半导体器件及其制造方法与流程

文档序号:14212133阅读:226来源:国知局

相关申请的交叉引用

本申请要求于2016年3月31日向韩国知识产权局提交的韩国专利申请第10-2016-0039294号和于2017年3月31日向韩国知识产权局提交的韩国专利申请第10-2017-0041414号的优先权的权益,其公开内容通过引用整体并入本文。

本发明涉及半导体器件和用于制造半导体器件的方法。更具体地,本发明涉及半导体器件和用于制造半导体器件的方法,所述半导体器件具有通过消除对现有的底部填充过程的需要而能够大大提高半导体制造过程的效率,并且提高信号传输效率以及传输速度的结构。



背景技术:

最近,随着电子设备朝小型化、高功能化和大容量的趋势日益扩大,对半导体封装件的致密化和高集成度的需求迅速增加,半导体芯片的尺寸变得越来越大。就提高集成度而言,用于以多级式堆叠芯片的堆叠封装方法逐渐增加。

对于堆叠封装方法,已知线接合(wirebonding)法,其中金属(例如金或铝)线使半导体片状器件的电极部分和设置在引线框层或杆上的导体层相互连接;和倒装芯片法,其中通过使半导体芯片下表面上的电极图案直接熔融至电路板来附接半导体晶片,而不使用额外的连接结构,例如金属引线(线)或单独的介质如球栅阵列(bga)。

同时,为了增加半导体器件的信号传输的容易性和控制半导体元件的操作,提供了半导体控制器件(控制器)。然而,当半导体控制器件未被适当地固定时,其将降低半导体封装件的信号传输效率或传输速度,在多级堆叠封装的过程中使半导体器件的结构不稳定,和/或降低半导体器件的制造产率和可靠性。

此外,为了保护集成电路(ic)和类似器件,通常使用各种树脂(主要是环氧树脂)进行树脂封装。随着最近小型化和轻量化的趋势,用于封装器件的主流ic封装方法被称为表面安装,其中将ic或其他器件直接安装在电路板上并使用液体树脂进行封装(底部填充过程)。

这样的底部填充过程试图解决热机械疲劳的问题。具体地,底部填充过程包括用无机颗粒填充具有优异粘合性的聚合物材料(例如环氧树脂),使得具有接近焊料的热膨胀系数的值,然后施用该制剂以填充芯片与印刷电路板之间的间隙。在此,所施用的填充有无机颗粒的聚合物复合材料被称为底部填充剂。

通常已知的液体形式的底部填充材料引起高流动性的底部填充而伸出至器件的不期望部分,导致不必要的污染、产品缺陷和/或以高密度安装的困难。在器件周围形成预防性屏障或坝是已知的。



技术实现要素:

技术问题

本发明的一个目的是提供这样的半导体器件:其具有通过消除对现有的底部填充过程的需要而能够大大提高半导体制造过程的效率,并且提高信号传输效率以及传输速度的结构。

本发明的另一个目的是提供用于制造半导体器件的方法,所述半导体器件具有通过消除对现有的底部填充过程的需要而能够大大提高半导体制造过程的效率,并且提高信号传输效率以及传输速度的结构。

技术方案

为了实现所述目的,提供了半导体器件,其包括:通过倒装芯片连接固定在粘附体上的第一半导体元件;用于包埋粘附体与第一半导体元件之间的空间以及包埋第一半导体元件的粘合层;以及通过粘合层连接至第一半导体元件的第二半导体元件,

其中粘合层在110℃的温度和5rad/秒的剪切速率下的熔体粘度为10pa·s至10000pa·s,

以及其中由粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比所定义的触变指数为1.5至7.5。

此外,还提供了用于制造半导体器件的方法,所述方法包括以下步骤:使用用于半导体的粘合剂包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间并包埋第一半导体元件;以及将第二半导体元件接合在用于半导体的粘合剂上,

其中粘合层在110℃的温度和5rad/秒的剪切速率下的熔体粘度为10pa·s至10000pa·s,

以及其中由粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比所定义的触变指数为1.5至7.5。

在下文中,将更详细地描述根据本发明的具体实施方案的半导体器件和用于制造半导体器件的方法。

根据本发明的一个实施方案,可以提供半导体器件,其包括:通过倒装芯片连接固定在粘附体上的第一半导体元件;用于包埋粘附体与第一半导体元件之间的空间以及包埋第一半导体元件的粘合层;以及通过粘合层连接至第一半导体元件的第二半导体元件,其中粘合层在110℃的温度和5rad/秒的剪切速率下的熔体粘度为10pa·s至10000pa·s,以及其中由粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比所定义的触变指数为1.5至7.5。

本发明人已经发现,通过使用具有特定熔体粘度的粘合层包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间并包埋第一半导体元件,可以制造这样的半导体器件:其具有通过消除对现有的底部填充过程的需要而能够大大提高半导体制造过程的效率,并且提高信号传输效率以及传输速度的结构,从而完成了本发明。

具体地,由于使用在110℃的温度和5rad/秒的剪切速率下熔体粘度为10pa·s至10000pa·s或熔体粘度为40pa·s至5000pa·s的粘合层,因此可以更容易地包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间。此外,在第二半导体元件的接合过程中,当在粘合层与第一半导体元件接触的同时施加剪切力时,粘合层的流动性增加,从而可以更有效和高效地包埋第一半导体元件。

此外,当粘合层满足上述物理特性时,可以使用粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间,并且可以通过仅使用上述粘合层而不使用用于包埋第二半导体元件的任何其他材料来进行包埋。因此,用于包埋粘附体与第一半导体元件之间的空间以及包埋第一半导体元件的粘合层可以是连续相。

术语“连续相”意指由于粘附体与第一半导体元件之间的空间和第一半导体元件通过相同的材料同时或依次包埋,其在最终产品中不被区分为单独的层。例如,可以一起使用形成粘合层的组分来包埋粘附体与第一半导体元件之间的空间并包埋第一半导体元件。此外,即使使用形成粘合层的组分同时或依次包埋粘附体与第一半导体元件之间的空间和第一半导体元件,粘合层也可以是连续相。

更具体地,如果粘合层在110℃的温度和5rad/秒的剪切速率下显示的熔体粘度太低,则在通过粘合层连接(管芯接合)第一半导体元件和第二半导体元件的过程中,粘合剂可能流出至第二半导体元件的边缘周围,导致形成嵌条。此外,如果粘合层在110℃的温度和5rad/秒的剪切速率下的熔体粘度太高,则流动性可能降低,使得难以包埋粘附体与通过倒装芯片连接固定的第一半导体元件之间的空间,或者固定或包埋在第一半导体元件与第二半导体元件之间,或者第二半导体元件的翘曲可能变大,使得另外的多层堆叠可能变得困难。

术语“包埋”是指这样的状态:其中半导体元件的外表面覆盖或涂覆有粘合层使得基本上不存在暴露于外部的部分。

此外,由粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比所定义的触变指数可以为1.5至7.5或2.0至7。

触变指数是粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比。

粘合层在110℃下的触变指数可以为1.5至7.5或2.0至7。如果粘合层在110℃下的触变指数小于1.5,则当通过使用粘合层固定第二半导体元件时,粘合层可能流动,并且可能使半导体器件的制造的可靠性显著降低。此外,如果粘合层在110℃下的触变指数大于7.5,则在使用粘合层进行管芯接合时的初始粘度可能变得太高而无法包埋第一半导体元件,并且在管芯接合之后可能产生第二半导体元件的翘曲。

粘合层的触变指数通过以下方法来确定:调整或改变粘合层中包含的主要组分的方法、调整可以任选地与粘合层的主要组分一起被包含的无机填料的含量的方法、在制造粘合层时添加流变改性剂的方法等。

第一半导体元件和第二半导体元件的厚度可以各自为10μm至500μm、15μm至100μm或15μm至80μm。

从粘附体的一个表面到第二半导体元件的一个表面的距离可以为10μm至1000μm、15μm至500μm或20μm至300μm。

此外,从第一半导体元件的一个表面到第二半导体元件的一个表面的距离可以为5μm至300μm或10μm至200μm。

同时,粘合层在110℃的温度和5rad/秒的剪切速率下的熔体粘度为10pa·s至10000pa·s,定义为粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比的触变指数可以为1.5至7.5。在满足与熔体粘度和触变指数相关的条件的同时,其可以包含热塑性树脂、环氧树脂和含有酚树脂的固化剂。

热塑性树脂的实例可以包括但不限于聚酰亚胺、聚醚酰亚胺、聚酯酰亚胺、聚酰胺、聚醚砜、聚醚酮、聚烯烃、聚氯乙烯、苯氧基树脂、反应性丁二烯丙烯腈共聚物橡胶、基于(甲基)丙烯酸酯的树脂、其两种或更多种的混合物、或者其两种或更多种的共聚物。

热塑性树脂可以包括基于(甲基)丙烯酸酯的树脂,所述基于(甲基)丙烯酸酯的树脂包含含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元。

具体地,基于(甲基)丙烯酸酯的树脂可以是包含含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元且玻璃化转变温度为-10℃至30℃的基于(甲基)丙烯酸酯的树脂。

基于(甲基)丙烯酸酯的树脂可以包含0.1重量%至25重量%的含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元。基于环氧的官能团可以包括环氧基或缩水甘油基。

同时,粘合层可以包含玻璃化转变温度为-10℃至30℃的热塑性树脂、具有不同粘度的两种或更多种液体环氧树脂和含有酚树脂的固化剂。

当粘合剂同时包含具有不同粘度的两种或更多种液体环氧树脂和热塑性树脂及含有酚树脂的固化剂时,可以促进包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间和包埋第一半导体元件,或固定在第一半导体元件与第二半导体元件之间。此外,在连接(管芯接合)第一半导体元件和第二半导体元件的过程中,可以防止粘合剂可能流出至第二半导体元件的边缘周围而导致形成嵌条的现象。

具有不同粘度的两种或更多种液体环氧树脂可以包括具有不同粘度范围的两种或更多种液体环氧树脂。

更具体地,具有不同粘度的两种或更多种液体环氧树脂可以包括在25℃下熔体粘度为1mpa·s至500mpa·s的低粘度液体环氧树脂。

此外,具有不同粘度的两种或更多种液体环氧树脂可以包括在25℃下熔体粘度为1000mpa·s至20000mpa·s的高粘度液体环氧树脂。

此外,具有不同粘度的两种或更多种液体环氧树脂还可以包括上述低粘度液体环氧树脂和高粘度液体环氧树脂之外的液体环氧树脂。

更具体地,粘合层可以以1:10至10:1的重量比或以2:8至8:2的重量比包含在25℃下熔体粘度为1mpa·s至500mpa·s的低粘度液体环氧树脂和在25℃下熔体粘度为1000mpa·s至20000mpa·s的高粘度液体环氧树脂。如果粘合层中低粘度液体环氧的含量太高,则在第二半导体元件的外围附近可能产生嵌条或其产生量可能增加。此外,如果粘合层中低粘度液体环氧含量太低,则第一半导体元件和凸块的包埋特性可能降低。

同时,粘合层还可以同时包含固体环氧树脂和液体环氧树脂,使得可以更容易地实现粘合层的上述特性。

此外,当固体环氧树脂与液体环氧树脂一起使用时,可以容易地调整粘合层的固化程度,从而提高粘合性能。此外,粘合层在110℃下的触变指数可以调整为1.5至7.5。

此外,当固体环氧树脂与液体环氧树脂一起使用时,粘合层可以具有适当的流动性。例如,粘合层在110℃的温度和5rad/秒的剪切速率下的熔体粘度可以为10pa·s至10000pa·s。

液体环氧树脂可以与玻璃化转变温度为-10℃至30℃的热塑性树脂和包含酚树脂的固化剂一起形成粘合组分的基材(或基质)。液体环氧树脂使粘合层在具有相对低的粘度的同时具有对于半导体优化的优异的粘合和流动特性,并且还具有高断裂强度和低断裂伸长率。

固体环氧树脂的具体实例可以包括选自以下的至少一种聚合物树脂:基于联苯的环氧树脂、双酚a环氧树脂、双酚f环氧树脂、甲酚酚醛清漆环氧树脂、苯酚酚醛清漆环氧树脂、四官能环氧树脂、三苯酚甲烷型环氧树脂、烷基改性的三苯酚甲烷型环氧树脂、萘型环氧树脂、二环戊二烯型环氧树脂和二环戊二烯改性的酚型环氧树脂。

固体环氧树脂的软化点可以为50℃至120℃。当固体环氧树脂的软化点太低时,用于半导体粘附的树脂组合物的粘合强度可能过高。如果固体环氧树脂的软化点太高,则半导体层在高温下可能具有低流动性并且粘合强度可能降低。

固体环氧树脂的环氧当量可以为100至1000。

酚树脂的软化点可以为60℃或更高、或者60℃至160℃。

当使用软化点为60℃或更高的酚树脂时,可以与液体环氧树脂和玻璃化转变温度为-10℃至30℃的热塑性树脂一起形成粘合组分的基材(或基质)。粘合层在室温下具有较高的拉伸模量和优异的粘合强度,并且具有对于半导体优化的流动特性。

特别地,具有不同粘度的两种或更多种液体环氧树脂与酚树脂的重量比可以为0.3至1.5。

如果液体环氧树脂与酚树脂的重量比太高,则由于熔体粘度降低,粘合层可能在室温下具有粘性。此外,在室温下的拉伸模量降低,伸长率可能大大增加。此外,如果液体环氧树脂与酚树脂的重量比太低,则在室温下伸长时产生的模量变得非常高,或者在室温下的伸长率大大降低,从而可能使最终产物的产率大大降低。

液体环氧树脂可以包括选自以下的至少一者:基于联苯的环氧树脂、双酚a环氧树脂、双酚f环氧树脂、甲酚酚醛清漆环氧树脂、苯酚酚醛清漆环氧树脂、四官能环氧树脂、三苯酚甲烷型环氧树脂、烷基改性的三苯酚甲烷型环氧树脂、萘型环氧树脂、二环戊二烯型环氧树脂和二环戊二烯改性的酚型环氧树脂。

固化剂还可以包括选自基于胺的固化剂和基于酸酐的固化剂中的至少一种化合物。

粘合层还可以包含固化催化剂。

固化催化剂用于加速固化剂的作用或粘合层的固化,并且可以使用已知用于生产半导体粘合层的固化催化剂等而没有特别限制。例如,作为固化催化剂,可以使用选自以下的至少一者:基于磷的化合物、基于硼的化合物、基于磷-硼的化合物和基于咪唑的化合物。

如上所述,粘合层的触变指数可以通过在制备粘合层时添加流变改性剂来控制。当使用流变改性剂时,在不施加剪切力时,即使材料未化学键合,也可以形成网状结构以保持形状,并且在施加剪切力时可能发生网状结构的坍塌。因此,当在管芯接合之前或之后不施加剪切力时,粘合层可以保持其形状而不流动,并且当在管芯接合期间向粘合剂树脂施加剪切力时,流动性增加,从而提供有利于包埋特性的物理特性和性能。

具体地,粘合层还可以包含选自无机填料和流变改性剂中的至少一者。

可以包含在粘合层中的无机填料的种类没有特别限制,并且可以使用常见的有机填料或无机填料,而且可以优选使用无机填料。无机填料的具体实例可以包括直径为100nm或更大的二氧化硅(例如,直径为100nm或更大的湿二氧化硅)、氧化铝、硫酸钡等。可以使用能够吸收离子杂质以提高可靠性的离子吸收剂作为无机填料。离子吸收剂没有特别限制,并且可以使用以下作为离子吸收剂:基于镁的化合物,例如氢氧化镁、碳酸镁、硅酸镁和氧化镁;基于钙的化合物,例如硅酸钙、碳酸钙和氧化钙;基于铝的化合物,例如氧化铝、氢氧化铝、氮化铝和硼酸铝晶须;基于锆的化合物;和基于锑铋的化合物;或其至少两者的任意混合物。

作为可以包含在粘合层中的流变改性剂,可以使用相关领域中已知的组分。例如,可以使用细磨的合成二氧化硅如直径小于100nm的二氧化硅(例如,直径小于100nm的干二氧化硅)、膨润土、超细沉淀碳酸钙、有机膨润土、经表面处理的碳酸钙、金属皂、氢化蓖麻油、聚酰胺蜡、聚环氧乙烷、植物油、聚合物油、亚麻籽聚合物油、脂肪酸二聚物、或其至少两者的任意混合物。

这些流变改性剂的更具体的实例可以包括可从cabotcorp.,boston,massachusetts,usa获得的商品名“cab-o-sil”和可从evonikindustries,essen,germany获得的商品名“aerosil”等。例如,粘合层包含10重量%至50重量%的无机填料。

当粘合层包含无机填料时,考虑到粘合层的触变指数、流动性和包埋特性,可以以适当量包含无机填料。例如,粘合层可以包含10重量%至50重量%的无机填料。

此外,即使当粘合层包含流变改性剂时,考虑到粘合层的触变指数、流动性和包埋特性,也可以以适当量包含流变改性剂。例如,粘合层可以包含0.1重量%至15重量%的流变改性剂。然而,当粘合层中流变改性剂的含量变得过多时,不仅在涂覆溶液的生产期间发生非分散状态,而且粘合层的粘度迅速增加,使得包埋特性可能大大降低。

此外,当粘合层同时包含无机填料和流变改性剂时,无机填料与流变改性剂的重量之和可以为粘合层的5重量%至50重量%。

作为通过倒装芯片连接固定有第一半导体元件的粘附体的材料,可以提及基底、引线框、另一半导体元件等。作为基底,可以使用常规已知的基底,例如印刷电路板。此外,引线框可以是金属引线框(例如cu引线框或合金42引线框)或者包含玻璃环氧树脂、双马来酰亚胺-三嗪(bt)、聚酰亚胺等的有机基底。然而,粘附体的材料不限于上述,并且可以使用可以通过安装半导体元件并将该半导体元件电连接至半导体元件来使用的任何电路板而没有特别限制。

根据本发明的另一个实施方案,提供了制造半导体器件的方法,其包括以下步骤:使用用于半导体的粘合剂包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间并包埋第一半导体元件;以及将第二半导体元件接合至用于半导体的粘合剂,其中用于半导体的粘合剂在110℃的温度和5rad/秒的剪切速率下的熔体粘度为10pa·s至10000pa·s,以及其中定义为粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比的触变指数为1.5至7.5。

如上所述,经由通过使用满足熔体粘度和触变指数的用于半导体的粘合剂来包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间并包埋第一半导体元件的方法,可以制造这样的半导体器件:其具有通过省略现有的底部填充过程而能够大大提高半导体制造过程的效率,并且能够提高信号传输效率和速度的结构。

由于使用在110℃的温度和5rad/秒的剪切速率下熔体粘度为10pa·s至10000pa·s或熔体粘度为40pa·s至5000pa·s的用于半导体的粘合剂,可以更容易地包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间。此外,在第二半导体元件的接合过程中,当在用于半导体的粘合剂与第一半导体元件接触的同时施加剪切力时,粘合层的流动性增加,从而可以更有效和高效地包埋第一半导体元件。

定义为用于半导体的粘合剂在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与用于半导体的粘合剂在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比的触变指数可以为1.5至7.5或2.0至7。

用于半导体的粘合剂在110℃下的触变指数为1.5至7.5或2.0至7。当用于半导体的粘合剂在110℃下的触变指数小于1.5时,在通过使用用于半导体的粘合剂固定第二半导体元件时,粘合层可能流动,并且半导体器件的制造的可靠性可能大大降低。此外,如果用于半导体的粘合剂在110℃下的触变指数大于7.5,则在使用用于半导体的粘合剂进行管芯接合时的初始粘度可能变得太高而无法包埋第一半导体元件,并且在管芯接合之后可能产生第二半导体元件的翘曲。

所制造的半导体器件可以是本实施方案的半导体器件,并且本实施方案的制造方法的细节包括上述关于本实施方案的半导体器件的所有内容。

同时,在本实施方案的半导体器件的制造方法中,使用用于半导体的粘合剂包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间并包埋第一半导体元件的步骤包括仅使用用于半导体的粘合剂同时或依次包埋粘附体与第一半导体元件之间的空间并包埋第一半导体元件的步骤。

由于粘附体与第一半导体元件之间的空间和第一半导体元件通过用于半导体的粘合剂同时或依次包埋,因此其在最终产品中不被区分为粘合层内的单独层。

更具体地,仅使用用于半导体的粘合剂同时或依次包埋粘附体与第一半导体元件之间的空间并包埋第一半导体元件的步骤包括以下步骤:在使用用于半导体的粘合剂包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间和第一半导体元件的同时将第二半导体元件接合至用于半导体的粘合剂,然后使其在加压炉中在高温/高压下固化。通过该步骤,可以将第一半导体元件的焊料凸块的外围(即,第一半导体元件与粘附体之间的空间)用半导体元件的粘合层包埋。

同时,密封步骤是使用用于半导体的粘合剂和由其形成的粘合层密封半导体器件的步骤。可以进行这样的密封步骤以保护安装在粘附体上的第一半导体元件和形成在第一半导体元件与粘附体之间的倒装芯片。

在使用上述倒装芯片的情况下,第一半导体元件通过倒装芯片连接固定至粘附体,并且第一半导体元件的电路表面面向粘附体,这是所谓的面朝下安装。在第一半导体元件中设置有多个突出电极(例如凸块),并且突出电极与粘附体上的电极连接。如上所述,在粘附体与第一半导体元件之间填充上述粘合层,而不是常规底部填充材料。

上述连接方法没有特别限制,并且其可以通过常规已知的倒装芯片接合器来连接。例如,可以使形成在第一半导体元件中的突出电极(例如凸块)接触附接至粘附体的连接焊盘的用于接合的导电材料(铅焊料等)并加压,导电材料熔化,以确保第一半导体元件与粘附体之间导电,并将第一半导体元件固定至粘附体(倒装芯片接合)。通常,倒装芯片接合的加热条件为240℃至300℃,加压条件为0.5n至490n。

在将凸块形成为突出电极时使用的材料没有特别限制,其实例包括:焊料(合金),例如基于锡-铅的金属材料、基于锡-银的金属材料、基于锡-银-铜的金属材料、基于锡-锌的金属材料和基于锡-锌-铋的金属材料;基于金的金属材料;和基于铜的金属材料。可以使用常规已知的液体或膜形底部填充材料作为底部填充材料。

在包埋第一半导体元件的步骤中,将用于包埋的粘合层附接至第二半导体元件,并且在第一半导体元件上进行管芯接合。在该步骤中,粘合层模制第一半导体元件,并且同时在第一半导体元件的外围处与粘附体接触。

如上所述,仅使用用于半导体的粘合剂同时或依次包埋粘附体与第一半导体元件之间的空间并包埋第一半导体元件的步骤包括以下步骤:在使用用于半导体的粘合剂包埋粘附体与通过倒装芯片连接固定在粘附体上的第一半导体元件之间的空间和第一半导体元件的同时将第二半导体元件接合在用于半导体的粘合剂上,然后使其在加压炉中在高温/高压下固化。通过该步骤,可以将第一半导体元件的焊料凸块的外围(即,第一半导体元件与粘附体之间的空间)用半导体元件的粘合层包埋。

热处理可以在0.01mpa至1.0mpa的压力下、50℃至200℃的温度下进行,优选在0.1mpa至0.8mpa的压力下、90℃至180℃的温度下进行。此外,热处理可以进行0.1小时至10小时,优选0.5小时至7小时。

在密封步骤之后,可以进行使密封树脂后固化的后固化步骤。在后固化步骤中,使密封步骤中未充分固化的任何密封树脂完全固化。后固化步骤中的加热温度根据密封树脂的种类而变化,但其为例如165℃至185℃,加热时间为约0.5小时至8小时。半导体封装件可以通过经历密封步骤或后固化步骤来制造。

有益效果

根据本发明,可以提供半导体器件和用于制造半导体器件的方法,所述半导体器件具有通过消除对现有的底部填充过程的需要而能够大大提高半导体制造过程的效率,并且提高信号传输效率以及传输速度的结构。

附图说明

图1示意性地示出了在本发明的一个实施方案中制造的半导体器件的截面。

具体实施方式

在下文中,提出优选实施例以帮助理解本发明。然而,提供这些实施例仅用于说明的目的,并且本发明的范围不限于此。

[制备例:热塑性丙烯酸酯树脂的制备]

将40g丙烯酸丁酯、60g丙烯酸乙酯、15g丙烯腈和10g甲基丙烯酸缩水甘油酯与100g甲苯混合,并使混合物在80℃下反应约12小时以合成具有被引入的缩水甘油基作为支链的基于丙烯酸酯的树脂(重均分子量为700000,玻璃化转变温度为10℃)。

[实施例1至5和比较例1至3:用于接合半导体的树脂组合物和半导体器件的制备]

实施例1

(1)用于接合半导体的树脂组合物溶液的制备

将50g酚树脂kh-6021(diccorporation,双酚a酚醛清漆树脂,羟基当量121g/eq,软化点:133℃)(其为环氧树脂的固化剂)、40g高粘度液体环氧树脂re-310s(nipponkayaku,双酚a环氧树脂,环氧当量180g/eq,粘度[25℃]:15000mpa·s)、26g低粘度液体环氧树脂sej-01r(nipponkayaku,环氧当量130g/eq,粘度[25℃]:250mpa·s)、20g制备例1中获得的热塑性丙烯酸酯树脂、1g硅烷偶联剂(kbm-403,shin-etsuchemical,γ-缩水甘油氧基丙基三甲氧基硅烷)、0.2g固化促进剂2pz(shikokukasei,2-苯基咪唑)和50g填料sc-2050(admatech,球形二氧化硅,平均颗粒尺寸约400nm)在甲基乙基酮溶剂中混合以获得用于接合半导体的树脂组合物溶液(固体含量浓度40重量%)。

(2)用于半导体的粘合层的制备

将所制备的用于接合半导体的树脂组合物溶液涂覆在经剥离处理的聚对苯二甲酸乙二醇酯膜(厚度38μm)上,并在110℃下干燥3分钟以获得厚度为约110μm的用于半导体的粘合层。

(3)半导体器件的制备

使用倒装芯片接合器将包括24个无铅焊料凸块(高度为40μm,间距为0.5mm)的第一半导体元件(侧边为5mm且厚度为50μm的四方形)接合至bga基底。在此,接合在250℃的温度和50n的压力下进行10秒。

随后,在70℃的温度条件下,将各个实施例和比较例中生产的各个粘合层粘附至侧边为10mm且厚度为80μm的四方形半导体芯片。此外,将粘附有粘合层的第二半导体元件接合至第一半导体元件和bga基底以包埋第一半导体元件。在此,接合在110℃的温度和2kg的压力下进行1秒。

实施例2至5和比较例1至3

以与实施例1中相同的方式获得用于接合半导体的树脂组合物溶液(固体含量40重量%)和厚度为110μm的用于半导体的粘合层,不同之处在于应用表1中使用的组分和量。

[表1]实施例和比较例的树脂组合物的组成[单位:g]

kds-8170:液体环氧树脂(kukdochemical,双酚f环氧树脂,环氧当量:157g/eq,粘度[25℃]:1500mpa·s)

环氧树脂eocn-104s(nipponkayaku,甲酚酚醛清漆型环氧树脂,环氧当量:214g/eq,软化点:92℃)

hp-7200(dic,环氧当量:257g/eq,软化点:61℃)

r-972(evonikindustries,气相二氧化硅,平均颗粒直径:17nm)

kph-f3075(kolonchemical,羟基当量:175g/eq,软化点:75℃)

gph-65(nipponkayaku,羟基当量:198g/eq,软化点:65℃)

nma(kukdochemical,酸酐固化剂,液体)

[实验例:用于半导体的粘合层的物理特性的评估]

实验例1:熔体粘度的测量

将分别在实施例和比较例中获得的粘合层进行堆叠,并使用辊式层合机在60℃下进行层合直至厚度达到660μm。然后,将样品切割成直径为8mm的圆形,并且其相对于温度的熔体粘度通过使用tainstruments的高级流变扩展系统(advancedrheometricexpansionsystem,ares)以20℃/分钟的加热速率在5rad/秒的剪切速率下进行测量。

实验例2:第二粘合层的第一半导体元件的模制特性的测量

与关于半导体器件的制备的实施例类似,通过在压力干燥器中在135℃、7atm下对粘附有第二半导体元件的bga基底进行热处理1小时来使粘合层热固化,从而制造半导体器件。切割所制造的半导体器件,并使用光学显微镜(200倍)观察切割表面。如下进行评估:将半导体器件被良好包埋而在第一半导体元件的外围附近没有空隙的情况标记为“o”,将第一半导体元件的外围附近观察到空隙的情况标记为“x”。

实验例3:用于倒装芯片连接的模制特性的测量

以与上述实验例中相同的方式制造半导体器件,并通过使用x射线检查设备确定第一半导体元件与粘附体之间的空间或焊料凸块的外围是否被包埋。

将半导体器件内第一半导体元件与粘附体之间的空间或焊料凸块的外围被良好包埋而没有空隙的情况评估为“o”(表示在倒装芯片连接部分的外围附近优异的模制特性),将在第一半导体元件与粘附体之间的空间中或在焊料凸块的外围中观察到空隙的情况评估为“x”(表示在倒装芯片连接部分的外围附近差的模制特性)。

实验例4:可靠性评估(precon测试)

以与实验例2中相同的方式制造半导体器件,然后进一步在175℃下进行连续固化2小时。在固化之后,将基底暴露于85℃和85%rh下48小时,进行三次ip回流过程,并通过肉眼和扫描声学断层扫描仪(scanningacoustictomography,sat)观察基底与粘合剂之间的剥离程度。

实验例5:嵌条量的测量

以与上述实验例2中相同的方式制造半导体器件,并测量从第二半导体元件外围扩散出的粘合剂的量。在测量每个半导体元件的最长粘合剂之后,将300μm或更小的长度评估为“o”(表示优异的嵌条特性),将大于300μm的长度评估为“x”(表示差的嵌条特性)。

[表2]实验例的结果

-触变指数:粘合层在0.5rad/秒的剪切速率和110℃的温度下的熔体粘度与粘合层在5rad/秒的剪切速率和110℃的温度下的熔体粘度之比

如上述表2所示,在使用实施例1至5的用于半导体元件的粘合层的情况下,确定可以防止在第二半导体元件的接合过程中粘合剂在高温下从第二半导体芯片流出的现象或粘合剂流出至半导体元件的边缘附近而形成嵌条的现象,并且可以模制第一半导体基底而没有空隙,并且进一步可以满意地实现第一半导体元件的连接部分的外围附近的模制特性。

相反,确定在比较例1中制备的粘合层的情况下,粘合剂过度流出至第二半导体元件的边缘附近而形成嵌条,在比较例2和3中制备的粘合层的情况下,包埋第一半导体元件的性能低,特别地,在第一半导体元件的连接部分的外围附近留下空隙,因此在高温固化和吸湿之后的回流过程中发生基底与粘合剂之间的分层现象。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1