蚀刻方法与流程

文档序号:12513826阅读:252来源:国知局
蚀刻方法与流程

本发明涉及一种相对于形成于基板的硅锗(SiGe)以高选择比对形成于基板的硅(Si)进行蚀刻的蚀刻方法。



背景技术:

最近,作为场效应晶体管的高速化的一环,要求一种在形成交替层叠了Si膜与SiGe膜的层叠构造之后相对于SiGe膜选择性地对Si膜进行侧蚀的技术。

针对这种要求,专利文献1中公开了如下技术:作为蚀刻气体,使用含有碳元素、氢元素以及氟元素中的至少一种气体与Ar气体的混合气体,例如,使用SF6气体、H2气体、CF4气体与Ar气体的混合气体,使氟元素的分压小于1.0Pa来进行等离子体蚀刻。

专利文献1:日本特开2013-251471号公报



技术实现要素:

然而,专利文献1的技术需要复杂的气体系统且需要在气体中含有有害的氟。另外,由于需要使氟元素的分压小于1.0Pa,因此能够得到选择性的工艺条件的范围窄。

因而,本发明的目的在于,使用不含氟且简单的气体系统,不大幅限定工艺条件就相对于硅锗以高选择比对硅进行蚀刻。

即,根据本发明的一个观点,提供一种蚀刻方法,该蚀刻方法包括以下工序:将具有硅和硅锗的被处理基板配置在腔室内;将由H2气体和Ar气体组成的处理气体以激励后的状态向所述腔室内供给;以及利用所述激励后的状态的处理气体来相对于硅锗选择性地对硅进行蚀刻。

作为硅,能够使用硅膜,作为硅锗,能够使用硅锗膜。

在进行所述蚀刻时,优选将所述腔室内的压力设为1.33Pa~133Pa的范围。

另外,在进行所述蚀刻时,优选将载置被处理基板的载置台的温度设为0℃~80℃的范围。

并且,在进行所述蚀刻时,优选将H2气体与Ar气体之间的体积比率设为1:20~20:1的范围。

并且,能够将H2气体和Ar气体在所述腔室外等离子体化,并以等离子体化后的状态导入到所述腔室。

另外,根据本发明的其它观点,提供一种存储介质,其存储有在计算机上运行的用于控制蚀刻装置的程序,所述程序在执行时使计算机控制所述蚀刻装置以进行蚀刻方法,该蚀刻方法包括以下工序:将具有硅和硅锗的被处理基板配置在腔室内;将由H2气体和Ar气体组成的处理气体以激励后的状态向所述腔室内供给;以及利用所述激励后的状态的处理气体来相对于硅锗选择性地对硅进行蚀刻。

根据本发明,由于处理气体由H2气体和Ar气体组成,因此是不含氟且简单的气体系统,利用该气体系统,不大幅限定工艺条件就能够相对于硅锗以高选择比对硅进行蚀刻。

附图说明

图1是示出搭载有为了实施本发明的实施方式所涉及的蚀刻方法而使用的蚀刻装置的处理系统的一例的概要结构图。

图2是示出搭载于图1的处理系统的热处理装置的截面图。

图3是示出搭载于图1的处理系统的蚀刻装置的截面图。

图4A是示出应用本发明的器件构造的例子的截面图。

图4B是用于说明对应用本发明的器件构造进行蚀刻后的状态的截面图。

图5是示出说明达到本发明中使用的气体系统的过程的实验结果的图。

图6是示出说明达到本发明中使用的气体系统的过程的实验结果的图。

图7是示出使Ar气体流量发生了变化的情况下的、Si膜的蚀刻量以及Si膜相对于SiGe膜的蚀刻选择比的图。

图8是示出使压力发生了变化的情况下的、Si膜的蚀刻量以及Si膜相对于SiGe膜的蚀刻选择比的图。

图9是示出使蚀刻时间发生了变化的情况下的、Si膜的蚀刻量以及Si膜相对于SiGe膜的蚀刻选择比的图。

具体实施方式

下面,参照附图来说明本发明的实施方式。

<本发明的实施方式中使用的处理系统的一例>

图1是示出搭载有用于实施本发明的一个实施方式所涉及的蚀刻方法的蚀刻装置的处理系统的一例的概要结构图。该处理系统1具备:输入输出部2,其用于输入输出作为被处理基板的半导体晶圆(以下简记为晶圆)W;两个加载互锁室(L/L)3,该两个加载互锁室(L/L)3与输入输出部2邻接地设置;热处理装置4,其分别与各加载互锁室3邻接地设置,用于对晶圆W进行热处理;本实施方式所涉及的蚀刻装置5,其分别与各热处理装置4邻接地设置,不在腔室内生成等离子体而对晶圆W进行蚀刻;以及控制部6。

输入输出部2具有输送室(L/M)12,该输送室(L/M)12在内部设置有用于输送晶圆W的第一晶圆输送机构11。第一晶圆输送机构11具有用于将晶圆W保持为大致水平的两个输送臂11a、11b。在输送室12的长度方向上的侧部设置有载置台13,该载置台13能够与例如3个以排列多个晶圆W的方式收纳多个晶圆W的承载件C相连接。另外,与输送室12邻接地设置有定位器14,该定位器14使晶圆W旋转并利用光学的方式求出偏心量,以对晶圆W进行对位。

在输入输出部2中,晶圆W由输送臂11a、11b保持着并通过第一晶圆输送机构11的驱动而在大致水平面内直进移动并进行升降,从而将晶圆W输送到期望的位置。然后,通过使输送臂11a、11b分别相对于载置台13上的承载件C、定位器14、加载互锁室3进行进退来输入输出晶圆W。

各加载互锁室3以在其与输送室12之间分别设有闸阀16的状态分别连结于输送室12。在各加载互锁室3内设置有用于输送晶圆W的第二晶圆输送机构17。另外,构成为能够对加载互锁室3进行抽真空而使其达到规定真空度。

第二晶圆输送机构17具有拾取件(日文:ピック),该拾取件具有多关节臂构造,用于将晶圆W保持为大致水平。在该第二晶圆输送机构17中,在将多关节臂缩回的状态下拾取件位于加载互锁室3内,能够通过使多关节臂伸开来使拾取件到达热处理装置4,并且能够通过使多关节臂进一步伸开来使拾取件到达蚀刻装置5,从而能够在加载互锁室3、热处理装置4以及蚀刻装置5之间输送晶圆W。

如图2所示,热处理装置4具有能够进行抽真空的腔室20以及在腔室20中载置晶圆W的载置台23,在载置台23中埋设有加热器24,利用该加热器24对实施了蚀刻处理后的晶圆W进行加热而使晶圆W上存在的蚀刻残渣气化以将其去除。在腔室20的靠加载互锁室3的一侧设置有用于与加载互锁室3之间输送晶圆的输入输出口20a,该输入输出口20a能够通过闸阀22进行开闭。另外,在腔室20的靠蚀刻装置5的一侧设置有用于与蚀刻装置5之间输送晶圆W的输入输出口20b,该输入输出口20b能够通过闸阀54进行开闭。腔室20的侧壁上部与气体供给路径25相连接,气体供给路径25与N2气体供给源30相连接。另外,腔室20的底壁与排气路径27相连接,排气路径27与真空泵33相连接。在气体供给路径25上设置有流量调节阀31,在排气路径27上设置有压力调整阀32,通过对这些阀进行调整,使腔室20内处于规定压力的N2气体环境来进行热处理。也可以使用Ar气体等N2气体以外的非活性气体。

控制部6具有工艺控制器91,该工艺控制器91具备用于对处理系统1的各构成部进行控制的微型处理器(计算机)。工艺控制器91与用户界面92相连接,该用户界面92具有用于操作员为管理处理系统1而进行命令的输入操作等的键盘、将处理系统1的运行状况可视化显示的显示器等。另外,工艺控制器91与存储部93相连接,在该存储部93中保存有用于通过工艺控制器的控制来实现由处理系统1执行的各种处理、例如对后述的蚀刻装置5中的处理气体的供给、腔室内的排气等的控制程序、用于根据处理条件使处理系统1的各构成部执行规定处理的控制程序即处理制程、各种数据库等。制程被存储于存储部93中的适当的存储介质(未图示)。而且,根据需要,从存储部93调出任意的制程并由工艺控制器91执行,由此在工艺控制器91的控制下,由处理系统1进行期望的处理。

本实施方式所涉及的蚀刻装置5将由H2气体和Ar气体组成的处理气体以激励后的状态供给来对Si进行蚀刻。后面详细说明蚀刻装置5的具体结构。

在这样的处理系统1中,作为晶圆W,使用具有作为蚀刻对象的Si且还具有SiGe的晶圆,将多个这样的晶圆W收纳在承载件C内后向处理系统1输送。

在处理系统1中,在打开大气侧的闸阀16的状态下,利用第一晶圆输送机构11的输送臂11a、11b中的任意一个输送臂将1个晶圆W从输入输出部2的承载件C输送到加载互锁室3,并将其交接到加载互锁室3内的第二晶圆输送机构17的拾取件上。

之后,关闭大气侧的闸阀16并对加载互锁室3内进行真空排气,接着打开闸阀22、54,使拾取件伸长到蚀刻装置5而向蚀刻装置5输送晶圆W。

之后,使拾取件返回到加载互锁室3,关闭闸阀22、54,在蚀刻装置5中如后述的那样进行蚀刻处理。

在蚀刻处理结束之后,打开闸阀22、54,利用第二晶圆输送机构17的拾取件将蚀刻处理后的晶圆W输送至热处理装置4,将N2气体导入至腔室20内,并且利用加热器24对载置台23上的晶圆W进行加热,对蚀刻残渣等进行加热以将其去除。

在热处理装置4中的热处理结束之后,打开闸阀22,利用第二晶圆输送机构17的拾取件使载置台23上的蚀刻处理后的晶圆W退避到加载互锁室3,利用第一晶圆输送机构11的输送臂11a、11b中的任意一个输送臂使该晶圆W返回到承载件C。由此,一个晶圆的处理完成。

此外,在处理系统1中,热处理装置4不是必须的。在不设置热处理装置4的情况下,只要利用第二晶圆输送机构17的拾取件使蚀刻处理结束之后的晶圆W退避到加载互锁室3并且利用第一晶圆输送机构11的输送臂11a、11b中的任意一个输送臂使该晶圆W返回到承载件C即可。

<蚀刻装置的结构>

接着,详细说明用于实施本实施方式的蚀刻方法的蚀刻装置5。

图3是示出蚀刻装置5的截面图。如图3所示,蚀刻装置5具备密闭构造的腔室40,在腔室40的内部设置有用于将晶圆W以大致水平的状态载置的载置台42。另外,蚀刻装置5具备用于向腔室40供给蚀刻气体的气体供给机构43、用于对腔室40内进行排气的排气机构44。

腔室40由腔室主体51和盖部52构成。腔室主体51具有底部51b和大致圆筒形状的侧壁部51a,腔室主体51的上部开口,该开口被盖部52封闭。侧壁部51a和盖部52被密封构件(未图示)密封,从而确保腔室40内的气密性。在盖部52的顶壁上,从上方朝向腔室40内插入有气体导入喷嘴61。

侧壁部51a设置有用于与热处理装置4的腔室20之间输入输出晶圆W的输入输出口53,该输入输出口53能够通过闸阀54进行开闭。

载置台42在俯视观察时大致呈圆形,固定于腔室40的底部51b。在载置台42的内部设置有用于对载置台42的温度进行调节的温度调节器55。温度调节器55具备例如供温度调节用介质(例如水等)循环的管路,通过与在这样的管路内流动的温度调节用介质进行热交换,来调节载置台42的温度,进行载置台42上的晶圆W的温度控制。

气体供给机构43具有用于供给H2气体的H2气体供给源63和用于供给Ar气体的Ar气体供给源64。另外,具有与H2气体供给源63相连接的H2气体供给配管65、与Ar气体供给源64相连接的Ar气体供给配管66、以及与H2气体供给配管65和Ar气体供给配管66相连接的、用于激励H2气体和Ar气体的气体激励部67。气体激励部67与激励气体供给配管68相连接。激励气体供给配管68与上述的气体导入喷嘴61相连接。而且,从H2气体供给源63和Ar气体供给源64通过H2气体供给配管65和Ar气体供给配管66而供给到气体激励部67的H2气体和Ar气体在气体激励部67中被激励,被激励后的气体经由激励气体供给配管68和气体导入喷嘴61而被导入到腔室40。

气体激励部67只要能够激励气体即可,并不限定其结构,但是能够优选使用以适当的方法对气体进行等离子体化的结构。作为等离子体,例如能够使用电感耦合等离子体、电容耦合等离子体、微波等离子体等通常使用的等离子体。

在H2气体供给配管65和Ar气体供给配管66上设置有用于进行流路的开闭动作和流量控制的流量控制器70。流量控制器70例如由开闭阀和质量流量控制器构成。

此外,也可以在腔室40的上部设置喷淋板,经由喷淋板将被激励后的气体以淋浴状供给。

排气机构44具有与形成于腔室40的底部51b的排气口81相连接的排气配管82,并且具有设置于排气配管82的自动压力控制阀(APC)83和真空泵84,该自动压力控制阀(APC)83用于对腔室40内的压力进行控制,该真空泵84用于对腔室40内进行排气。

在腔室40的侧壁,以向腔室40内插入的方式设置有作为用于对腔室40内的压力进行测量的压力计的两个电容压力计86a、86b。电容压力计86a是高压力用的压力计,电容压力计86b是低压力用的压力计。在载置于载置台42的晶圆W的附近设置有用于检测晶圆W的温度的温度传感器(未图示)。

作为构成蚀刻装置5的腔室40、载置台42等各种构成部件的材质,能够使用Al。构成腔室40的Al材料既可以是无垢的Al材料,也可以是对内表面(腔室主体51的内表面等)实施了阳极氧化处理后的Al材料。另一方面,构成载置台42的Al的表面要求耐磨性,因此优选的是,对构成载置台42的Al的表面进行阳极氧化处理而在表面形成耐磨性高的氧化覆膜(Al2O3)。

<蚀刻装置的蚀刻方法>

接着,说明这样构成的蚀刻装置的蚀刻方法。

Si的选择蚀刻例如应用于具有图4A所示的构造的器件。即,在Si基体101上交替层叠SiGe膜102和Si膜103,将在SiGe膜102和Si膜103之上形成的包含SiO2膜等的硬掩层104用作蚀刻掩模,对SiGe膜102和Si膜103的层叠膜进行蚀刻而预先形成有沟槽105,准备具有这种器件构造的晶圆W,针对这样的器件构造实施本实施方式的蚀刻方法,如图4B所示对Si膜103进行侧蚀。

此外,Si膜103和SiGe膜102能够通过CVD(Chemical Vapor Deposition:化学气相沉积)法、外延生长法形成。

在实施本实施方式的蚀刻方法时,在使蚀刻装置5的闸阀54开放的状态下,利用加载互锁室3内的第二晶圆输送机构17的拾取件,例如将具有图4A所示的器件构造的晶圆W从输入输出口53输入到腔室40内,并载置于载置台42。

之后,使拾取件返回到加载互锁室3,关闭闸阀54,将腔室40内设为密闭状态。

接着,将H2气体和Ar气体激励后向腔室40内导入,对形成于晶圆W的Si膜103进行侧蚀。

具体来说,利用温度调节器55将载置台42的温度调节至规定范围,将腔室40内的压力调节至规定范围,从气体供给机构43的H2气体供给源63经由H2气体供给配管65将H2气体引导至气体激励部67,从气体供给机构43的Ar气体供给源64经由Ar气体供给配管66将Ar气体引导至气体激励部67,将在气体激励部67中被激励后的气体经由激励气体供给配管68和气体导入喷嘴61导入到腔室40内,进行Si膜的侧蚀。

这样,通过将由H2气体和Ar气体组成的处理气体以激励后的状态向腔室40内导入,能够相对于SiGe膜以高选择比对Si膜进行蚀刻,通过调整条件,能够将蚀刻选择比设为50以上这种极高的值。

接着,对达到这样的气体系统的过程进行说明。

对于Si的蚀刻,以往以来一直研究HF气体,最初研究了使用HF气体来相对于SiGe膜选择性地对Si膜进行蚀刻。HF气体的反应性极高,因此使用在HF气体中混合H2气体与作为稀释气体的Ar气体而成的处理气体,向腔室内供给对该处理气体进行等离子体化后的气体,对Si膜和SiGe膜进行蚀刻。其结果,能够以高蚀刻速率对Si膜进行蚀刻,但是SiGe膜也被蚀刻,Si膜相对于SiGe膜的蚀刻选择比低。另一方面,将HF气体的量设为0,使用只对H2气体和Ar气体进行等离子体化后的气体进行了同样的蚀刻。其结果,虽然Si膜的蚀刻量下降,但是SiGe膜几乎不被蚀刻,Si膜相对于SiGe膜的蚀刻选择比极高。

图5中示出导出上述内容的实验结果。

在此,准备形成有Si膜的无图形晶圆以及形成有SiGe膜的无图形晶圆,在H2气体的流量为370sccm、Ar气体的流量为400sccm、温度为25℃、压力为100mTorr(13.3Pa)、等离子体生成电力(IPC等离子体)为600W、处理时间为1min的基本条件下,使HF气体流量变化为0sccm、100sccm、200sccm、300sccm,来对Si膜和SiGe膜进行蚀刻。如该图所示,在添加了HF的情况下,Si膜的蚀刻量为80nm,但是SiGe膜也被蚀刻到接近20nm,Si膜相对于SiGe膜的蚀刻选择比低至4左右,与此相对,在只有H2气体+Ar气体的情况下,Si膜的蚀刻量为15nm左右,但是Si膜相对于SiGe膜的蚀刻选择比上升到93。

因此,为了确认H2气体的有效性,只将H2气体进行等离子体化来对Si膜和SiGe膜进行蚀刻。其结果,Si膜和SiGe膜均几乎不被蚀刻。

接着,为了确认H2气体和其它气体的组合,使用将H2气体和N2气体进行了等离子体化后的气体,来对Si膜和SiGe膜进行蚀刻。其结果,SiGe膜的蚀刻量变得比Si膜的蚀刻量多。

图6中示出导出上述内容的实验结果。

在此,在H2气体的流量为370sccm、N2气体的流量为100sccm、温度为25℃、压力为100mTorr(13.3Pa)、等离子体生成电力(IPC等离子体)为600W、处理时间为1min的条件下,同样地对Si膜和SiGe膜进行蚀刻。如该图所示,结果是,通过利用H2气体+N2气体进行蚀刻,Si膜的蚀刻量为26.5nm,与此相对,SiGe膜的蚀刻量为66.7nm,SiGe膜的蚀刻量变得比Si膜的蚀刻量多。

如以上那样,确认出:为了相对于SiGe膜以高选择比对Si膜进行蚀刻,使用将H2气体激励后的气体是有效的,但是如果单独利用H2气体,则Si膜和SiGe膜均不被蚀刻,如果利用将H2气体和N2气体混合而成的气体,则SiGe膜被更多地蚀刻,通过将Ar气体与H2气体混合并进行激励才能够相对于SiGe膜以高选择比对Si膜进行蚀刻。

在相对于SiGe膜选择性地对Si膜进行蚀刻的用途中,要求选择比高于Si膜的蚀刻速率。因此,本实施方式的对由H2气体和Ar气体组成的处理气体进行激励的方法是有效的。

该蚀刻处理中的腔室40内的压力优选为1.33Pa~133Pa(10mTorr~1000mTorr)的范围。更优选为6.66Pa~66.6Pa(50mTorr~500mTorr)的范围。另外,载置台42的温度(大致为晶圆的温度)优选为0℃~80℃。更优选为10℃~40℃。

另外,H2气体与Ar气体之间的体积比率(流量比率)优选为1:20~20:1的范围,更优选为1:10~10:1的范围。

这样,在蚀刻装置5中的蚀刻处理结束之后,打开闸阀54,利用第二晶圆输送机构17的拾取件将载置台42上的蚀刻处理后的晶圆W从腔室40输出。

如以上那样,在本实施方式中,使用不含氟且简单的气体系统,不大幅限定工艺条件就能够相对于硅锗膜以高选择比对硅膜进行蚀刻。

<实验例>

接着,说明实验例。

[实验例1]

在此,准备形成有Si膜的无图形晶圆以及形成有SiGe膜的无图形晶圆,在H2气体的流量为370sccm、温度为25℃、压力为100mTorr(13.3Pa)、等离子体生成电力(IPC等离子体)为600W、处理时间为3min的基本条件下,使Ar气体流量变化为50sccm、100sccm、400sccm,来对Si膜和SiGe膜进行蚀刻。

图7中示出上述实验的结果。图7是示出各Ar气体流量时的Si膜的蚀刻量以及Si膜相对于SiGe膜的蚀刻选择比的图。如该图所示,Si膜的蚀刻量具有随着Ar气体流量增加而增加的倾向。另一方面,SiGe膜几乎不被蚀刻,在Ar流量为100sccm时,SiGe膜的蚀刻量为1.1nm,在Ar流量为50sccm和400sccm时,SiGe膜的蚀刻量为0。因此,在Ar气体流量为100sccm时,Si膜相对于SiGe膜的蚀刻选择比为51,在Ar气体流量为50sccm和400sccm时,Si膜相对于SiGe膜的蚀刻选择比为无限大,在任意Ar气体流量时,Si膜相对于SiGe膜的蚀刻选择比都为极高的值。

[实验例2]

在此,与实验例1同样地,准备形成有Si膜的无图形晶圆以及形成有SiGe膜的无图形晶圆,在H2气体的流量为370sccm、Ar气体的流量为100sccm、温度为25℃、等离子体生成电力(IPC等离子体)为600W、处理时间为3min的基本条件下,使压力变化为100mTorr(13.3Pa)、200mTorr(26.6Pa),来对Si膜和SiGe膜进行蚀刻。

图8中示出上述实验的结果。图8是示出各压力时的、Si膜的蚀刻量以及Si膜相对于SiGe膜的蚀刻选择比的图。如该图所示,具有压力越低则Si膜的蚀刻量越高的倾向。另一方面,SiGe膜几乎不被蚀刻,在压力为100mTorr(13.3Pa)时,SiGe膜的蚀刻量为1.1nm,在压力为200mTorr(26.6Pa)时,SiGe膜的蚀刻量为0。因此,在压力为100mTorr(13.3Pa)时,Si膜相对于SiGe膜的蚀刻选择比为51,在压力为200mTorr(26.6Pa)时,Si膜相对于SiGe膜的蚀刻选择比为无限大,在任意压力时,Si膜相对于SiGe膜的蚀刻选择比都为极高的值。

[实验例3]

在此,与实验例1同样地,准备形成有Si膜的无图形晶圆以及形成有SiGe膜的无图形晶圆,在H2气体的流量为370sccm、Ar气体的流量为400sccm、温度为25℃、等离子体生成电力(IPC等离子体)为600W的基本条件下,使蚀刻时间变化为1mim、3min,来对Si膜和SiGe膜进行蚀刻。

图9中示出上述实验的结果。图9是示出各蚀刻时间时的、Si膜的蚀刻量以及Si膜相对于SiGe膜的蚀刻选择比的图。如该图所示,Si膜的蚀刻量随着蚀刻时间增加而增加,但是SiGe膜与蚀刻时间无关地几乎不被蚀刻,在蚀刻时间为1min时,SiGe膜的蚀刻量被测量为0.16nm,在蚀刻时间为3min时,SiGe膜的蚀刻量被测量为0nm,Si膜相对于SiGe膜的蚀刻选择比分别为93和无限大,能够与蚀刻时间无关地得到高选择比。

<本发明的其它应用>

此外,本发明并不限定于上述实施方式,而能够进行各种变形。例如,上述实施方式的装置只不过是例示,能够利用各种结构的装置来实施本发明的蚀刻方法。另外,示出了将Si膜用作Si、将SiGe膜用作SiGe的例子,但是也可以Si和SiGe中的一方是半导体晶圆的基体本身(半导体基板)。并且,示出了将半导体晶圆用作被处理基板的情况,但是不限于半导体晶圆,被处理基板也可以是以LCD(液晶显示器)用基板为代表的FPD(平板显示器)基板、陶瓷基板等其它基板。

附图标记说明

1:处理系统;2:输入输出部;3:加载互锁室;5:蚀刻装置;6:控制部;11:第一晶圆输送机构;17:第二晶圆输送机构;40:腔室;43:气体供给机构;44:排气机构;61:气体导入喷嘴;63:H2气体供给源;64:Ar气体供给源;65:H2气体供给配管;66:Ar气体供给配管;67:气体激励部;68:激励气体供给配管;W:半导体晶圆。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1