一种碲基三元异质纳米线及其制备方法

文档序号:5281341阅读:185来源:国知局
一种碲基三元异质纳米线及其制备方法
【专利摘要】本发明公开了一种碲基三元异质纳米线及其制备方法,首先在模板的一端蒸发溅射一个导电层,再恒电位沉积二元合金和差分脉冲沉积In-Sb-Te三元合金,最后去除模板,得到所需的异质结构纳米线,由于采用分布电沉积的方法,制备的纳米线为三元部分和二元部分组成。本发明克服现有技术的不足,提供一种低成本、低能耗、工艺简单的,能大量生产In-Sb-Te异质纳米线的制备方法,具有合成温度低、尺寸均匀、仪器设备简单,操作简单等优点。
【专利说明】一种碲基三元异质纳米线及其制备方法
【技术领域】
[0001]本发明涉及碲基相变纳米材料及其制备方法,更加具体地说,是关于一维相变铟铺締(In-Sb-Te)异质纳米线及其制备方法。
【背景技术】
[0002]相变化合物(如Ge-Sb-Te、In-Sb-Te等)因其在电流脉冲作用下晶态与非晶态之间进行可逆相变并可稳定保持的特性,成为构建相变非易失性随机存储器(Phasechangenonvolatilerandomaccessmemory,简称“PCRAM”)的关键材料。纳米相变化合物器件因其存储单元达到纳米级时所显示出的诸多优异性能,被业界认为有希望成为下一代主流非易失性存储器。基于异质纳米线(含核壳纳米线、异质结纳米线)的多态存储技术(即同一个存储单元内存储两个以上的状态),因其在不降低存储单元尺寸的前提下能有效地增加存储密度而被认为是提高纳米器件存储容量的最有效的方法之一。
[0003]多态存储技术主要是利用在一种存储单元内存储两个以上的状态。当多态存储单元构成多元相变存储器时,其存储状态比二态存储有显著的提高。国内外研究者所采用的多态存储方法主要有三种:1)通过薄膜掺杂在非晶态和晶态之间形成一个新的中间态;2)对于RESET态的RAM关键薄膜材料施加不同数目的编程脉冲,而获得具有不同阻值的电阻态;3)沉积异质薄膜材料(如Ge2Sb2Te5 - Sb2Te3薄膜)。尽管这三种方法都可在单元存储器中产生第三种状态,显示了一定的多态存储潜能,但是前两种方法产生的中间态难以控制、阻值波动性大、抗噪声低、重复性不理想,后者关键材料仍是相变化合物薄膜,因而其所需操作电流大、擦写速度慢,从而制约着这些多态存储方法的实用化。
[0004]美国宾夕法 尼亚大学的Agarwal教授研究组在Ge2Sb2Te5纳米线的表面气相沉积了一层多晶GeTe壳层,研究表明这种异质纳米线壳层的存在能在低阻态和高阻态之间形成一个中间状态的阻态,从而显著地增加纳米线的存储容量。制备出具有优异相变存储性能的Te基异质纳米线(纳米线异质结、核壳纳米线)及异质纳米线阵列,为探索新型多态存储材料及PCRAM器件的研制奠定理论与实际操作基础,在信息存储、凝聚态物理和集成电路系统的微型化等方面将产生重要的影响。现有的制备相变异质纳米线的方法主要是化学气相沉积相关技术,但这些方法一般需要较高的温度,能耗大,工艺复杂,反应副产物多,毒性大。

【发明内容】

[0005]本发明的目的在于克服现有技术的不足,提供一种低成本、低能耗、工艺简单的,能大量生产In-Sb-Te异质纳米线的制备方法。
[0006]本发明的技术目的通过下述技术方案予以实现:
[0007]—种碲基三元异质纳米线及其制备方法,按照下述步骤进行:
[0008]步骤1,制备电解液:配制pH=2.2缓冲溶液,并向所述缓冲溶液中加入氯化锑、氯化铟和亚碲酸钾,完全溶解均匀;[0009]步骤2,准备电解池:将模板的一面导电作为工作电极,同时在电解池中设置参比电极和对电极,并将步骤I制备的电解液转移至电解池中,然后将电解池密封通入惰性气体,例如氮气、氩气或者氦气,以除去电解液中的溶解氧;
[0010]步骤3,进行电化学沉积:先进行恒电位沉积,电位为_1.4V或-0.4V,沉积20 —30分钟,再进行差分脉冲电沉积,一个脉冲循环参数为在-1.4V下沉积200ms,然后-0.4V下沉积100ms,连续进行沉积30— 40分 钟。
[0011]在上述方法中,所述pH=2.2缓冲溶液按照下述方法进行准备:柠檬酸1.05g、氢氧化钠0.42g、盐酸0.8ml溶解在49.2ml水中,超声分散成无色透明溶液。
[0012]在上述方法中,所述氯化锑、氯化铟和亚碲酸钾分别为体系提供元素锑、铟和碲,三种元素的摩尔比为4:4:1,例如IOmM氯化锑(SbCl3)、IOmM氯化铟(InCl3) 2.5mM亚碲酸钾(K2TeO3)15
[0013]在上述方法中,在所述步骤I中,选择添加支持电解质硫酸钠,每50mL缓冲溶液中添加 0.7102g。
[0014]在上述方法中,在所述步骤2中,选择孔径IOOnm的聚碳酸酯(PC)模板,通过喷金使其一面导电,作为工作电极使用;选择饱和甘汞电极为参比电极,选择钼片电极为对电极,并选择石英电解池。
[0015]在上述方法中,在所述步骤2中,选择通入惰性气体的时间为30min,以除去电解液中的溶解氧,例如氮气、氩气或者氦气。
[0016]在上述方法中,在所述步骤3中,选用CHI660D化学工作站进行电化学沉积。
[0017]在上述方法中,在所述步骤3中,选择室温20— 25摄氏度下进行恒电位沉积和差分脉冲电沉积。
[0018]在上述方法中,在所述步骤3中,在进行恒电位沉积时,优选20min ;在进行差分脉冲电沉积时,按照脉冲循环参数连续进行沉积,优选30min。
[0019]在上述方法中,在完成电沉积后,取出带有沉积物的模板,然后使用溶剂(例如氯仿)溶解模板,多次超声离心,彻底去除模板,以获得In-Sb-Te纳米线。
[0020]一种締基三元异质纳米线,由In-Sb-Te三元纳米线和二元纳米线组成,其中所述In-Sb-Te三元纳米线元素组成为Inh6tlSW61Te,三种元素沿纳米线长度方向和径向均匀分布;所述二元纳米线为In-Sb纳米线,或者Sb-Te纳米线,所述In-Sb纳米线元素组成为InSb2.79,两种元素沿纳米线长度方向和径向均匀分布;所述Sb-Te纳米线元素组成为SbTe1J,两种元素沿纳米线长度方向和径向均匀分布。
[0021]所述In-Sb-Te三元纳米线和二元纳米线的直径为纳米数量级,例如100—120nm ;碲基三元异质纳米线整体长度为微米级,例如2~5微米。
[0022]本发明制得的In-Sb-Te与In-Sb (或In-Sb-Te与Sb-Te)异质纳米线采用模板辅助的电化学沉积方法,具有合成温度低、尺寸均匀、仪器设备简单,操作简单等优点。由本方法得到的In-Sb-Te异质纳米线直径为纳米数量级,例如100— 120nm,长度为微米级,例如2~5微米。由附图1可知,首先在模板的一端蒸发溅射一个导电层,再恒电位沉积二元合金和差分脉冲沉积In-Sb-Te三元合金,最后去除模板,得到所需的异质结构纳米线,由于采用分步电沉积的方法,制备的纳米线为三元部分和二元部分组成。沿纳米线径向(直径方向)In-Sb-Te三元部分中三种元素组分均匀分布,二元部分的两种元素组分分布较均匀;在纳米线长度方向上,In-Sb-Te三元部分中三种元素组分均匀分布,二元部分的两种元素组分分布较均匀。本发明选用不同孔径的模板改变纳米线直径,长度达几微米且尺寸均匀,光滑,是研究相变性质的良好材料。
【专利附图】

【附图说明】
[0023]图1是本发明制备方法的工艺流程示意图,其中A、B分别为In-Sb-Te、In-Sb (或Sb-Te)。
[0024]图2是本发明制备的纳米线的透射电镜照片。
【具体实施方式】
[0025]下面结合具体实施例进一步说明本发明的技术方案,使用分析纯的SbCl3, InCl3,K2TeO3, NaOH, KCl, Na2SO4,柠檬酸,三次水。;使用I _ V脉冲测试系统(美国吉时利公司KEITHLEY4200 - SCS型),荷兰FEI公司TecnaiG2F20的场发射透射电子显微镜(含能谱仪)。
[0026]实施例1
[0027]首先配置pH=2.2缓冲溶液,柠檬酸1.05g、氢氧化钠0.42g、盐酸0.8ml溶解在49.2ml水中,超声分散成无色透明溶液;
[0028]然后向上述50mL无色透明溶液中加入0.7102gNa2S04,作为支持电解质,超声均匀;再将IOmM氯化锑(SbCl3)、IOmM氯化铟(InCl3) 2.5mM亚碲酸钾(K2TeO3)加入上述配置的缓冲溶液中,超声溶解至无白色沉淀,待用;
[0029]取聚碳酸酯(PC )模板,孔径(IOOnm)压片至聚四氟电极材料中,制成工作电极,制成工作电极,放置参比电极即饱和甘汞电极,对电极即钼片电极,将电解液转移至石英电解池中,将电解池密封,通氮气30min,除去电解液中的溶解氧;
[0030]使用CHI660D化学工作站,连接实验电路,选择恒电位沉积技术(-0.4V),沉积20分钟,再选择差分脉冲电沉积技术,设置实验脉冲循环参数,-1.4V200ms, -0.4V100ms,在室温下按照脉冲循环参数循环沉积30分钟,可看到黑灰色沉淀;取出带有沉积物的模板,然后用氯仿溶液溶解模板,多次超声离心,彻底去除模板,即得到碲基三元异质纳米线。
[0031]随机选取200根铟锑碲异质纳米线沿长度方向和直径方向进行线扫,In-Sb-Te部分三种元素组分均匀分布,三种元素原子含量比为1.60:1.61:1,即Inh6tlSbh61Te ;
[0032]三元部分能谱表
[0033]
【权利要求】
1.一种締基三元异质纳米线,其特征在于,由In-Sb-Te三元纳米线和二元纳米线组成,其中所述In-Sb-Te三元纳米线元素组成为Inh6tlSK61Te,三种元素沿纳米线长度方向和径向均匀分布;所述二元纳米线为In-Sb纳米线,或者Sb-Te纳米线,所述In-Sb纳米线元素组成为InSb2.79,两种元素沿纳米线长度方向和径向均匀分布;所述Sb-Te纳米线元素组成为SbTeh82,两种元素沿纳米线长度方向和径向均匀分布。
2.根据权利要求1所述的一种碲基三元异质纳米线,其特征在于,所述In-Sb-Te三元纳米线和二元纳米线的直径为纳米数量级,所述碲基三元异质纳米线整体长度为微米级。
3.根据权利要求1所述的一种碲基三元异质纳米线,其特征在于,所述In-Sb-Te三元纳米线和二元纳米线的直径为100— 120nm,所述碲基三元异质纳米线整体长度为2~5微米。
4.一种碲基三元异质纳米线的制备方法,其特征在于,按照下述步骤进行: 步骤1,制备电解液:配制pH=2.2缓冲溶液,并向所述缓冲溶液中加入氯化锑、氯化铟和亚碲酸钾,完全溶解均匀; 步骤2,准备电解池:将模板的一面导电作为工作电极,同时在电解池中设置参比电极和对电极,并将步骤I制备的电解液转移至电解池中,然后将电解池密封通入惰性气体,以除去电解液中的溶解氧; 步骤3,进行电化学沉积:先进行恒电位沉积,电位为-1.4V或-0.4V,沉积20— 30分钟,再进行差分脉冲电沉积,一个脉冲循环参数为在-1.4V下沉积200ms,然后-0.4V下沉积100ms,连续进行沉积30— 40分钟。
5.根据权利要求4所述的一种碲基三元异质纳米线的制备方法,其特征在于,在所述步骤I中,所述pH=2.2缓冲溶液按照下述方法进行准备:柠檬酸1.05g、氢氧化钠0.42g、盐酸0.8ml溶解在49.2ml水中,超声分散成无色透明溶液;所述氯化锑、氯化铟和亚碲酸钾分别为体系提供元素锑、铟和碲,三种元素的摩尔比为4:4:1,例如IOmM氯化锑(SbCl3)UOmM氯化铟(InCl3) 2.5mM亚碲酸钾(K2TeO3X
6.根据权利要求4所述的一种碲基三元异质纳米线的制备方法,其特征在于,在所述步骤I中,选择添加支持电解质硫酸钠,每50mL缓冲溶液中添加0.7102g。
7.根据权利要求4所述的一种碲基三元异质纳米线的制备方法,其特征在于,在所述步骤2中,选择孔径IOOnm的聚碳酸酯模板,通过喷金使其一面导电,作为工作电极使用;选择饱和甘汞电极为参比电极,选择钼片电极为对电极,并选择聚石英电解池。
8.根据权利要求4所述的一种碲基三元异质纳米线的制备方法,其特征在于,在所述步骤2中,选择通入惰性气体的时间为30min,以除去电解液中的溶解氧,例如氮气、氩气或者氦气。
9.根据权利要求4所述的一种碲基三元异质纳米线的制备方法,其特征在于,在所述步骤3中,选择室温20— 25摄氏度下进行恒电位沉积和差分脉冲电沉积。
10.根据权利要求4所述的一种碲基三元异质纳米线的制备方法,其特征在于,在所述步骤3中,在进行恒电位沉积时,优选20min ;在进行差分脉冲电沉积时,按照脉冲循环参数连续进行沉积,优选30min。
【文档编号】C25D3/54GK103540976SQ201310492615
【公开日】2014年1月29日 申请日期:2013年10月18日 优先权日:2013年10月18日
【发明者】张兵, 张競方, 许蕊, 汪欢, 张超 申请人:天津大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1