复合型碳及其制造方法

文档序号:7209983阅读:291来源:国知局
专利名称:复合型碳及其制造方法
技术领域
本发明涉及复合型碳及其制造方法,所述复合型碳具有在纤维状碳的表面上生成有极微小的多数个碳纳米管的结构。
背景技术
专利文献1、2公开了一种复合型碳,其中在碳纤维的外周面随机集积有多个极微小的碳纳米管。专利文献1中,公开了这样的方法在碳纸表面附着铁催化剂的工序,用金属电极夹持该碳纸的两端,将该碳纸浸渍于甲醇中,在电极之间通直流电流将碳纸加热至 800°C,由此在构成碳纸的碳纤维的整个表面上形成碳纳米管。上述专利文献所涉及的碳纳米管不是碳纳米管的长度方向沿碳纤维的长轴方向而对齐于同一方向的结构。专利文献1 日本特开2005-213700号公报专利文献2 日本特开2007-194354号公报

发明内容
鉴于上述问题而进行本发明,本发明的目的在于提供具有这样的新型结构的复合型碳及其制造方法,在该新型结构中,极微小的多数个碳纳米管以具有方向性的方式集积在纤维状碳的外表面。本发明的复合型碳的特征在于,具备沿长轴方向延伸的纤维状碳、以及在该纤维状碳的表面上形成的直径比该纤维状碳的直径小的多数个碳纳米管,所述碳纳米管形成为碳纳米管的长度方向沿同一方向对齐的多个碳纳米管的群。本发明的复合型碳的制造方法的特征在于,进行下列工序准备纤维状碳的工序,该纤维状碳的表面上具有铝基底以及设置于该铝基底上的铁催化剂,同时该纤维状碳沿长轴方向延伸;以及形成碳纳米管的工序,其中通过将碳源用CVD装置进行CVD处理,在所述纤维状碳的表面上形成直径比所述纤维状碳的直径小的多数个碳纳米管,同时,所述碳纳米管形成为碳纳米管的长度方向沿同一方向对齐的多个碳纳米管的群。根据本发明的这样的复合型碳,在纤维状碳的表面生成多数个碳纳米管,使得所述碳纳米管的长度方向沿与所述纤维状碳的长轴方向正交的方向取向。因此,与纤维状碳相比,可以提供具有有利于提高比表面积的新型结构的复合型碳。另外,因为可以使长的碳纳米管生长,所以可以提供具有有利于使碳纳米管的长径比(长轴/短轴)得以提高的新型结构的复合型碳。这样的复合型碳可以有利于增加比表面积、提高多孔性、降低电阻、提高导电性。 而且,在复合型碳负载催化剂的情况下,可以期待提高催化剂利用率。这样的复合型碳可以用于(例如)在燃料电池中使用的碳材料;在电容器、锂电池、二次电池、湿式太阳能电池等的电极等中所使用的碳材料;生产设备的电极等。附图简要说明


图1是示出实施例1所涉及的复合型碳的概略的示意图;图2是示出实施例1所涉及的从不同方向观测的复合型碳的概略的示意图;图3是示出实施例1所涉及的复合型碳的电子显微镜照片(SEM)的图;图4是示出实施例1所涉及的复合型碳的电子显微镜照片(SEM)的图;图5是示出将实施例1所涉及的复合型碳的碳纳米管附近放大后的电子显微镜照片(SEM)的图;图6是示出将实施例1所涉及的复合型碳的碳纳米管附近进一步放大后的电子显微镜照片(SEM)的图;图7是示出实施例5所涉及的复合型碳的电子显微镜照片(SEM)的图;图8是示出实施例5所涉及的复合型碳的电子显微镜照片(SEM)的图;图9是示出实施例5所涉及的复合型碳的电子显微镜照片(SEM)的图;图10是示出实施例6所涉及的复合型碳的电子显微镜照片(SEM)的图;图11是示出实施例6所涉及的复合型碳的电子显微镜照片(SEM)的图;图12是示出参考例1所涉及的复合型碳的电子显微镜照片(SEM)的图;图13是示出参考例1所涉及的复合型碳的电子显微镜照片(SEM)的图;图14是示意性示出应用例所涉及的燃料电池的剖面图;图15是示意性示出应用例所涉及的电容器的剖面图。发明的最佳实施方式本发明的复合型碳具有在单根纤维状碳的表面侧生成有多数个碳纳米管的结构。 碳纳米管的长度及直径分别比纤维状碳的长度及直径小。在该情况下,多数个碳纳米管相对于纤维状碳的表面而构成群并被取向,使得碳纳米管的长度方向与纤维状碳的长轴方向正交。该情况下,有利于增加复合型碳的比表面积及导电通路。另外,也有利于进行细孔控制(例如,对细孔的大小或细孔分布等进行的控制)。上述纤维状碳可以为形成为纤维状的碳。作为纤维状碳,可以为(例如)碳纤维自身。纤维状碳可以为连续延伸的长纤维,也可以为纤维长度为30毫米以下的短纤维。或者,作为纤维状碳,可以为构成碳纸、碳布、碳毡等碳纤维集合体的碳纤维。也可以为碳纳米纤维。因此,碳纤维集合体优选为碳纸、碳布、碳毡中的一者。碳纸可以采用将含碳纤维及纤维素系易燃纤维(例如,浆)的分散液用抄纸用网进行抄纸而形成纤维集合体后、使纤维素系易燃纤维燃烧而形成的产物。另外,对纤维状碳的纤维长及纤维径没有特别限定,只要可以保持碳纳米管即可,示例性的纤维长度为5nm 300mm、特别为Inm 10mm,纤维径为5nm 100ym、3nm 10 μ m。另外,示例性的纤维长度为5 μ m 300mm、特别为Iym IOmm,纤维径为 5 μ m 100 μ m、3 μ m 10 μ m。在此,构成群的碳纳米管可以以碳纳米管的长度方向与纤维状碳的长轴方向正交的方式进行取向。或者,碳纳米管也可以以相对于碳纳米管的长度方向与纤维状碳的长轴方向正交的方向成角度θ的方式进行取向。示例性的角度θ为0 正负45°、或0 正负30°、或0 正负10°、或0 正负5°、或0 正负3°。总之,根据本发明,对于构成群的多数个碳纳米管,其碳纳米管的长度方向沿与纤维状碳的长轴方向正交的方向(即, 纤维状碳的径向)进行取向。但是,本文中所谓角度θ是指碳纳米管成长之后的角度,有时由于后处理(负载钼、电解液浸渍等)碳纳米管发生凝集,从而θ也会达到90°左右。
在生成碳纳米管时,作为碳源,可以列举烷烃、烯烃、炔烃等脂肪族烃;醇、醚等脂肪族化合物;芳烃等芳族化合物。从而,作为碳源,示例使用醇类的原料气体、烃系的原料气体的CVD法。作为醇类的原料气体,示例有甲醇、乙醇、丙醇、丁醇、戊醇、己醇等气体。而且,作为烃类的原料气体,示例有甲烷气、乙烷气、乙炔气、丙烷气等。根据本发明的复合型碳,碳纳米管的群示例有在纤维状碳的圆周方向上以一定的间隔隔开而形成为多个群的实施方式(参照图2)。该情况下,碳纳米管的群在碳纤维的圆周方向优选生成为一群、二群、三群、四群中的任一者。另外,根据本发明的复合型碳,多数个碳纳米管沿纤维状碳的长轴方向并列,形成碳纳米管的群(参照图1)。该情况下,多数个碳纳米管沿纤维状碳的长轴方向并列。该情况下,更有利于复合型碳的比表面积的增加。 碳纳米管的长度优选比纤维状碳的长度小。纤维状碳优选为构成含多个碳纤维的碳纤维集合体的碳纤维。碳纳米管优选通过 CVD法形成。碳纳米管优选形成于在纤维状碳表面所形成的铁薄膜之上。铁薄膜优选形成于设置在纤维状碳表面的铝基底之上。铝基底的厚度为20 50nm,铁薄膜的厚度为18 80nm,优选为20 65nm。根据复合型碳的制造方法,准备这样的纤维状碳,该纤维状碳具有铝基底和设置于该铝基底上的铁催化剂,同时该纤维状碳沿长轴方向延伸。该情况下,在纤维状碳的表面形成铝基底。之后,在铝基底上设置铁催化剂。铝基底的厚度为2 50nm,优选10 50nm、 20 50nm。铁薄膜的厚度为2 80nm,优选10 80nm、20 65nm。但是,铝基底的厚度和铁薄膜的厚度不限定于这些。接着,实施形成碳纳米管的工序,其中通过将碳源用CVD装置进行CVD处理,在纤维状碳的表面形成直径比所述纤维状碳的直径小的多数个碳纳米管,同时,所述碳纳米管形成为碳纳米管的长度方向沿同一方向对齐的多数个碳纳米管的群。如果这样在纤维状碳上设置铝基底、在铝基底上设置铁催化剂,则与在纤维状碳上设置铁催化剂的情况相比,可以有效地将碳纳米管形成为碳纳米管的长度方向沿同一方向对齐的多数个碳纳米管的群。 其理由不一定明确,但是,推测,形成有铝基底能够使铁催化剂更细微。(实施例1)下面,参照图1 图5对本发明的实施例1进行说明。本实施例的复合型碳具备发挥纤维状碳作用的碳纤维、以及多数个碳纳米管。在此,将多数个碳纳米管相对于碳纤维进行取向而形成为群,使得碳纳米管的长度方向沿与碳纤维的长轴方向正交的方向取向。还对本实施例的复合型碳的制造工序进行说明。(碳纸的制作)首先,准备发挥纤维状碳作用的碳纤维、以及通过热处理而燃烧的发挥易燃纤维作用的浆状物。将该碳纤维及浆状物(纤维素系易燃纤维)分散于水而形成分散液。浆状物能够发挥在抄纸操作中提高碳纤维获取率的功能。对分散液的配合比没有特别限定,总之只要可以将碳纤维以薄片状捕获即可,不过分散液的配合比按质量比可以为碳纤维浆状物=6 4。对水的配合比率没有特别限定,只要为可以进行抄纸的配合比率即可。上述的碳纤维混合有浙青类碳纤维(纤维长平均3mm,纤维径平均15 μ m)、以及PAN类碳纤维 (纤维长平均3mm,纤维径平均7 μ m)。使用抄纸用网对上述分散液进行抄纸,使水分和固形成分分离。由此形成了作为固形成分的碳纤维及浆状物集积而成的碳片材(碳纤维浆集合体)。将上述碳片材在大气中(含氧气氛)以规定温度加热规定时间(380°C X 1小时) 以进行热处理。由此,将包含在碳片材中的浆状物燃烧,形成碳纸。碳纸为具有多数个碳纤维相互缠绕而成的结构的碳纤维集合体,具有多个细孔。上述热处理的温度及时间不限定于上述温度及时间,只要为可以使包含在碳片材中的浆状物燃烧的温度及时间即可。热处理后的碳纸的基重为4. Omg/cm2。另外,基重不限定于上述值,可以适宜变更。(碳纳米管的成长)将上述碳纸设置于溅射装置的反应容器内,使用铝源并且通过溅射法(物理成膜法)使铝基底在碳纸上成膜。铝源使用了纯铝靶材。该情况下,反应容器内的压力为0. 6Pa、 基板的温度为常温(25°C )、铝基底的厚度为20nm。接着,利用溅射法使用铁源,在此基底上使铁薄膜(铁层)成膜。铁源使用纯铁靶材。在此,铁薄膜的厚度为20nm。铝基底及铁薄膜构成了可以发挥使碳纳米管成长的催化剂作用的基础材料(seed material)。另外,通过俄歇电子光谱仪(AEQ测定基底及薄膜的厚度。另外,由于基底及薄膜的材质和/或厚度对催化剂作用产生影响,所以可以认为其在碳纳米管的群的生成时很重要。在层叠铁薄膜后(形成薄膜后),在压力为IOOPa的真空条件下进行350°C、5分钟的热处理,准备碳纳米管成长用的催化剂。之后,使用CVD (Chemical Vapor D印osition,化学气相沉积)处理装置使碳纳米管成长。CVD处理是这样的处理将发挥构成碳纳米管的碳源作用的原料气体通过载气而导入反应部,在构成碳纸的碳纤维的表面使原料气体分解或反应。CVD处理中,预先向抽真空至10 的反应容器中导入作为载气的氩气,将压力调整为4X104Pa。然后,使碳纸的表面温度升温至780°C,在该气氛中使液体乙醇挥发5cc并反应6分钟。由此,在构成碳纸的碳纤维上使极微小的多数个碳纳米管(CNT)成长。这样,形成本实施例的复合型碳。根据本实施例,因为在碳纸的上面生成铝基底及铁薄膜,所以碳纳米管易于在碳纸的上面侧的碳纤维上生成。但是,观测后发现,碳纳米管也可以在碳纸的厚度方向的内部侧的碳纤维上生成。在本实施例中实际制造的复合型碳中,多数个碳纳米管形成群,碳纳米管的长度方向沿与纤维状碳的长轴方向大致正交的方向取向。碳纳米管稍微弯曲。通过扫描电子显微镜(SEM)测定,碳纳米管的长度为10 30微米。通过透射电子显微镜(TEM)测定,碳纳米管的直径为10 30nm。根据CVD前后的重量差,求得碳纳米管的负载量为0. ;3mg/cm2。图1及图2示意性示出分别从不同方向观测由上述制造方法制造的复合型碳的概略图。如图1及图2所示,通过电子显微镜观察到复合型碳具有构成碳纸的多数个碳纤维 (纤维状碳)、以及在每根碳纤维的表面上成长的极微小尺寸的多个碳纳米管(CNT)群。在此,从图1可理解,沿碳纤维的长轴方向(箭头X方向)观测复合型碳时,观察到具有极微尺寸的多数个碳纳米管的群在碳纤维的长轴方向(箭头X方向)上相互以高密度状态相邻设置,同时以密集状态成长为碳纳米管的长度方向相互沿同一方向对齐的霜柱状。图2示出从不同的方向(图1所示的箭头XA方向)观测复合型碳的状态。从图2 可理解,在从碳纤维的长轴的末端方向观测复合型碳时,对于一根根碳纤维而言,碳纳米管
6(CNT)的长度方向沿与碳纤维的长轴方向(箭头X方向)正交的方向(箭头Y方向、碳纤维的径向)取向。而且,碳纳米管的群在碳纤维的圆周方向(图2所示的箭头R方向)上以形成空间的方式以约90°的间隔隔开生成为多个群(四个群)。推推测,该空间有利于提高多孔性、提高气体透过性。S卩,根据图2所示的方式,根据观察部位,形成多列(四列)的碳纳米管群以恰似形成多个(四个)翼的方式在各碳纤维的圆周方向(箭头R方向)上以大致均等的间隔隔开而生成。得到具有这样结构的复合型碳的理由目前不一定明确。本发明人目前推测为, 由发挥催化剂作用的铁薄膜所形成的基础材料一边抑制由作为基材的碳纤维引起的成长障碍,一边促进碳纳米管的取向成长。根据本实施例,在碳纸上设置铝基底,在铝基底上设置铁催化剂。该情况下,与不设置铝基底而在碳纸上设置铁催化剂的情况相比,可以有效地将碳纳米管形成为碳纳米管的长度方向沿同一方向对齐的多数个碳纳米管的群。其理由不一定明确,但是据推测是因为形成铝基底可以使铁催化剂更微细。观察上述复合型碳,根据观察部位,碳纳米管的群有时也在碳纤维的圆周方向 (箭头R方向)上以约180°的间隔隔开而生成为两群。而且,根据观察部位,碳纳米管的群有时也在碳纤维的圆周方向(箭头R方向)上以约120°的间隔隔开而生成为三群。而且,由于观察部位,有时也生成为一群。图3 图6示出在不同部位拍照如上形成的复合型碳的扫描电子显微镜照片 (SEM)以及基准尺寸。如图3 图6所示,可以看到,长度及直径比碳纤维的长度及直径小的碳纳米管沿碳纤维的长轴方向生成的群的状态(霜柱状)。如图3 图6所示,多数个碳纳米管以霜柱状取向,使得构成群的多数个碳纳米管的长度方向沿着与碳纤维的长轴方向正交的方向(碳纤维的径向)。图6示出将碳纳米管附近放大示出的放大照片以及基准尺寸。本实施例制造的复合型碳可以促进比表面积的增加、多孔性的提高。而且,因为在碳纤维上直接形成碳纳米管,所以,可以降低碳纳米管与碳纤维之间的界面电阻、也可以促进导电性的提高及电阻的降低。而且,在复合型碳负载钼粒子等催化剂的情况下,可以期待催化剂利用率的提高。另外,可以在将碳纸的单面暴露于原料气体中的状态下进行CVD,也可以在将碳纸的两面均暴露于原料气体中的状态下进行CVD,或者在将一面暴露于原料气体中的状态下进行CVD后再在将另一面暴露于原料气体的状态下进行CVD。如上所述,根据本实施例,在形成于碳纤维表面的铝基底上形成铁薄膜。在铝基底形成于碳纤维表面的情况下,可以认为,使发挥催化剂作用的铁微粒微细化,有效地形成本发明结构的复合型碳。(实施例2)以与实施例1基本相同的工序形成实施例2。根据本实施例,在将与实施例1相同的碳纸载置于基板的状态下,将该碳纸设置于溅射装置的反应容器内,通过溅射法使铁薄膜在碳纸上成膜。该情况下,设置反应容器内的压力为0.6Pa,基板的温度为常温(25°C), 基底的厚度为50nm,薄膜的厚度为65nm。在本实施例中,也与实施例1的情况一样,复合型碳具有构成碳纸的多数个碳纤维、以及在各碳纤维的表面侧成长为霜柱状(取向状)的极微小尺寸的多个碳纳米管群。在一根根碳纤维上成长有多数个碳纳米管,使得碳纳米管的长度方向沿着与纤维状碳的长轴方向正交的方向。(实施例3)对实施例3进行说明。可以认为,根据本实施例的工序也可以制造本发明的复合型碳。可以与实施例1 一样制作碳纸。在上述碳纸上,可以通过溅射法设置铝基底的厚度为20nm,铁薄膜的厚度为20nm。铁薄膜可以构成作为催化剂使碳纳米管成长的基础材料。之后,可以使用CVD处理装置,将乙炔气体(烃气)用作形成碳源的原料气体,氮气用作载气,将乙炔气体以200cc/分钟(5 500cc/分钟)及将氮气以lOOOcc/分钟(10 5000cc/分钟)的速度导入,在压力为105(103 105)Pa的条件下使碳纳米管成长。该情况下,就气体流量而言,作为反应温度(碳纸表面温度),可以选择700°C 900°C、770 830°C、800°C。作为反应时间,可以考虑1 60分钟、10分钟。(实施例4)对实施例4进行说明。可以认为,根据本实施例的工序也可以制作本发明的复合型碳。可以与实施例1 一样制作碳纸。在上述碳纸上,通过湿式浸渍法形成铁薄膜。该情况下,以乙醇和萜品醇的混合溶剂(配合比(以质量比计)为8 幻溶解粉末状的硝酸铁九水合物,形成浓度为0. 3(0. 001 l)mol/L的溶液。将碳纸浸渍在该溶液中,然后以规定的速度从溶液中取出碳纸,使其干燥。取出速度可以选择0. 01 1. 0毫米/秒的速度,但不限定于此。干燥温度可以选择200 350°C、250°C。由此,可以在碳纸上形成铁薄膜。(实施例5)对实施例5进行说明。首先,作为纤维状碳,使用了碳纸(东丽株式会社, TGP-H-060,厚度为170μπι)。对碳纸不进行实施例1那样的热处理。采用该碳纸,可以期待良好的强度及导电性。将上述碳纸在与实施例1的条件大致相同的条件下设置于溅射装置的反应容器内,通过溅射法使铝基底(厚度7nm)在碳纸上成膜。该情况下,反应容器内的压力为0. 6Pa,基板的温度为常温(25°C )。之后,在该基底上通过溅射法使铁薄膜(厚度 5nm)成膜。由此,准备了碳纳米管成长用的催化剂。之后,使用CVD (Chemical Vapor D印osition,化学气相沉积)处理装置使碳纳米管在碳纸上成长。该情况下,向预先抽真空为10 的反应容器中导入作为载气的氮气,将容器内的压力调整为0. IMPa0然后,在使基板的温度升温为620°C的状态下,向容器内供给乙炔和氮混合的原料气体(流量比1 5)。接着,在原料气体的气氛下,一边使基板温度从620°C升温至650°C,一边使其反应6分钟。原料气体的流量设为lOOOcc/分钟。由此, 在构成碳纸的碳纤维上使极微小的多数个碳纳米管(CNT)成长。这样,形成了本实施例的复合型碳。图7 图9是示出本实施例的复合型碳的结构以及基准尺寸的SEM照片。如图 7 图9所示,可以看到,长度及直径比碳纤维的长度及直径小的碳纳米管沿碳纤维的长轴方向生成的群的状态(霜柱状)。如图7 图9所示,多数的碳纳米管发生取向,使得构成群的多数个碳纳米管的长度方向沿着与碳纤维的长轴方向正交的方向。而且,碳纳米管的群在碳纤维的圆周方向上以一定的间隔隔开而形成为多个群。(实施例6)对实施例6进行说明。首先,作为纤维状碳,使用了碳纸(东丽株式会社,TGP-H-060)。对碳纸不进行实施例1那样的热处理。将上述碳纸在与实施例1的条件大致相同的条件下设置于溅射装置的反应容器内,通过溅射法使铝基底(厚度7nm)在碳纸上成膜。该情况下,反应容器内的压力为0.6Pa,基板的温度为常温(25°C)。之后,在该基底上通过溅射法使铁薄膜(厚度15nm)成膜。由此,准备了碳纳米管成长用的催化剂。之后,与实施例5的条件相同,使用CVD (Chemical Vapor D印osition)处理装置使碳纳米管在碳纸上成长。由此,在构成碳纸的碳纤维上使极微小的多数个碳纳米管(CNT) 成长。这样,形成了本实施例的复合型碳。图10及图11是示出本实施例的复合型碳的结构以及基准尺寸的SEM照片。如图 10及图11所示,可以看到,长度及直径比碳纤维的长度及直径小的碳纳米管沿碳纤维的长轴方向生成的群的状态(霜柱状)。如图10所示,多数个碳纳米管发生取向,使得构成群的多数个碳纳米管的长度方向沿着与碳纤维的长轴方向正交的方向。而且,如图10所示,碳纳米管的群在碳纤维的圆周方向上以一定的间隔隔开而形成为多个群。根据本实施例,因为在碳纸的上面依次生成铝基底及铁薄膜,所以,碳纳米管易于在碳纸的上面侧的碳纤维上生成。但是,观测后发现,碳纳米管也可以在碳纸的厚度方向的内部侧的碳纤维上生成。在本实施例实际制造的复合型碳中,多数个碳纳米管形成群,并且碳纳米管的长度方向沿与纤维状碳的长轴方向大致正交的方向取向。用扫描电子显微镜(SEM)测定,碳纳米管的长度为10 30微米。用透射电子显微镜(TEM)测定,碳纳米管的直径为10 30nm。根据CVD前后的重量差,求得碳纳米管的负载量为0. ;3mg/cm2。(参考例1)对参考例1进行说明。首先,作为纤维状碳,使用了碳纸(东丽株式会社, TGP-H-060)。与实施例1不同,不对碳纸实施热处理。将上述碳纸在与实施例1的条件大致相同的条件下设置于溅射装置的反应容器内,通过溅射法使铁薄膜(厚度15nm)在碳纸上成膜。不形成铝基底。该情况下,反应容器内的压力为0.6Pa,基板的温度为常温(25°C)。 准备了碳纳米管成长用的催化剂。之后,与实施例5的条件相同,使用CVD(ChemiCal Vapor Deposition)处理装置使碳纳米管在碳纸上成长。由此,在构成碳纸的碳纤维上使极微小的多数个碳纳米管(CNT)成长。这样,形成了参考例1的复合型碳。图12及图13示出参考例1的结果。如图12及图13所示,在形成碳纸的碳纤维的整个外周面上形成有多数个微小的碳纳米管。碳纳米管不是其长度方向沿同一方向对齐的结构。(应用例1)图14是示意性示出薄片型燃料电池的主要部分的剖面。燃料电池在厚度方向上依次层叠有燃料电极用的分配板101、燃料电极用的气体扩散层102、具有燃料电极用催化剂的催化剂层103、由碳化氟系或烃类高分子材料形成的具有离子传导性(质子传导性)的电解质膜104、具有氧化剂电极用催化剂的催化剂层105、氧化剂电极用的气体扩散层106、 氧化剂电极用的分配板107。气体扩散层102、106具有气体透过性,使得可以透过反应气体。电解质膜104可以由具有离子传导性的玻璃类形成,也可以通过在高分子中含有酸(例如,磷酸)而形成。另外,也可以适用于所谓的磷酸型燃料电池,其中不使用电解质膜而使用磷酸作为电解质。
本发明的复合型碳可以用于气体扩散层102及/或气体扩散层106。该情况下,本发明的复合型碳具有大的比表面积、为多孔质,因此可以期待气体透过性增加、溢流 (flooding)被抑制、电阻降低、导电性提高。溢流是指反应气体的流路由于水而变小、反应气体的通过性降低的现象。根据情况,本发明的复合型碳也可以用于燃料电极用催化剂层103及/或氧化剂电极用催化剂层105。该情况下,本发明的复合型碳具有大的比表面积、为多孔质,因此,可以期待能够调整生成水的排出性及调整反应气体的透过性,因此,有利于抑制溢流。而且, 可以期待提高钯粒子、钌粒子、钯·钌粒子等催化剂粒子的利用率。进一步,根据情况,可以通过复合型碳来实现兼具气体扩散层和催化剂层两者功能的电极结构一体化。通过在复合型碳中添加钯、离聚物、根据需要添加防水材料而形成一体化电极,不仅实现适用于各部材的上述效果,而且,还实现扩散层/催化剂层间的界面电阻的降低、电极工艺的低成本化。另外,燃料电池不限于薄片型,也可以为管型。(应用例2)图15示意性示出集电用电容器。电容器具有由碳材料形成的多孔正极201、由碳材料形成的多孔负极202、隔开正极201和负极202的隔板203。本发明的复合型碳具有大的比表面积、并且为多孔质,因此,在用于正极201及/或负极202时,可以期待集电容量的增加,并且可以提高电容器的能力。(其他实施例)根据上述实施例1,采用了通过抄纸而形成的碳纸,但不限于此,也可以适用于由抄纸以外的方法形成的碳纸,也可以为由纺织品形成的碳布、或碳毡。根据上述实施例1,构成碳纸的碳纤维混合有以焦油浙青或石油浙青为原料的浙青类碳纤维、以及以丙烯酸纤维为原料的PAN类碳纤维,但是,也可以只由浙青类碳纤维形成,或者也可以只由PAN类碳纤维形成。不局限于碳纤维,也可以为碳纳米纤维。而且,也可以为气相成长碳纤维。另外, 纤维状碳也可以不是集合体,而使用分散状态的纤维状碳。作为可以发挥催化剂作用的基础材料,除铁以外,还示例有钴、镍等过渡金属、含有这些金属的合金。另外,为了提高催化剂薄膜在碳纤维的圆周方向上的分散性或在纤维状碳的深度方向上的分散性,有效的是在溅射工序中使基板或靶材旋转,实施例4所示的湿式法也有效。另外,反之可能使催化剂薄膜的分散性降低,局部性形成碳纳米管,也可能使CNT生成量相对于面内方向或深度方向而倾斜。作为CVD的前处理,也可以包括以催化剂金属的合金化或氧化为目的的热处理工序。热处理温度示例为300 900°C。作为CVD 的反应温度(具体而言为碳纸表面温度),示例为100 700°C。此外,本发明不仅仅限于上述实施例,在不脱离本发明精神的范围内可以进行适当变更。工业实用性本发明可以利用于要求比表面积大的碳材料。可以利用于(例如)在燃料电池中使用的碳材料;在电容器、二次电池、湿式太阳能电池等各种电池中使用的碳材料;净水器过滤器的碳材料;气体吸附的碳材料等。
10
权利要求
1.一种复合型碳,其特征在于,具备沿长轴方向延伸的纤维状碳、以及在所述纤维状碳的表面形成的直径比所述纤维状碳的直径小的多数个碳纳米管,所述碳纳米管形成为该碳纳米管的长度方向沿同一方向对齐的多数个碳纳米管的群。
2.如权利要求1所述的复合型碳,其特征在于,所述碳纳米管的群在所述纤维状碳的圆周方向上间隔开而形成为隔开的多个群。
3.如权利要求1或2所述的复合型碳,其特征在于,所述碳纳米管的群在碳纤维的圆周方向上生成为一群、二群、三群、四群中的任一者。
4.如权利要求1 3中任一项所述的复合型碳,其特征在于,多数个所述碳纳米管沿所述纤维状碳的长轴方向并列以形成所述碳纳米管的群。
5.如权利要求1 3中任一项所述的复合型碳,其特征在于, 所述碳纳米管的长度方向与所述纤维状碳的长轴正交。
6.如权利要求1 5中任一项所述的复合型碳,其特征在于, 所述纤维状碳为构成含有多个碳纤维的碳纤维集合体的碳纤维。
7.如权利要求6所述的复合型碳,其特征在于, 所述碳纤维集合体为碳纸、碳布、碳毡中的一者。
8.如权利要求7所述的复合型碳,其特征在于,所述碳纸是这样形成的采用抄纸用网对含有碳纤维及纤维素系易燃纤维的分散液进行抄纸以形成碳纤维浆状物集合体,然后将所述纤维素系易燃纤维燃烧。
9.如权利要求1 8中任一项所述的复合型碳,其特征在于, 所述碳纳米管形成于在所述纤维状碳表面所形成的铁薄膜上。
10.如权利要求9所述的复合型碳,其特征在于,所述铁薄膜形成于在所述纤维状碳表面所形成的铝薄膜上。
11.如权利要求10所述的复合型碳,其特征在于,所述铝基底的厚度为2 50nm,所述铁薄膜的厚度为2 65nm。
12.一种复合型碳的制造方法,其特征在于,实施下列工序准备纤维状碳的工序,该纤维状碳在表面上具有铝基底以及设置于该铝基底上的铁催化剂,同时该纤维状碳沿长轴方向延伸;以及形成碳纳米管的工序,其中通过将碳源用CVD装置进行CVD处理,在所述纤维状碳的表面形成直径比所述纤维状碳的直径小的多数个碳纳米管,同时,所述碳纳米管形成为该碳纳米管的长度方向沿同一方向对齐的多数个碳纳米管的群。
13.如权利要求12所述的复合型碳的制造方法,其特征在于, 所述铝基底的厚度为2 50nm,所述铁薄膜的厚度为2 65nm。
全文摘要
本发明提供具有新型结构的复合型碳。该复合型碳具有沿长轴方向延伸的纤维状碳、以及在该纤维状碳的表面形成的直径比该纤维状碳的直径小的多数个碳纳米管。所述碳纳米管形成为各碳纳米管的长度方向沿同一方向对齐的多数个碳纳米管的群。
文档编号H01M4/96GK102264639SQ200980152220
公开日2011年11月30日 申请日期2009年12月18日 优先权日2008年12月22日
发明者古池阳祐 申请人:丰田自动车株式会社, 爱信精机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1