一种锂硫电池及其制备方法与流程

文档序号:11956583阅读:528来源:国知局
一种锂硫电池及其制备方法与流程
本发明属于锂硫电池
技术领域
,特别是涉及一种锂硫电池正极片及其电池的制备方法。
背景技术
:锂硫电池是以金属锂为负极,单质硫为正极的电池体系。锂硫电池的具有两个放电平台(约为2.4V和2.1V),但其电化学反应机理比较复杂。锂硫电池具有比能量高(2600Wh/kg)、比容量高(1675mAh/g)、成本低等优点,被认为是很有发展前景的新一代电池。但是目前其存在着活性物质利用率低、循环寿命低和安全性差等问题,这严重制约着锂硫电池的发展。造成上述问题的主要原因有以下几个方面:(1)单质硫是电子和离子绝缘体,室温电导率低(5×10-30S·cm-1),由于没有离子态的硫存在,因而作为正极材料活化困难;(2)在电极反应过程中产生的高聚态多硫化锂Li2Sn(8>n≥4)易溶于电解液中,在正负极之间形成浓度差,在浓度梯度的作用下迁移到负极,高聚态多硫化锂被金属锂还原成低聚态多硫化锂。随着以上反应的进行,低聚态多硫化锂在负极聚集,最终在两电极之间形成浓度差,又迁移到正极被氧化成高聚态多硫化锂。这种现象被称为飞梭效应,降低了硫活性物质的利用率。同时不溶性的Li2S和Li2S2沉积在锂负极表面,更进一步恶化了锂硫电池的性能;(3)反应最终产物Li2S同样是电子绝缘体,会沉积在硫电极上,而锂离子在固态硫化锂中迁移速度慢,使电化学反应动力学速度变慢;(4)硫和最终产物Li2S的密度不同,当硫被锂化后体积膨胀大约79%,易导致Li2S的粉化,引起锂硫电池的安全问题。上述不足制约着锂硫电池的发展,这也是目前锂硫电池研究需要解决的重点问题。为提高锂硫电池的放电比容量和循环寿命,目前公开了在锂硫电池正负极之间放置独立的碳膜夹层,即将碳材料和PTFE粘结剂混合并辊压成膜,或者使用碳纤维布等材料,形成独立的具有自支撑能力的碳膜,该碳膜不仅制备工艺复杂,且厚度大,重量高,锂硫电池装配过程难度大,降低了锂硫电池的性能和应用潜力。技术实现要素:本发明要解决的技术问题是提供一种锂硫电池正极及包含该正极的电池,其目的在于提高锂硫电池的正极容量,改善电池的循环寿命,解决传统锂硫电池在充放电过程中的中间产物多硫化物溶于电解液,使锂硫电池的正极容量急剧下降,导致电池的循环寿命变差的问题。一种锂硫电池,包括金属锂负极,硫正极片和隔膜;其中硫正极片特点是:包括集流体和位于集流体两侧的第一硫碳复合涂覆层,第二硫碳复合涂覆层,第三复合涂覆层,其还包括用于阻挡第一硫碳复合涂覆层中硫流失的第二硫碳复合涂覆层,其位于第一硫碳复合涂覆层上,其还包括用于阻挡第二硫碳复合涂覆层中硫流失的第三复合涂覆层,其位于第二硫碳复合涂覆层上。进一步地,所述第二硫碳涂覆层中的硫碳质量比小于第一硫碳复合涂覆层中的硫碳质量比。进一步地,所述第一硫碳涂覆层中的硫含量50-99%,所述第二硫碳涂覆层中的硫含量1-50%。进一步地,所述第二硫碳涂覆层中的中包括石墨烯、粘结剂和硫活性材料。进一步地,所述第二硫碳涂覆层中的中石墨烯具有中孔结构,其孔径在5-50nm。进一步地,所述第三复合涂覆层中的中包括钛酸锂、石墨烯和粘结剂。进一步地,第一硫碳涂覆层:第二硫碳涂覆层:第三复合涂覆层的厚度比为100:2-5:5-10。本发明提供一种锂硫电池电极片及其电池制备工艺流程如下:(1)将硫活性材料、导电剂、粘结剂按照80-90:5-10:5-10的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体铝箔上,烘干后得到含有第一硫碳涂覆层正极片。(2)将硫活性材料、石墨烯、粘结剂按照10-40:40-80:5-10的比例加入到NMP中混合成浆料,然后双面涂覆在第一硫碳涂覆层正极片上,烘干后得到含有第二硫碳涂覆层正极片。(3)将钛酸锂材料、石墨烯、粘结剂按照80-90:5-10:5-10的比例加入到NMP中混合成浆料,然后双面涂覆在第二硫碳涂覆层正极片上,烘干后得到正极片。(4)将负极锂片、隔膜和本发明的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。本发明具有如下有益效果:(1)为了起到阻挡层的作用,其具体实现方式是锂硫电池正极的第一、第二涂覆层采用了较佳的硫碳质量比,使得第二硫碳涂覆层中的硫碳质量比小于第一硫碳复合涂覆层中的硫碳质量比,第二硫碳涂覆层中的较多碳对本层以及第一涂覆层中的硫起到了约束作用,第三复合涂覆层对本层第一、二涂覆层中的硫起到了约束作用阻挡硫单质还原生成的多硫化物溶于电解液,达到改善电池正极极片结构的目的;(2)第二涂覆层中石墨烯材料具有超高的电导率以及丰富的中孔结构,能有效的将锂离子传导致内部的第一涂覆层中的硫活性材料中,有效提高了正极片离子电导率和电子电导率;(3)第三复合涂覆层中钛酸锂材料除了束缚多硫化物的溶解外还能提供电池容量;(4)第三复合涂覆层中钛酸锂材料在充放电过程中具有零形变特性,维持了第三复合涂覆层的稳定,有利于电池寿命的延长;(5)第二涂覆层中石墨烯材料具有超高的电导率以及丰富的中孔结构,能有效的将锂离子传导致内部的第一涂覆层中的硫活性材料中,有效提高了正极片离子电导率和电子电导率。附图说明图1是是本发明叠片式锂硫电池正极片结构示意图。图2是是本发明叠片式锂硫电池电芯结构示意图。图中,1—负极,2—隔膜,3—正极集流体,4—第一硫碳涂覆层,5—第二硫碳涂覆层,6—第三复合涂覆层。具体实施方式下面结合附图,对本发明的较优的实施例作进一步的详细说明:实施例1如图1和图2所示,其方法包括:(1)将硫活性材料、乙炔黑、PVDF粘结剂按照重量比90:5:5的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体3铝箔上,烘干后得到含有第一硫碳涂覆层4正极片。(2)将硫活性材料、石墨烯、PVDF粘结剂按照重量比10:80:10的比例加入到NMP中混合成浆料,然后双面涂覆在第一硫碳涂覆层4正极片上,烘干后得到含有第二硫碳涂覆层5正极片。(3)将钛酸锂材料、石墨烯、PVDF粘结剂按照重量比90:5:5的比例加入到NMP中混合成浆料,然后双面涂覆在第二硫碳涂覆层5正极片上,烘干后在第二硫碳涂覆层5上形成第三复合涂覆层6,得到锂硫电池正极片。(4)将负极1、隔膜2和本实施例的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。实施例2(1)将硫活性材料、石墨烯、PVDF粘结剂按照重量比80:10:10的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体3铝箔上,烘干后得到含有第一硫碳涂覆层4正极片。(2)将硫活性材料、石墨烯、PVDF粘结剂按照重量比40:55:5的比例加入到NMP中混合成浆料,然后双面涂覆在第一硫碳涂覆层4正极片上,烘干后得到含有第二硫碳涂覆层5正极片。(3)将钛酸锂材料、石墨烯、PVDF粘结剂按照重量比80:10:10的比例加入到NMP中混合成浆料,然后双面涂覆在第二硫碳涂覆层5正极片上,烘干后在第二硫碳涂覆层5上形成第三复合涂覆层6,得到锂硫电池正极片。(4)将负极1、隔膜2和本实施例的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。实施例3(1)将硫活性材料、乙炔黑、PVDF粘结剂按照重量比85:8:7的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体铝箔上,烘干后得到含有第一硫碳涂覆层4正极片。(2)将硫活性材料、石墨烯、PVDF粘结剂按照重量比20:73:7的比例加入到NMP中混合成浆料,然后双面涂覆在第一硫碳涂覆层4正极片上,烘干后得到含有第二硫碳涂覆层5正极片。(3)将钛酸锂材料、石墨烯、PVDF粘结剂按照重量比85:8:7的比例加入到NMP中混合成浆料,然后双面涂覆在第二硫碳涂覆层5正极片上,烘干后在第二硫碳涂覆层5上形成第三复合涂覆层6,得到锂硫电池正极片。(4)将负极1、隔膜2和本实施例的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。实施例4(1)将硫活性材料、乙炔黑、PVDF粘结剂按照重量比88:6:6的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体3铝箔上,烘干后得到含有第一硫碳涂覆层4正极片。(2)将硫活性材料、石墨烯、PVDF粘结剂按照重量比30:64:6的比例加入到NMP中混合成浆料,然后双面涂覆在第一硫碳涂覆层4正极片上,烘干后得到含有第二硫碳涂覆层5正极片。(3)将钛酸锂材料、石墨烯、PVDF粘结剂按照重量比88:6:6的比例加入到NMP中混合成浆料,然后双面涂覆在第二硫碳涂覆层5正极片上,烘干后在第二硫碳涂覆层5上形成第三复合涂覆层6,得到锂硫电池正极片。(4)将负极1、隔膜2和本实施例的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。实施例5(1)将硫活性材料、石墨烯、PVDF粘结剂按照重量比82:9:9的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体3铝箔上,烘干后得到含有第一硫碳涂覆层4正极片。(2)将硫活性材料、石墨烯、PVDF粘结剂按照重量比25:70:5的比例加入到NMP中混合成浆料,然后双面涂覆在第一硫碳涂覆层4正极片上,烘干后得到含有第二硫碳涂覆层5正极片。(3)将钛酸锂材料、石墨烯、PVDF粘结剂按照重量比82:9:9的比例加入到NMP中混合成浆料,然后双面涂覆在第二硫碳涂覆层5正极片上,烘干后在第二硫碳涂覆层5上形成第三复合涂覆层6,得到锂硫电池正极片。(4)将负极1、隔膜2和本实施例的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。对比例1(1)将硫活性材料、乙炔黑、PVDF粘结剂按照重量比90:5:5的比例加入到NMP中混合成浆料,然后双面涂覆在正极集流体3铝箔上,烘干后得到正极片。(2)将负极1、隔膜2和两面含硫活性材料的正极片通过叠层的方式组成电芯,然后在电池壳内注入电解液,注入的电解液为1mol/LLiTFSI的DOL-DME溶液(DOL和DME的体积比为1:1),封口,得到叠层式锂硫电池。其效果如表1所示,由表1可知:本发明制备的锂硫电池容量经过100次充放电后能保持73%以上,相对于正极没有保护的对比例1,容量保留率得到了极大提高。表1实施例1实施例2实施例3实施例4实施例5对比例1首次循环后放电容量(mAh)221022502180217022101930100次循环后放电容量(mAh)16801710163515841658521100次循环后容量保持率76%76%75%73%75%27%以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属
技术领域
的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1