液体管道52与汇合管道73相连通,从而为脱氮塔冷凝器13提供冷量。

来自co循环压缩机单元ⅲ高压出口管道53的高压co气体与一号主板翅式换热器1的流道a101相连通,在一号主板翅式换热器1中流道a101的上部支流道1a-1出口通过管道54与脱乙烯塔塔底再沸器4相连通,为脱乙烯塔3提供再沸热量,脱乙烯塔塔底再沸器4出口管道55与一号主板翅式换热器1流道a101中下部支流道1a-2相连通,上部支流道1a-1、下部支流道1a-2均与流道a汇合,一号主板翅式换热器1流道a101下端出口管道56分为一号支管道57、二号支管道59,一号支管道57与脱氢塔塔底再沸器8入口相连通,脱氢塔塔底再沸器8出口通过管道58与管道61汇合,在此过程为脱氢塔7提供热量,二号支管道59与脱甲烷塔塔底再沸器10入口相连通,脱甲烷塔塔底再沸器10出口通过管道60与管道61汇合,在此过程为脱甲烷塔9提供热量;管道61汇合后分为两个支路,其中一条支路通过管道62、节流阀门v6、管道63后与脱乙烯塔塔顶冷凝器5入口相连通,为脱乙烯塔塔顶冷凝器5提供冷量,脱乙烯塔塔顶冷凝器5出口通过管道18与二号主板翅式换热器2中部入口流道a201相连通,流道a201上端通过管道19与主板翅式换热器1流道d104下端入口相连通,经回收冷量后的较高压力co气体通过管道(20)与co循环压缩机单元ⅲ的三级入口相连通;另一条支路通过管道64与二号主板翅式换热器2的流道g上端入口相连通,流道g207下端出口通过管道65分为一号支管路66,二号支管路68,二号支管路68中通过节流阀门v7、管道69后与脱甲烷塔塔顶冷凝器9入口管道相连通,脱甲烷塔塔顶冷凝器9出口通过管道70与汇合管道73相连通,为脱甲烷塔塔顶冷凝器9提供冷量,节流阀门v7分流出有管道71,管道71依次连接流道q303、管道72后与管道52相连通,为脱氮塔塔顶冷凝器13提供冷量;一号支管路66中通过阀门v8、管道67后与汇合管道73相连通;来自co循环压缩机单元ⅲ的低压出口管道分为两股,一股通过管道85与co产品气co收集装置相连通,作为co产品气输出送至下游合成装置,另一股通过管道74与一号主板翅式换热器1的流道g107上端入口相连通,流道g107下端通过管道75与二号主板翅式换热器2的流道h208上端入口相连通,经过冷凝后的co循环液体通过管道76分为两个支路,一条支路通过管道81、节流阀门v9、管道82后与汇合管道73相连通,为换热器提供中等压力的冷量;汇合管道73与二号主板翅式换热器2的流道i209下端入口相连通,流道i209上端出口通过管道83与一号主板翅式换热器1流道h108下端入口相连通,经一号主板翅式换热器1、二号主板翅式换热器2回收冷量后的中压等级co循环气体通过管道84与co循环压缩机单元ⅲ二级入口相连接;另一条支路通过管道77、节流阀门v10、管道78与二号主板翅式换热器2的流道j210下端入口相连通,流道j210上端出口通过管道79与一号主板翅式换热器1的流道i109下端入口相连通,经回收冷量后的低压等级的co循环气体通过管道80与co循环压缩机单元ⅲ一级入口相连接。

一号主板翅式换热器1、二号主板翅式换热器2设置有液氮补充通道,外部液氮通过管道ln、节流阀v11后与液氮虹吸罐88相连通,液氮的蒸发采用热虹吸方法,液氮虹吸罐88罐底液体通过管道87与二号主板翅式换热器2的流道l212的中部入口相连通,液氮虹吸罐88罐顶气体依次通过流道l212、管道89后与一号主板翅式换热器1中的流道k111下端入口相连通,经一号主板翅式换热器1、二号主板翅式换热器2回收冷量后的低压氮气通过管道90与低压氮气ng收集装置相连接,从而采用液氮的蒸发为系统提供冷量;

脱乙烯塔5为填料精馏塔,脱氢塔7为板式精馏塔或填料精馏塔,脱甲烷塔9为填料精馏塔,脱氮塔12为填料精馏塔。

一号主板翅式换热器1、二号主板翅式换热器2、脱乙烯塔塔底再沸器4、脱乙烯塔塔顶冷凝器5、脱氢塔塔底再沸器8、脱甲烷塔塔底再沸器10、脱甲烷塔塔顶冷凝器9、脱氮塔塔顶冷凝器13均采用板翅式换热器,内部热虹吸进行热量和冷量的交换,其变形后可放置于精馏塔塔外部采用外部热虹吸蒸发器为精馏塔提供热量。

最后,需要注意的是,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1