场致发光装置的制作方法

文档序号:6828548阅读:219来源:国知局
专利名称:场致发光装置的制作方法
技术领域
本发明涉及一种场致发光装置,尤其涉及一种使用有机材料发光的并具有用于开关电路的薄膜晶体管的场致发光装置。
在PCT/WO90/13148中披露了一种类型的场致发光装置,该专利的内容在此列为参考。这类装置的基本结构是一种被夹在两个电极之间的发光聚合物膜(例如聚(p-亚苯基亚乙烯基)-“PPV”),其中的一个电极注入电子,另一个电极注入空穴。电子和空穴激发聚合物膜,从而发出光子。这些装置可以作为平板显示器。
另一种类型的有机发光装置是小分子器件,在US 4539507中给出了其详细内容。该专利的内容在此列为参考。这些器件具有一个发光层,其包括至少一种小分子材料例如被夹在两个电极之间的3(8-羟基喹啉)铝(“Alq3”)。
在有机发光装置中,有机发光层一般被分成各个像素,通过改变在其中流动的电流可以使所述像素在发光状态和不发光状态之间转换。所述像素一般以正交的行和列设置。一般使用两种不同的方案控制像素无源阵列和有源阵列。在无源阵列装置中,一个电极形成行,另一个电极形成列。通过在行电极和列电极之间施加合适的电压,便可以使在其交点的像素发光。在有源阵列显示器中,这样提供一种电路,使得当另一个像素被寻址时,每个像素可以保持发光状态。
图1表示在薄膜晶体管(“TFT”)有源阵列显示器中用于驱动一个像素的电路。该电路包括用二极管1表示的像素本身,其被连接在电极2和电极3之间。电极2和3和装置的所有像素相连,并且在电极2、3之间施加足以使像素发光的电压。在电极3和像素1之间具有开关电路4的至少一部分,其实际上利用薄膜晶体管实现。开关电路借助于行电极、列电极5,6控制。为了使像素1发光,一个电压被加于电极6上,从而使开关晶体管7导通,同时电压被加到电极5上,以便使存储电容器8充电。然后电极6被截止。因为电容器8被充电,所以电流晶体管9被导通,因而在电极3上施加的电压被加到像素上,从而使像素发光。这种结构虽然比无源阵列装置要求更复杂的电路,但是其具有这样的优点,即借助于电容器8可以使像素保持在发光状态,同时在不同行和列上的其它像素通过其行电极和列电极寻址。在透明的和反射的LCD显示器中,使用全部的背面面积用于薄膜晶体管和金属线是熟知的。
为了能够显示较清楚的图象,重要的是能够分别控制每个像素的亮度,从而提供灰度等级。在图1的有源阵列装置的情况下,这借助于选择加于电极5上的电压和加于电极6的脉冲的持续时间从而固定对电容器8提供的电荷来实现。电容器8上的电荷决定晶体管9的状态,因而决定从电极3流向像素的电流。通过像素的电流决定像素的发光亮度。图2表示通过晶体管9的电流(I)对晶体管9的控制电压(V)的曲线。具有一个扁平的截止区100,其中电流和电压低因而像素1不发光,具有一个倾斜的过渡区110,其提供像素1的亮度的中间值,还具有一个扁平的导通区120,此时晶体管处于全导通状态。通过固定电容器8上的电荷,使得晶体管9处于过渡区的所需的点上,可以获得所需的像素的亮度的中间值。
图2中曲线的形状由电路元件的特性特别是电流晶体管9的特性决定。必须对显示器的每个像素提供开关电路4。为了实现所需的小型化和低成本,所述电路和显示器集成在一起。不过,这种结构通常导致显示器的每个像素的电流晶体管的性能的大的差异。虽然在截止和导通区的电流在晶体管之间是相当一致的(因为截止电流几乎是0,导通电流很大程度上由二极管1的电阻决定),但是电流晶体管的门限电压可以具有大的差别。当显示器的发光材料是有机发光材料时,这问题尤其严重,因为有机发光像素发出的光的数量对通过装置的电流是敏感的。因此,对于同样的输入线路电流,不同的有机发光像素可以产生十分不同的中间亮度。这限制了这个驱动方案用于具有灰度等级的有机发光显示装置。
按照本发明的第一方面,提供一种有机发光装置,其具有包括多个有机发光象素的有机发光区;开关装置,其每个和各个像素相连用于向所述像素传递功率;以及驱动装置,用于驱动每个开关装置在低功率方式的第一方式和高功率方式的第二方式之间循环,其频率足以使得从相关像素发出的光看起来基本上是连续的,高功率方式相对于低功率方式的持续时间可被改变,从而改变像素的平均亮度。
每个开关装置合适地包括至少一个晶体管。所述晶体管最好由控制极电压控制,从而把功率通过晶体管传递,并被传递到像素。在第一方式中,晶体管阻最好断流向相关像素的电流,使得像素基本上不发光。在第二方式中,晶体管最好允许电流流过相关像素,从而所述像素基本上充分发光。在第二方式中,晶体管最好处于其全导通状态。在第一方式中,晶体管最好处于全截止状态。
在第一方式和第二方式的一个或者两个中,像素的亮度最好基本上对于晶体管的特性例如控制极电压是不敏感的,这使得控制极电压的小的改变基本上不影响通过像素的电流。所述晶体管最好是薄膜晶体管。
开关装置最好包括电荷存储装置(例如电容器),其适合于和上述的晶体管的控制极相连,用于把晶体管保持在第一方式或第二方式。电荷存储装置适合于借助于第二晶体管最好是薄膜晶体管充电。开关装置最好是薄膜晶体管开关装置。
显示器是有源阵列显示器,最好是TFT有源阵列显示器。
在第一方式和第二方式之间转换的合适的频率大于30Hz,较好的是大于50Hz,最好大约为60Hz或更高。
驱动装置最好是可控制的,以便改变高功率方式相对于低功率方式的持续时间。驱动方法的占空比(以第二方式的持续时间作为总的周期时间的比例进行测量)可以从0(当像素截止时)到100%(最大亮度)改变。
在每个周期中,高功率方式可以作为一个或一个以上的离散的高功率脉冲被提供。
每个像素可以合适地包括至少两个独立的发光区,使开关装置和每一个发光区相连,以便在驱动装置的控制下独立地向所述发光区传递功率。
有机发光装置可以包括具有多个有机发光象素的有机发光区,每个像素包括至少两个独立的发光区;开关结构,其和每个像素相连,并且包括和所述像素的各个发光区相连的各个开关装置,用于向所述发光区传递功率;以及控制装置,用于利用其相关的开关结构寻址每个像素并用于通过选择地驱动一个或几个相应的开关装置,使所选择的所述像素的一些发光区发光从而控制每个像素的亮度。
其中每个像素被划分成独立的发光区,每个像素的发光区适合于具有不同的尺寸,最好是不同的面积。最好是,在每个像素中,每个发光区(除去最小的之外)的尺寸是该像素的下一个最大发光区的尺寸的两倍。
驱动装置最好能够驱动每个像素或每个发光区,以便以一个中间电压非瞬时地操作,从而能够进一步控制像素的总体亮度。因此,驱动装置适合于能够驱动开关装置成为非瞬时局部导通状态。局部导通状态可以是第三个中间功率方式。也可以提供其它的中间功率方式。
像素与/或发光区的优选的厚度范围为20到200nm,最好大约是100nm。
有机发光象素与/或发光区适合于由发光聚合物材料制成,最好由共轭材料制成。一种合适的材料是半导体共轭聚合物,例如PPV或其衍生物。制造像素与/或发光区的合适的发光材料是或者包括PPV,聚(2-甲氧基-5(2’-乙基)己基羟基亚苯基-亚乙烯基)(“MEH-PPV”),PPV衍生物(例如二烷氧基或二烷基衍生物),聚芴与/或包括聚芴段的共聚物,PPV与/或相关的共聚物。可以通过旋转涂敷、浸渍涂敷、浆片涂敷、弯月面涂敷、自组合等等进行淀积。发光区与/或其前体的成分可以是水基的,例如基于PPV的前体。另一种材料是有机分子发光材料,例如Alq3,或任何其它的由现有技术得知的小的升华分子或共轭聚合物电致发光材料。
有机发光象素与/或发光区适合于利用喷墨印刷淀积。
为了改善装置的性能,可以在发光区附近提供导电的聚合物层。导电的聚合物层最好包括聚乙烯二羟基噻吩(“PEDT”),聚苯乙烯酸性硫酸基的酸掺杂的聚乙烯二羟基噻吩(“PEDT-PSS”)、掺杂的聚苯胺、掺杂的酒精噻吩与/或掺杂的聚吡咯。层的厚度适合地小于200nm,最好小于100nm,尤其最好小于或接近于50nm。合适的层的片电阻大于106或107Ω/方,较好的是大于108Ω/方,最好是大于或大约为1010Ω/方。
下面以举例的方式参照


本发明,其中图3表示和有机发光装置的像素有关的开关电路的平面图;图4表示在图3的线a-a’上取的电路的截面图;图5表示图3和图4的装置的电路图;图6表示多像素装置及其控制装置的示意图;以及图7和图8表示通过像素的电流对时间的曲线。
图3到图5表示和有机发光显示装置的像素16相关的TFT电路。像素的发光材料被分为4个发光区19a-d。TFT电路包括公共线12(其相应于图1的电极3)和扫描线10(其相应于电极6),它们由发光区19a-d共用,并且还包括分别为每个区提供的其它电路。每个发光区具有信号线11a-d(相应于图1的电极5),开关晶体管13a-d(相应于图1的晶体管7),存储电容器14a-d(相应于图1的电容器8)和电流晶体管15a-d(相应于图1的晶体管9)。图4所示的SiO2的绝缘区把电路的元件部分分开,并把电路淀积在玻璃基片17上。在晶体管15a-d的输出端具有由透明的锡铟氧化物(“ITO”)制成的电极焊盘18a-d(见图4的18a),用于形成发光装置的阳极。像素的有机发光材料被淀积在4个单独的部分(见图4的19a-d)中的焊盘上,公共电极20(相应于图1的电极2)被淀积在这些部分的顶上。从像素朝向读者发出的光基本上沿着图3中进入纸面的方向,如图4的箭头B所示。
扫描、信号和公共线由控制装置31,34控制(图5)。在另一个实施例中,每个发光区19a-d可以配备一个相当于公共线12的线,每个单独的线被控制装置独立地控制。
图3到图5的像素形成较大的发光装置的一部分,在所述发光装置中,数千个这种像素被排列在正交的行和列中。例如,一种典型的尺寸是800列乘600行,共有480000个像素。这种装置甚至可以是具有相等数量的红绿蓝像素的彩色显示装置。在图5的附加的装置50用于控制另一个像素。
为了制造所述的装置,首先以常规方式在玻璃基片17上淀积TFT电路。然后,在ITO焊盘18d等上面淀积有机发光材料。在本例中的有机发光材料是PPV。PPV可以作为一层被淀积在整个装置上(例如通过旋转涂敷一种前体聚合物),然后进行成形,从而形成各个像素或像素区域,或者所述像素/区域可以被单独地淀积(例如通过喷墨印刷),特别是当形成具有发出不同颜色的光的像素的多色(例如红绿蓝)装置时。所得的像素的厚度大约为1000埃。
为了利用喷墨印刷淀积发光材料,所述的材料通过喷墨打印机喷头喷洒。合适的喷洒周期是每秒14400滴,每滴的容积为30pl。
图6示意地表示一个完整的装置21的例子的实现,其中具有被排列在行和列中的大量像素22,23等等,每个像素被划分成若干个可被独立控制的发光区,如图3到5所示。控制单元24和扫描线25、信号线26相连,并且能够控制每个电压。控制单元在27接收显示信号(例如从个人计算机),并且包括处理装置28,用于把这些信号解码成为用于显示器的每个像素的实时亮度信息。处理器28在线29上输出用于识别每个像素的地址信息,接着在线30上输出用于那个像素的亮度信息。亮度信息一般可以是从0例如到16或64的数字,用于给出像素所需的亮度。控制单元包括地址转换单元31,其在32接收用于识别像素的地址信息,并在33接收亮度信息,通过选择像素所在的交点的扫描线和信号线寻址被识别的像素,并对扫描线和信号线的每一个施加合适的电压,以便在那个像素的存储电容器上存储用于使像素按照线33上指示的所需的亮度导通而需要的电荷。控制单元或者控制单元的任何部分可以被形成在显示器本身的背面。
在图1所示的现有技术的装置中,其中像素在其电流晶体管的过渡区内被驱动,寻址开关31可以直接从处理器28接收地址和亮度信息。然而,在本发明的这个示例的实施例中,在处理器28和开关单元31之间,具有中间处理器34。中间处理器通过线路29和30从处理器28接收用于每个像素的亮度信息,并在存储器35中存储每个像素的所需亮度。然后,中间处理器控制寻址开关单元,以便以一种方式或两种方式固定亮度。
用于固定亮度的第一种方法是通过以一个占空因数快速地使像素导通和截止,使得当从整个时间(周期的持续时间)的平均看来,使每个像素达到所需的亮度。例如,如果需要半个亮度(例如在上述的64灰度方案中为32的亮度),则像素被这样转换,使得像素在一半时间内完全导通,一半时间完全截止。通过快速地使像素在导通和截止状态之间转换,可以避免闪烁的印象。使观众从显示装置得到恒定的光输出的印象的合适的转换频率是30到50Hz或更多。由中间处理器34在线33上输出的亮度值表示完全导通或者完全截止;不使用中间值。因此,该装置的像素的电流晶体管总是(除去在导通和截止期间的过渡状态)在可预测的图2所示的扁平的导通和截止区域中操作,从而使得像素的亮度更容易地保持恒定。
可以使用若干个复杂的驱动方法实现所需的每个像素的亮度。例如,像素可以每周期导通一次和截止一次(除去要求其在全亮度或0亮度时),利用所选择的在导通与截止转换之间的时间实现所需的占空比(见图7),或者多于一次(见图8)。图8表示对一个像素施加的电流对时间的曲线。线36划分驱动方案的周期。在图8所示的3个周期期间,像素的亮度从大约10%增加到大约40%。像素的导通时间作为一系列等长度tp的脉冲被施加,这些长度被加到一起时,便得到为实现所需占空比所需的每周期总的导通时间。使每周期的总的导通时间保持相同,可以改变在导通时间和截止时间之间的电流图形,以便适合于其它要求,例如减少闪烁或串音。
固定亮度的第二个方法是利用每个像素的单独的发光区可以被分别地控制这个事实。像素的亮度可以通过使一个或几个发光区导通进行控制。如前所述,亮度被控制单元24控制。寻址开关31也在线32上接收用于识别每个像素的地址信息,接着,在线33上接收用于该像素的亮度信息。此时,亮度信息具有从0到16的值,用于表示所需的亮度。寻址开关31包括多区域处理器45,其接收例如图3到图5所示的像素的地址信息,识别为寻址所述像素的各个发光区所需的扫描线和信号线,并根据在33接收的亮度值对这些线提供合适的电压,以便使像素的0个,1个,2个,3个或者全部发光区全导通,从而达到所需的亮度。这些选择的区域可以保持全导通,直到像素的亮度需要被改变。
每个像素被划分成的发光区可以具有相同的尺寸或者不同的尺寸。一种通常的分割是,像素要被分成n个发光区,这些区域的尺寸是像素的总尺寸的1/(2n-1),2/(2n-1),4/(2n-1)…(2(n-1))/(2n-1)。这种结构由n个像素提供2n个灰度等级值。例如,在图3中,发光区19d的面积是19c的两倍,19c是19b的两倍,19b是19a的两倍。
发光区可以如图3所示,或者以其它方式被限定为跨过像素延伸的平行带。
为了实现更多的灰度等级,可以使用组合使用上述的两种亮度控制方式,使得具有图3到图5所示的子分割的像素被参照图7和图8所述的脉冲驱动方法驱动。所述每种控制亮度的方法或者所述两种控制亮度的方法可以和参照图1所述的电压控制方法组合使用,其中施加到每个发光区的电压也能够被改变为不是全导通或者全截止的值,从而给出更可靠的灰度等级。例如,在每个像素被分成如图3所示的4个区域的装置中,利用图7所示的16个可利用的驱动方案中的一个驱动,其中峰值电压从16个值中选择一个,可以得到4096个灰度值。
脉冲驱动方法可以用于具有一个整体像素而不是具有如图3到图5所示的装置的子分割像素的装置。
本发明可以包括此处所披露的任何特征或特征的组合,这些特征或者是隐含的,或者是明确的,或者是任何普遍化的,而不管其是否和目前要求保护的本发明相关。显然,按照上述的说明,不脱离本发明的构思,本领域的技术人员,可以作出各种改变和改型。
权利要求
1.一种有机发光装置,具有包括多个有机发光象素的有机发光区;开关装置,其每个和各个像素相连,用于向所述像素传递功率;以及驱动装置,用于驱动每个开关装置在低功率方式的第一方式和高功率方式的第二方式之间循环,所述循环的频率足以使得从相关像素发出的光看起来基本上是连续的,高功率方式相对于低功率方式的持续时间可被改变,从而改变像素的平均亮度。
2.如权利要求1所述的有机发光装置,其中在第一方式中像素基本上是不发光的。
3.如权利要求1或2所述的有机发光装置,其中所述开关装置包括用于把提供的功率传递给像素的晶体管开关。
4.如权利要求3所述的有机发光装置,其中在第二方式晶体管处于其全导通状态。
5.如权利要求3所述的有机发光装置,在第二方式晶体管处于其全截止状态。
6.如权利要求3到5任何一个所述的有机发光装置,其中驱动装置能够驱动开关装置成为非瞬时局部导通状态。
7.如前面任何一个权利要求所述的有机发光装置,其中开关装置包括薄膜晶体管开关。
8.如前面任何一个权利要求所述的有机发光装置,其中驱动装置驱动每个开关装置以至少30Hz的频率在第一方式和第二方式之间循环。
9.如前面任何一个权利要求所述的有机发光装置,其中每个像素包括至少两个独立的发光区,并且包括和每一个发光区相连开关装置,以便在驱动装置的控制下独立地向所述发光区传递功率。
10.如权利要求9所述的有机发光装置,其中每个像素的发光区具有不同的面积。
11.如前面任何一个权利要求所述的有机发光装置,其中有机发光象素由发光的聚合物材料制成。
12.如前面任何一个权利要求所述的有机发光装置,其中有机发光像素由发光的共轭材料制成。
13.如前面任何一个权利要求所述的有机发光装置,其中有机发光象素由聚(p-亚苯基亚乙烯基)(poly(p-phenylenevinylene))或其衍生物制成。
14.如前面任何一个权利要求所述的有机发光装置,其中每个像素利用喷墨印刷淀积而成。
15.一种有机发光装置,包括包括多个有机发光象素的有机发光区,每个像素包括至少两个独立的发光区;开关结构,其和每个像素相连,并且包括和所述像素的各个发光区相连的开关装置,用于向所述发光区传递功率;以及控制装置,用于利用其相关的开关结构寻址每个像素并用于通过选择地驱动一个或几个相应的开关装置,使所选择的所述像素的一些发光区发光从而控制每个像素的亮度。
16.如权利要求15所述的有机发光装置,其中每个像素的发光区具有不同的尺寸。
17.如权利要求16所述的有机发光装置,其中每个像素的发光区具有不同的面积。
18.如权利要求15到17任何一个所述的有机发光装置,其中有机发光区由发光的聚合物材料制成。
19.如权利要求15到18任何一个所述的有机发光装置,其中有机发光区由发光的共轭材料制成。
20.如权利要求15到19任何一个所述的有机发光装置,其中有机发光区由聚(p-亚苯基亚乙烯基)或其衍生物制成。
21.如权利要求15到20任何一个所述的有机发光装置,其中每个像素利用喷墨印刷淀积而成。
22.一种基本上如参照附图中的图3到图8所述的场致发光装置。
全文摘要
一种有机发光装置,具有:包括多个有机发光象素的有机发光区;开关装置,其每个和各个像素相连,用于向所述像素传递功率;以及驱动装置,用于驱动每个开关装置在低功率方式的第一方式和高功率方式的第二方式之间循环,所述循环的频率足以使得从相关像素发出的光看起来基本上是连续的,高功率方式相对于低功率方式的持续时间可被改变,从而改变像素的平均亮度。
文档编号H01L27/32GK1291321SQ9980312
公开日2001年4月11日 申请日期1999年2月5日 优先权日1998年2月18日
发明者理查德·H·弗里德, 杰里米·H·伯劳弗斯, 木村睦, 斯蒂芬·K·何克斯 申请人:剑桥显示技术有限公司, 精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1