一种fs-igbt器件阳极的制造方法

文档序号:7011659阅读:279来源:国知局
一种fs-igbt器件阳极的制造方法
【专利摘要】本发明涉及半导体技术,具体的说是涉及一种FS-IGBT器件阳极的制造方法。本发明的一种FS-IGBT器件阳极的制造方法,主要步骤为:对硅片1背面进行减薄处理;清洗硅片1背面并注入N型杂质,高温推结形成场阻止层2和表面牺牲层3;翻转硅片1完成正面制作工序;去掉硅片1背面的表面牺牲层3;清洗硅片1背面并注入P型杂质,退火形成P型集电极区10;背面金属11积淀。本发明的有益效果为,在不破坏FS层杂质分布前提下,能有效去除背部表面沾污、缺陷,并且实现方式简便、容易控制。本发明尤其适用于FS-IGBT器件阳极的制造。
【专利说明】—种FS-1GBT器件阳极的制造方法
【技术领域】
[0001]本发明涉及半导体技术,具体的说是涉及一种FS-1GBT器件阳极的制造方法。
【背景技术】
[0002]IGBT绝缘栅双极型晶体管,是由BJT (双极型三极管)和MOS (绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和BJT的低导通压降两方面的优点。自1978年形成IGBT概念以来,IGBT在国际上发展已经相当成熟,经由最初的第一代平面穿通IGBT,已经发展到第六代FS-Trench型IGBT。FS-1GBT由于背面引入的场截止FS层使得电场类似梯形分布,缩短了硅片厚度,大大降低了损耗,同时兼备正的温度系数、结实耐用、成本低等一系列优点而被广泛应用。在早期的PT型IGBT结构中,缓冲层的浓度相对较高,除了使得电场截止外,还有一项作用是减小阳极空穴的注入效率,牺牲部分静态损耗来换取器件动态损耗的降低。而在FS型IGBT中FS层作用只是使电场截止呈梯形分布,浓度相对较低,阳极空穴的注入效率更高、正向压降更低,理想的FS层浓度典型值大概在IO15-1O16量级,厚度大概在5-10um,动态损耗则会采用其它技术如局部少子寿命技术来加以控制。
[0003]一种常规的FS-1GBT器件制造方法如下:在正面工序完成之后,翻转硅片进行减薄和二次注入/退火、背金,第一次注入N型杂质用来形成FS场截止层,第二次注入P型杂质用来形成P型集电区。这种方法的不足在于背部退火温度需低于450°C保证正面金属不被熔化,使FS层杂质激活率很低,改进方法是利用激光退火、RTA代替低温炉管退火提高FS层杂质激活率,但激活率仍然偏低且激活深度有限。随着工艺能力的进步,研究者提出了另一种FS-1GBT器件制造方法:先进行减薄、背面N型杂质注入,再翻转到正面完成正面工序,接着再翻转到背面完成P型集电区的制作,利用正面热过程能有效激活FS层杂质。实际工艺中该方法的一个不足之处在于做正面工序时,背面已经形成的FS层表面容易产生沾污和缺陷,即使在背面加上一层淀积保护层,在硅片转移、做背面淀积保护层和去除背面淀积保护层的过程中,也很容易引入沾污和缺陷,这些FS层表面的沾污和缺陷会影响器件性能,常规清洗去除该沾污和缺陷层会消耗掉一部分FS层的硅,一般FS层很薄只有5-lOum,这种消耗很有可能就使得电场穿通、耐压降低,影响器件性能。针对现有技术的不足,本发明的目的是提供一种简便高效的FS-1GBT器件阳极制备方法。

【发明内容】

[0004]本发明所要解决的,就是针对实际工艺中,FS层表面处容易产生沾污、缺陷,而常规清洗方法容易破坏本来就很薄的FS层,使器件耐压降低的问题,提出一种FS-1GBT器件阳极的制造方法。
[0005]本发明解决上述技术问题所采用的技术方案是:一种FS-1GBT器件阳极的制造方法,其特征在于,包括以下步骤:
[0006]a.在硅片I背面注入N型杂质高温推结,形成具有浓度梯度的掺杂层,表面较高掺杂浓度的为表面牺牲层3,位于表面牺牲层3和硅片I之间较低掺杂浓度的为场阻止层2 ;
[0007]b.翻转硅片I完成正面制作工序;
[0008]c.去掉娃片I背面的表面牺牲层3 ;
[0009]d.清洗硅片I背面并注入P型杂质,退火形成P型集电极区10 ;
[0010]e.背面金属11积淀。[0011]本发明总的技术方案,主要是在背面第一次注入N型杂质时,制造一层高掺杂牺牲层3和一层FS层2,杂质浓度由高到低,从高掺杂牺牲层3过渡到浓度相对较低的FS层
2。牺牲层3用来承受后续工序引入的沾污和缺陷。在硅片背面减薄清洗、注入N型杂质并推结形成FS层2和牺牲层3,制作完正面工序后,再用一定比例的混合酸腐蚀液,来去掉该牺牲层3区域,进而去掉FS层2表面的沾污和缺陷,同时保证不破坏内部浓度相对较低的FS层2。从而实现在不破坏FS层杂质分布前提下,能有效去除背部表面沾污、缺陷。
[0012]具体的,步骤a中所述形成具有浓度梯度的掺杂层的具体方式为通过提高离子注入的剂量和能量实现,所述表面牺牲层3的厚度大于2um,所述阻止层2的厚度大于5um。
[0013]步骤a中所述形成具有浓度梯度的掺杂层的具体方式为:提高离子能量注入N型杂质,提高离子注入的剂量以较低能量再次注入N型杂质,高温推结形成具有浓度梯度的掺杂层,其中表面较高掺杂浓度的为表面牺牲层3,位于表面牺牲层3和娃片I之间较低掺杂浓度的为场阻止层2,所述场阻止层2的杂质浓度为3 X IO16~I X 1018cm_3、厚度大于5um,表面牺牲层3的浓度为5 X IO15~1父1016(^_3、厚度大于211111。
[0014]具体的,步骤a中所述形成具有浓度梯度的掺杂层的具体方式为:注入N型杂质高温推结形成场阻止层2,提高离子注入剂量,以较低注入能量在场阻止层2上形成较高浓度的表面牺牲层3,所述场阻止层2的杂质浓度为5 X IO15~I X 1016cm_3、厚度大于2um,表面牺牲层3的浓度为3 X IO16~I X 1018cnT3、厚度大于5um。
[0015]具体的,所述表面牺牲层3厚度为2~5um,所述阻止层2厚度为5~10um。
[0016]本方案中所述的提高离子注入的剂量和能量,为相对于传统技术而言,在相同环境下比传统技术注入的剂量和能量要高,以能有效生成表面牺牲层3 ;具体需根据实际衬底掺杂浓度调节注入剂量、能量,使得外层高掺杂牺牲层3的浓度可优选3X IO16~I X IO18Cm'厚度大于2um,可优选2~5um ;内层FS层2杂质浓度、厚度可优选5 X IO15~I X IO16Cm 3、5 ~IOum 范围内。
[0017]具体的,步骤d中所述去掉硅片I背面的表面牺牲层3为通过混合酸腐蚀液腐蚀,具体为:
[0018]采用HF:HN03:HAC=3:2:1比例的混合酸腐蚀液,在常温下进行腐蚀。
[0019]本方案中,采用的混合酸腐蚀液在常温下腐蚀,速率大概是lum/10s,因此具有简便且容易控制的优点,同时通过控制腐蚀硅片的时间还可以精确的控制FS层2的杂质分布,从而控制器件的性能。
[0020]具体的,步骤e中退火形成P型集电极区为在低于450°C环境下完成。
[0021]本方案的目的在于避免正面金属被破坏,也可用激光退火、RTA代替低温炉管退火,来解决集电区杂质激活率低的问题。
[0022]具体的,步骤c中完成的正面制作工序包括:形成P阱4、N+发射区5、栅氧化层6、多晶硅层7和淀积磷硅玻璃层8 ;[0023]完成步骤e后还包括以下正面制作工序:磷硅玻璃层8回流、欧姆接触工序和正面金属工序
[0024]本方案的优点在于,将正面工序步骤分为两步,在P型集电区10杂质退火工序之后,进行磷硅玻璃层8回流、欧姆接触工序和正面金属工序等正面工序时,可利用这些工序的热过程进一步激活P型集电区10杂质,从而提高集电区杂质激活率。
[0025]本发明的有益效果为,在不破坏FS层杂质分布前提下,能有效去除背部表面沾污、缺陷,并且实现方式简便、容易控制。
【专利附图】

【附图说明】
[0026]图1是常规FS层和本发明所述的生成牺牲层杂质分布图;
[0027]图2是实施例1的工艺流程图;
[0028]图3是实施例1的工艺流程中在硅片I上注入N型杂质示意图;
[0029]图4是实施例1的工艺流程中在硅片I上生成场阻止层2和表面牺牲层3后结构示意图;
[0030]图5是实施例1的工艺流程中翻转硅片I后结构示意图;
[0031]图6是实施例1的工艺流程中完成硅片I正面工艺后结构示意图;
[0032]图7是实施例1的工艺流程中去掉表面牺牲层3后结构示意图;
[0033]图8是实施例1的工艺流程中注入P型杂质示意图;
[0034]图9是实施例1的工艺流程中形成P型集电极区、背面金属后结构示意图;
[0035]图10是实施例2的工艺流程图;
[0036]图11是实施例2的工艺流程中在硅片I上注入N型杂质示意图;
[0037]图12是实施例2的工艺流程中在硅片I上生成场阻止层2和表面牺牲层3后结构示意图;
[0038]图13是实施例2的工艺流程中第一次完成硅片I正面工艺后结构示意图;
[0039]图14是实施例2的工艺流程中去掉表面牺牲层3后结构示意图;
[0040]图15是实施例2的工艺流程中注入P型杂质示意图;
[0041]图16是实施例2的工艺流程中形成P型集电极区后结构示意图;
[0042]图17是实施例2的工艺流程中第二次完成硅片I正面工艺后结构示意图;
[0043]图18是实施例2的工艺流程中完成背部金属淀积后结构示意图;
[0044]图19是不同湿法刻蚀厚度下,背面杂质浓度分布图;
[0045]图20是不同湿法刻蚀厚度下,器件击穿时背面电场分布图;
[0046]图21是器件耐压与背面湿法刻蚀厚度关系图;
[0047]图22是不同湿法刻蚀厚度下,器件正向输出特性曲线示意图。
【具体实施方式】
[0048]下面结合附图和实施例,详细描述本发明的技术方案:
[0049]本发明提出在现有技术方法上的一种改进方案,在不破坏FS层杂质分布前提下,能有效去除背部表面沾污、缺陷。在背面第一次注入N型杂质时,适当提高离子注入的剂量和能量,制造一层高掺杂牺牲层3和一层FS层2,杂质浓度由高到低,从高掺杂牺牲层3过渡到浓度相对较低的FS层2。牺牲层3用来承受后续工序引入的沾污和缺陷。在硅片背面减薄清洗、注入N型杂质并推结形成FS层2和牺牲层3,制作完正面工序后,再用一定比例的混合酸腐蚀液,来去掉该牺牲层3区域,进而去掉FS层2表面的沾污和缺陷,同时保证不破坏内部浓度相对较低的FS层2。例如:HF:HN03:HAC=3:2:1比例的混合酸腐蚀液,在常温下腐蚀,速率大概是lum/lOs,简便且容易控制,通过控制腐蚀硅片的时间还可以精确的控制FS层2杂质分布,从而控制器件的性能。接着清洗硅片后做P型杂质注入并退火形成P型集电区10后就完成了这种FS-1GBT器件阳极制造。
[0050]如图1所示,实心三角形曲线为常规FS层杂质浓度分布图,实心圆形曲线为本发明形成牺牲层杂质浓度分布图。仿真中衬底电阻率为400Ω.cm,常规FS层形成注入杂质为磷、注入能量为50KEV、注入浓度为lel3cnT3、在1150°C下推结时间400min。本发明提高注入能量、剂量到60KEV、IeHcnT3情况下,形成了一层表面牺牲层3和内部真正所需的FS层2。牺牲层3用来承受后续工序引入的沾污和缺陷。
[0051]实施例1:
[0052]如图2所示,为本例的制造流程,包括:
[0053]A:对IGBT芯片背面减薄,根据硅片I所需厚度,进行减薄,减薄后要保证硅片表面平整度,去除表面损伤层;
[0054]B:清洗硅片背面并注入N型杂质高温推结(如图2所示),形成场阻止(FS)层2和表面牺牲层3 (如图3所示),场阻止(FS)层2位于表面牺牲层3和硅片I之间;
[0055]C:翻转硅片(如图4所示)制作正面工序;
[0056]D:用一定比例的混合酸腐蚀液,腐蚀掉背部FS层表面牺牲层3 (如图7所示);
[0057]E:清洗硅片背面并注入P型杂质(如图8所示)并退火形成P型集电区10 ;
[0058]F:背部金属11积淀(如图10所示)。
[0059]本例中,最后背面注入P型杂质退火是在低于450°C环境下完成的,保证正面金属不被破坏,P型集电区10杂质激活率相对较低。一种方法是用激光退火、RTA代替低温炉管退火,来解决集电区杂质激活率低的问题。
[0060]实施例2:
[0061]如图10所示,本例的制造工艺流程包括:
[0062]A:对IGBT芯片背面减薄,根据硅片I所需厚度,进行减薄,减薄后要保证硅片表面平整度,去除表面损伤层;
[0063]B:清洗硅片背面并注入N型杂质高温推结,形成场阻止(FS)层2和表面牺牲层3(如图12所示),场阻止(FS)层2位于表面牺牲层3和硅片I之间;
[0064]Cl:翻转硅片制作正面工序,包括形成P阱4、N+发射区5、栅氧化层(6)、多晶硅层7和淀积磷硅玻璃层8 (如图13所示);
[0065]D:用一定比例的混合酸腐蚀液,腐蚀掉背部FS层表面牺牲层3 (如图14所示);
[0066]E:清洗硅片背面并注入P型杂质(如图15所示)并退火形成P型集电区10 (如图16所示);
[0067]C2:完成磷硅玻璃层8回流、欧姆接触工序和正面金属工序(如图17所示);
[0068]F:背部金属11积淀(如图18所示)。
[0069]常用的P型杂质硼的原子半径较小,扩散系数与磷相近,这样,在通常的正面工序热过程中,高浓度的硼将会扩散形成结深很大的P型集电区、中和大部分的FS层,破坏阳极形貌,使器件耐压降低。本例的特征是形成FS层并去除高掺杂牺牲层、清洗后,用来形成P型集电区而注入的P型杂质原子半径比硼原子半径要大的多,扩散系数比硼原子扩散系数低的多,从而保证后续正面工序步骤C2中热过程正好能控制背面P型集电区10结深,同时也保证了 P型集电区10杂质的激活率。
[0070]如图19到图22所示,通过tsuprem4+medici仿真,仿真中一些参数设定如下:衬底设置为400 Ω.cm,厚度为500um。FS层注入形成条件如下:注入杂质为磷、注入能量为60KEV、注入浓度为lel4cnT3、在1150°C下推结时间400min。经过正面工序之后用一定比例的混合酸腐蚀液,腐蚀掉背部FS层表面高掺杂牺牲层3。后续注入P型杂质类型为硼、注入能量为50KEV、注入浓度为2el5Cm_3、在450°C下退火60min,假设背部P型杂质激活率为10%,实际注入浓度为2el4Cm_3。在不同湿法刻蚀厚度情况下,对比杂质浓度、击穿时电场分布、耐压和正向输出特性曲线可以知道,我们通过控制背面腐蚀硅片的厚度可以去除靠近表面处高掺杂牺牲层,还可以方便的控制FS层2杂质分布,从而控制器件的性能。还可以看出本发明器件耐压和正向输出特性与常规FS层情况下相近。
[0071]综上,本发明的有益效果主要包括:
[0072]通过适当提高离子注入的剂量和能量,制造一层高掺杂牺牲层3和一层FS层2,杂质浓度由高到低,从高掺杂牺牲层3过渡到浓度相对较低的FS层2。牺牲层3用来承受后续工序引入的沾污和缺陷,之后用一定比例的混合酸腐蚀液常温下腐蚀掉该高掺杂牺牲层可以有效去除FS层表面沾污和缺陷,简便且容易控制。
[0073]常规方法清洗、去除背部表面沾污、缺陷,会消耗掉一部分硅、破坏FS层杂质分布,使器件耐压降低。而本发明所述的方法中通过精确控制腐蚀时间,可以只腐蚀掉牺牲层3而不破坏内部预先设定的FS层2杂质分布,保证器件性能不发生改变。
[0074]拆分、穿插正面工序顺序,利用正面工序的热过程进一步激活P型集电区10杂质,能提高集电区杂质激活率。
【权利要求】
1.一种FS-1GBT器件阳极的制造方法,其特征在于,包括以下步骤: a.在硅片(I)背面注入N型杂质高温推结,形成具有浓度梯度的掺杂层,其中表面较高掺杂浓度的为表面牺牲层(3),位于表面牺牲层(3)和硅片(I)之间较低掺杂浓度的为场阻止层(2); b.翻转硅片(I)完成正面制作工序; c.去掉硅片(I)背面的表面牺牲层(3); d.清洗硅片(I)背面并注入P型杂质,退火形成P型集电极区(10); e.完成背面金属(11)积淀。
2.根据权利要求1所述的一种FS-1GBT器件阳极的制造方法,其特征在于,步骤a中所述形成具有浓度梯度的掺杂层的具体方式为通过提高离子注入的能量和剂量实现。
3.根据权利要求1所述的一种FS-1GBT器件阳极的制造方法,其特征在于,步骤a中所述形成具有浓度梯度的掺杂层的具体方式为:提高离子能量注入N型杂质,提高离子注入的剂量以较低能量再次注入N型杂质,高温推结形成具有浓度梯度的掺杂层,其中表面较高掺杂浓度的为表面牺牲层(3),位于表面牺牲层(3)和娃片(I)之间较低掺杂浓度的为场阻止层(2),所述场阻止层(2)的杂质浓度为3 X IO16?I X 1018cm_3、厚度大于5um,表面牺牲层(3)的浓度为5 X IO15?I X 1016cm_3、厚度大于2um。
4.根据权利要求1所述的一种FS-1GBT器件阳极的制造方法,其特征在于,步骤a中所述形成具有浓度梯度的掺杂层的具体方式为:注入N型杂质高温推结形成场阻止层(2),提高离子注入剂量,以较低注入能量在场阻止层(2)上形成较高浓度的表面牺牲层(3),所述场阻止层(2)的杂质浓度为3 X IO16?I X 1018cm_3、厚度大于5um,表面牺牲层(3)的浓度为5 X IO15 ?I X IO16Cm 3、厚度大于 2um。
5.根据权利要求2或3或4所述的一种FS-1GBT器件阳极的制造方法,其特征在于,所述表面牺牲层(3)厚度为2?5um,所述阻止层(2)厚度为5?10um。
6.根据权利要求5所述的一种FS-1GBT器件阳极的制造方法,其特征在于,步骤d中所述去掉硅片(I)背面的表面牺牲层(3)为通过混合酸腐蚀液腐蚀,具体为: 采用HF:HN03:HAC=3:2:1比例的混合酸腐蚀液,在常温下进行腐蚀。
7.根据权利要求6所述的一种FS-1GBT器件阳极的制造方法,其特征在于,步骤e中退火形成P型集电极区为在低于450°C环境下完成。
8.根据权利要求1所述的一种FS-1GBT器件阳极的制造方法,其特征在于,步骤b中完成的正面制作工序包括:形成P阱(4)、N+发射区(5)、栅氧化层(6)、多晶硅层(7)和淀积磷硅玻璃层(8); 完成步骤d后还包括以下正面制作工序:磷硅玻璃层(8)回流、欧姆接触工序和正面金属工序。
【文档编号】H01L21/331GK103578959SQ201310585511
【公开日】2014年2月12日 申请日期:2013年11月19日 优先权日:2013年11月19日
【发明者】陈万军, 肖琨, 王珣阳, 杨骋, 张波 申请人:电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1