一种稀土纳米复合催化剂及其制备方法和应用的制作方法

文档序号:4975318阅读:192来源:国知局
专利名称:一种稀土纳米复合催化剂及其制备方法和应用的制作方法
技术领域
本发明属于催化剂领域,涉及一种稀土纳米复合催化剂及其制备方法和应用,具体 地说涉及一种含有铈元素、铜元素、钾元素的稀土纳米复合催化剂及其制备方法和在氯 化氢催化氧化制氯中的应用。
技术背景.
氯是氯碱行业的主要产品之一,广泛应用于化学、冶金、造纸、纺织、医药、石油 化工、饮水消毒和环保工业等领域。在以氯为原料生产许多工业产品时会产生大量的副 产HC1气体, 一般采用水吸收法,将副产氯化氢制成低附加值的盐酸出售,但由于副产 HC1气体中或多或少含有原料、副产物或产品等杂质,导致副产盐酸品质低劣,使用范 围狭窄,不但价格低而且销售困难,部分企业甚至被迫采用碱中和、水稀释后排放等手 段维持生产,不仅环境污染严重,而且造成氯资源浪费。随着工业上对氯的需求不断增 长,将副产氯化氢转化成氯已成为化工资源利用和环境保护的重大课题。
氯化氢氧化制氯气技术的核心之一是催化剂,国际著名化工公司对该技术一直高度 重视,开发了一系列的催化剂。专利US4123389采用无水分步浸渍法制备了以硅胶、氧 化钛或氧化铝为载体的,负载有以铜为主要活性组分的催化剂,活性组分在载体上的负 载量为25~70%之间,在37(TC下氯化氢的转化率为80%左右。然而该催化剂的制备需 要在有机溶剂乙腈及甲酸溶液中进行浸渍,制备过程对环境污染较为严重。专利 GB2120225采用沉淀浸渍的方法制备了以二氧化钛为载体的含铜催化剂,其制备过程产 生的废水量也较大。专利US5716592报道了采用络氧化物与稀土铈复合的催化剂,但由 于铬的毒性较大,且铬与氯气极易形成低沸点的氧氯化铬,容易造成活性组分流失使催 化剂失活,因此降低了其工业应用价值。专利WO2008131857建议使用钌氯化物为催化 剂,但该催化剂的制备价格昂贵。专利CA823197、 CA920775分别釆用丝光沸石或分子 筛为载体,采用离子交换法制备催化剂,过程较为繁杂,所得氯化氢氧化反应的转化率 仅为52.8°/。和69%,且反应温度太高,容易引起活性组分的流失。因此,进一步研制具 有高活性、经济实用且制备过程环境友好的催化剂,对于实现氯化氢氧化制氯技术工业化和氯资源循环利用是十分必要的。

发明内容
本发明的目的是提供一种稀土纳米复合催化剂。 本发明的另一个目的是提供上述催化剂的制备方法。
本发明还有一个目的是提供上述催化剂在氯化氢催化氧化制氯中的应。 本发明的目的是这样实现的-
一种稀土纳米复合催化剂,该催化剂是以含铈元素的化合物、含铜元素的化合物和 含钾元素的化合物构成的纳米复合物为催化活性组分的稀土纳米复合催化剂。 所述的催化剂为无.负载的微粒型催化剂或负载于载体的负载型催化剂。 所述的催化剂,其中催化活性组分的铈、铜、钾的原子比为0.1 0.9: h 0.1~0.9。
所述的催化剂是通过下列方法制备得到的
a. 按照金属元素Ce: Cu: K=0.1~0.9: 1: 0.1~0.9的原子比例,优选1: 0.3~0.6: 0.5-0.8,将含有上述金属元素的可溶性盐(优选铜的硝酸盐或氯化盐、钸的硝酸盐或氯 化盐、氯化钾)溶于去离子水中,加入络合剂,搅拌0.1 12h,优选0.5 4h,使络合剂
与金属离子络合,得到溶液A;
b. 生成溶液A后,保持50 8(TC的恒温(如恒温水浴),搅拌至形成凝胶,将凝胶 放入100-120 。C烘箱中发泡10~24 h后,在400-650 。C下焙烧4 6 h,粉碎,即得纳米 级无负载的微粒型催化剂;或者
c. 在溶液A中,加入载体,保持50 80'C的恒温(如恒温水浴),搅拌,直至形成 凝胶,将凝胶放入100~120 'C烘箱中发泡10 24h后,在400~600 。C下焙烧4 6 h,粉 碎,得到负载型纳米催化剂粉末;将该纳米催化剂粉末与粘结剂充分混均,成型,于烘 箱中100~120 'C烘干4~12 h,再于马弗炉中200-350 'C焙烧4~6 h,即得纳米级负载型 催化剂。
根据上述方法制备的催化剂,其中络合剂选自柠檬酸、酒石酸、乙二胺四乙酸或葡 萄糖中的一种,优选柠檬酸或葡萄糖;载体为氧化铝、氧化硅、氧化钛、Y分子筛、13X 分子筛、(3分子筛、HY分子筛、ReY分子筛、NaY分子筛中的一种或几种,优选Y分 子筛、HY分子筛、ReY分子筛以及氧化铝与Y分子筛、HY分子筛或ReY分子筛的混 合物;载体的粒径小于110目,优选载体粒径小于200目;粘结剂为硅溶胶、氧化铝中 的一种。
根据上述方法制备的催化剂,其中去离子水的用量按Ce、 Cu和K的金属离子总摩尔数水的摩尔数=1: 50~200选取,优选l: 100~150;络合剂的用量按催化活性组分
Ce、Cu和K的金属离子总摩尔数络合剂摩尔数=1.0: 1.0-5.0选取,优选1.0: 1.5~3.5;
载体的用量以催化活性组分的金属氧化物计使金属氧化物的负载量达到载体重量的
10~50%,优选20~35%;粘结剂的用量为粘结剂质量载体的质量=0.2~0.8: 1.0,优选
0.3~0.6: 1.0。
所述催化剂的制备方法,包括下列步骤
a. 按照金属元素Ce: Cu: K=0.1~0.9: 1: 0.1~0.9的原子比例,优选1: 0.3~0.6: 0.5 0.8,将含有上述金属元素的可溶性盐(优选铜的硝酸盐或氯化盐、铈的硝酸盐或氯 化盐、氯化钾)溶于去离子水中,加入络合剂,搅拌0.1 12h,优选0.5 4h,使络合剂
与金属离子络合,得到溶液A;
b. 生成溶液A后,保持50 8(TC的恒温(如恒温水浴),搅拌至形成凝胶,将凝胶 放入1CKM20 'C烘箱中发泡10~24 h后,在400~650 'C下焙烧4 6 h,粉碎,即得纳米 级无负载的微粒型催化剂;或者
c. 在溶液A中,加入载体,保持50 8(TC的恒温(如恒温水浴),搅拌,直至形成 凝胶,将凝胶放入100~120 'C烘箱中发泡10~24 h后,在400~600 'C下焙烧4~6 h,粉 碎,得到负载型纳米催化剂粉末;将该纳米催化剂粉末与粘结剂充分混均,成型,于烘 箱中100~120 'C烘干4~12 h,再于马弗炉中200~350 'C焙烧4~6 h,即得纳米级负载型 催化剂。
所述催化剂的制备方法,其中络合剂选自拧檬酸、酒石酸、乙二胺四乙酸或葡萄糖 中的一种,优选柠檬酸或葡萄糖;载体为氧化铝、氧化硅、氧化钛、Y分子筛、13X分 子筛、P分子筛、HY分子筛、ReY分子筛、NaY分子筛中的一种或几种,优选Y分子 筛、HY分子筛、ReY分子筛以及氧化铝与Y分子筛、HY分子筛或ReY分子筛的混合 物;载体的粒径小于110目,优选载体粒径小于200目;粘结剂为硅溶胶、氧化铝中的 一种。
所述催化剂的制备方法,其中去离子水的用量按Ce、 Cu和K的金属离子总摩尔数 水的摩尔数=1: 50~200选取,优选l: 100~150;络合剂的用量按催化活性组分Ce、 Cu和K的金属离子总摩尔数络合剂摩尔数=1.0: L0 5.0选取,优选1.0: 1.5~3.5;
载体的用量以催化活性组分的金属氧化物计使金属氧化物的负载量达到载体重量的
10~50%,优选20~35%;粘结剂的用量为粘结剂质量载体的质量=0.2~0.8: 1.0,优选 0.3~0.6: 1.0。
6所述催化剂在氯化氢氧化制氯反应中应用。
所述的应用,在氧气氧化氯化氢制氯气反应中,催化剂的催化条件为反应压力为 绝压0.1-0.2 MPa、反应温度为300~380°C。
所述的应用,其中微粒型催化剂用于气液固三相浆态床反应器,负载型纳米催化剂 用于连续流动固定床反应器。
所述的应用,其中气液固三相浆态床反应器为搪瓷或镀镍搅拌釜,反应介质采用硫 酸氢盐、硝酸盐或氯盐,可以是硫酸氢钠与硫酸氢钾的混合物,硝酸锂与硝酸钾的混合 物,硝酸钠与硝酸钾的混合物,硝酸钠、硝酸钾、硝酸锂的混合物,氯化铝与氯化钠的 混合物,攀化钾与氯化锂的混合物,氯化锌、氯化钾及氯化钠的混合物;连续流动固定 床反应器是以石英玻璃或金属镍为材质的列管式反应器,可以采用单台反应器,也可以 将多段反应器串联;采用多段反应器串联时,在段间设置换热装置,移走反应产生的部 分热量,并除去反应生成的水分。
本发明的有益效果
1. 采用本发明的制备方法将活性组分制成纳米级微粒后,增大了反应原料气与催化 活性组分间的接触面积,提高了反应效率。
2. 采用三相浆态床反应器,可以控制反应在等温状态下进行,避免因高温可能给催 化剂带来的烧结失活现象;同时采用粉末状催化剂,可以消除催化剂内扩散的影响,提 高催化剂利用率和反应能力。
3. 本发明的负载型纳米催化剂活性有明显提高。
4. 通过XRD测试确定上述纳米级颗粒催化剂的活性位粒径在10 25nm(见附图1, 2);机械强度测定结果显示催化剂的周向抗压碎强度大于60N/cm。
5. 本发明提供的催化剂通过增大催化剂的比表面积提高催化活性,并且使催化剂 可以在较低反应温度下,得到较高的氯化氢氧化单程转化率。


图1是无负载型纳米铈铜钾复合物的XRD谱图。 图2是负载型纳米铈铜钾的XRD谱图。
具体实施例方式
以下通过实施例对本发明作进一步的阐述。
本发明实施例制备的稀土纳米复合催化剂分为无负载的微粒型催化剂及负载于载 体的负载型催化剂,其中微粒型催化剂适用于气液固三相浆态床反应器,负载型催化剂
7适用于连续流动固定床反应器。气液固三相浆态床反应器为搪瓷或镀镍搅拌釜,反应介 质采用硫酸氢盐、硝酸盐或氯盐,可以是硫酸氢钠与硫酸氨钾的混合物,硝酸锂与硝酸 钾的混合物,硝酸钠与硝酸钾的混合物,硝酸钠、硝酸钾、硝酸锂的混合物,氯化铝与 氯化钠的混合物,氯化钾与氯化锂的混合物,氯化锌、氯化钾及氯化钠的混合物;连续 流动固定床反应器是以石英玻璃或金属镍为材质的列管式反应器,可以采用单台反应 器,也可以将多段反应器串联;采用多段反应器串联时,在段间设置换热装置,移走反 应产生的部分热量,并除去反应生成的水分。
实施例1:无负载的微粒型稀土纳米复合催化剂的制备及应用 将17.5g(0.04mol)Ce(NO3)3.6H2O、 13.5g(0.08mol)CuCl2.2H2O、 5.5g(0.07mol)KCl加 入到490g(27mol)去离子水中,充分溶解,再加入61g(0.32mol)柠檬酸,强烈搅拌12h, 得到溶液A。制得溶液A后,在6(TC的恒温水浴中,强烈搅拌,直到形成凝胶,将凝 胶放入120'C烘箱中发泡12h后,在450'C下焙烧4 6h,得到无负载的微粒型稀土纳米 复合催化剂粉末,即氯化氢氧化催化剂I型。其XRD谱图见图1。
在60mL三相浆态反应器中装入8g上述催化剂I型,反应介质为54g由氯化锌、氯 化钾及氯化钠组成的惰性熔盐组成,催化剂在熔盐中重量分数为15%,反应温度为 350'C,氧气与氯化氢的体积比为1.5: 1,将两者混合物通入三相浆态反应器中,反应 器出口处用冷凝器将水汽分离出来,常压(即为绝压0.1MPa)下连续稳定反应4h后, 氯化氢的转化率为84.5%。
实施例2:负载型稀土纳米复合催化剂的制备及应用
采用与实施例l所述催化剂制备的方法,区别在于得到溶液A后,加入粒径为110 目的50gReY分子筛载体,在6(TC的恒温水浴中继续搅拌,直到形成稠密状凝胶。将此 凝胶放入120'C烘箱中发泡12h后,在450'C下焙烧4h,得到负载型稀土纳米催化剂粉 末;将该纳米催化剂粉末与20g硅溶胶充分混均;用挤条器挤条成型,截成l 3mm长 度,于烘箱中120'C烘干12h,再于马弗炉中45(TC焙烧4h,得到负载型稀土纳米复合 催化剂,即氯化氢氧化催化剂II型。催化剂周向抗压碎强度为76.6N/cm,负载的活性 组分粒径是14.8nm。
在固定床反应器中装入8g上述催化剂II型,在常压36(TC下,氯化氢与氧气的体 积流量比为1.5: 1的条件下,氯化氢的转化率为85.6%。实施例3:负载型稀土纳米复合催化剂的制备及应用
采用与实施例2所述催化剂制备的方法,区别在于将载体换成二氧化硅制备得到负
载型稀土纳米复合催化剂。在固定床反应器中装入8g上述催化剂,在常压360'C下,氯 化氢与氧气的体积流量比为1.5: 1的条件下,氯化氢的转化率为84.3%。
实施例4:负载型稀土纳米复合催化剂的制备及应用
将151g(0.35mol)Ce(NO3)3.6H2O、 118g(0.7mol)CuCl2.2H2O、 48.2g(0.65mol)KCl加入 到30.6kg(1.7kmol)去离子水中,充分溶解,再加入500g(2.6mol)柠檬酸,强烈搅拌12h, 得到溶液A。在上述的溶液A中,加入粒径为140目的500gReY分子筛载体,在60°C 的恒温水浴中继续搅拌,直到形成稠密状凝胶。将此凝胶放入120'C烘箱中发泡12h后, 在450。C下焙烧4h,得到负载型稀土纳米催化剂粉末;将该纳米催化剂粉末与200g硅 溶胶充分混均;用挤条器挤条成型,截成0.3 5mm长度,于烘箱中12(TC烘干12h,再 于马弗炉中450'C焙烧4h,得到负载型稀土纳米复合催化剂,即氯化氢氧化催化剂II 型。催化剂周向抗压碎强度为107N/cm,负载的活性组分粒径是16.5nm。
在镍管固定床反应器中,装入400g上述催化剂II型,在常压360'C下,氯化氢与 氧气的体积流量比为2: l的条件下,氯化氢的转化率为83.0%。
比较例1
将17.5g(0.04mol)Ce(NO3)3.6H2O、 13.5g(0.08moI)CuCl2.2H2O、 5.5g(0.07mol)KCl溶 于20g去离子水中,再与50gReY混合充分混辗均匀,挤条成型,放入120'C烘箱烘干 12h后,在55(TC下焙烧4h,得到对比催化剂in型。
在固定床反应器中装入8g上述催化剂m型,在常压36(TC下,氯化氢与氧气的体 积流量比为1.5: l的条件下,氯化氢的转化率为71.1%。
9
权利要求
1、一种稀土纳米复合催化剂,其特征在于该催化剂是以含铈元素的化合物、含铜元素的化合物和含钾元素的化合物构成的纳米复合物为催化活性组分的稀土纳米复合催化剂。
2、 根据权利要求1所述的催化剂,其特征在于该催化剂为无负载的微粒型催化剂 或负载于载体的负载型催化剂。
3、 根据权利要求1所述的催化剂,其特征在于催化活性组分的铈、铜、钾的原子比为0.1 0.9: 1: 0.1~0.9。
4、 根据权利要求1所述的催化剂,其特征在于该催化剂是通过下列方法制备得到的a. 按照金属元素Ce: Cu: K=0.1~0.9: 1: 0.1-0.9的原子比例,将含有上述金属元 素的可溶性盐溶于去离子水中,加入络合剂,搅拌0.1 12h,得到溶液A;b. 生成溶液A后,保持50 8(TC的恒温,搅拌至形成凝胶,将凝胶放入100~120'C 烘箱中发泡10-24 h后,在400-650 'C下焙烧4-6 h,粉碎,即得纳米级无负载的微粒 型催化剂;或者c. 在溶液A中,加入载体,保持50 8(TC的恒温,搅拌,直至形成凝胶,将凝胶放 入10(M20 'C烘箱中发泡10 24h后,在400~600 。C下焙烧4 6 h,粉碎,得到负载型 纳米催化剂粉末;将该纳米催化剂粉末与粘结剂充分混均,成型,于烘箱中100~120 °C 烘干4~12 h,再于马弗炉中200~350 'C焙烧4~6 h,即得纳米级负载型催化剂。
5、 根据权利要求4所述的催化剂,其特征在于络合剂逸自柠檬酸、酒石酸、乙二 胺四乙酸或葡萄糖中的一种;载体为氧化铝、氧化硅、氧化钛、Y分子筛、13X分子筛、 |3分子筛、HY分子筛、ReY分子筛、NaY分子筛中的一种或几种;粘结剂为硅溶胶、 氧化铝中的一种;去离子水的用量按Ce、 Cu和K的金属离子总摩尔数水的摩尔数= 1: 50~200选取;络合剂的用量按催化活性组分Ce、 Cu和K的金属离子总摩尔数络合剂摩尔数二1.0: 1.0~5.0选取;载体的用量以催化活性组分的金属氧化物计使金属氧 化物的负载量达到载体重量的10~50%;粘结剂的用量为粘结剂质量载体的质量= 0.2~0.8: 1.0。
6、 权利要求1所述的催化剂的制备方法,其特征在于包括下列步骤a.按照金属元素Ce: Cu: K==0.1~0.9: 1: 0.1 0.9的原子比例,将含有上述金属元素的可溶性盐溶于去离子水中,加入络合剂,搅拌0.1 12h,得到溶液A;b. 生成溶液A后,保持50 80'C的恒温,搅拌至形成凝胶,将凝胶放入100~120'C 烘箱中发泡10 24h后,在400~650 'C下焙烧4 6h,粉碎,即得纳米级无负载的微粒 型催化剂;或者c. 在溶液A中,加入载体,保持50 80'C的恒温,搅拌,直至形成凝胶,将凝胶放 入100 120'C烘箱中发泡10 24h后,在400-600 'C下焙烧4-6 h,粉碎,得到负载型 纳米催化剂粉末;将该纳米催化剂粉末与粘结剂充分混均,成型,于烘箱中100 120'C 烘干4 12h,再于马弗炉中200 350'C焙烧4 6h,即得纳米级负载型催化剂。
7、 根据权利要求6所述的制备方法,其特征在于络合剂选自柠檬酸、酒石酸、乙 二胺四乙酸或葡萄糖中的一种;载体为氧化铝、氧化硅、氧化钛、Y分子筛、13X分子 筛、(3分子筛、HY分子筛、ReY分子筛、NaY分子筛中的一种或几种;粘结剂为硅溶 胶、氧化铝中的一种;去离子水的用量按Ce、 Cu和K的金属离子总摩尔数水的摩尔 数=1: 50~200选取;络合剂的用量按催化活性组分Ce、 Cu和K的金属离子总摩尔数络合剂摩尔数=1.0: 1.0~5.0选取;载体的用量以催化活性组分的金属氧化物计使金属 氧化物的负载量达到载体重量的10~50%;粘结剂的用量为粘结剂质量载体的质量-0.2-0.8: 1.0。
8、 权利要求1所述催化剂在氯化氢氧化制氯反应中应用。
9、 根据权利要求8所述的应用,其特征是在氧气氧化氯化氢制氯气反应中,催化 剂的催化条件为反应压力为绝压0.1 0.2MPa、反应温度为300~380°C。
10、 根据权利要求9所述的应用,其特征是微粒型催化剂适用于气液固三相浆态床 反应器,负载型纳米催化剂适用于连续流动固定床反应器;其中气液固三相浆态床反 应器为搪瓷或镀镍搅拌釜,反应介质采用硫酸氢盐、硝酸盐或氯盐,可以是硫酸氢钠与 硫酸氢钾的混合物,硝酸锂与硝酸钾的混合物,硝酸钠与硝酸钾的混合物,硝酸钠、硝 酸钾、硝酸锂的混合物,氯化铝与氯化钠的混合物,氯化钾与氯化锂的混合物,氯化锌、 氯化钾及氯化钠的混合物;连续流动固定床反应器是以石英玻璃或金属镍为材质的列管 式反应器,可以采用单台反应器,也可以将多段反应器串联;采用多段反应器串联时, 在段间设置换热装置,移走反应产生的部分热量,并除去反应生成的水分。
全文摘要
本发明属于催化剂领域,公开了一种稀土纳米复合催化剂及其制备方法和应用。该催化剂是以含铈元素的化合物、含铜元素的化合物和含钾元素的化合物构成的纳米复合物为催化活性组分的稀土纳米复合催化剂。本发明将催化剂的催化活性组制成纳米级微粒,催化剂的活性有明显提高,提高了反应效率和催化剂的利用率。
文档编号B01J23/76GK101564689SQ20091002731
公开日2009年10月28日 申请日期2009年5月27日 优先权日2009年5月27日
发明者旭 乔, 吕志华, 吕高明, 崔咪芬, 汤吉海, 王彦泽, 献 陈 申请人:南京工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1