利用共沉淀法的钠二次电池用正极活性材料前驱体的制备方法及由此制备的钠二次电池...的制作方法

文档序号:8909347阅读:429来源:国知局
利用共沉淀法的钠二次电池用正极活性材料前驱体的制备方法及由此制备的钠二次电池 ...的制作方法
【技术领域】
[0001] 本发明涉及一种利用共沉淀法的钠二次电池用正极活性材料前驱体的制备方法 及由此制备的钠二次电池用正极活性材料前驱体。
【背景技术】
[0002] 现在,作为高能量密度的二次电池多使用锂二次电池,这种锂二次电池使用将电 解质盐溶解于非水溶剂而得的非水电解液、并使锂离子在正极和负极之间移动从而进行充 放电。使用锂过渡金属氧化物作为正极材料,并且利用锂离子插入中间的反应的锂离子电 池正在商用化。但是,由于锂离子电池中含有的锂价格昂贵,因此实际上需要价格更低廉且 具有高容量的电池。
[0003] 最近,开始进行了钠离子用以代替锂离子的钠离子二次电池的研宄。由于钠资源 储藏量丰富,因此若能够制备钠离子用以代替锂离子的二次电池,就可以以低成本制备二 次电池。
[0004] 日本特开2007-287661号公报中具体记载有具有正极和负极的二次电池,所述正 极采用对Na、Mn和Co的组成比(Na :Mn :Co)为0. 7 :0. 5 :0. 5的原料进行烧成而得的复合 金属氧化物,所述负极由金属钠构成。并且,在日本特开2005-317511号公报中具体记载有 作为复合金属氧化物具有六方最密堆积(层状岩盐型)晶体结构的a -NaFe02,通过将Na202 和Fe304混合后在空气中600至700°C下烧成制得该复合金属氧化物。但是,对于现有的钠 二次电池的寿命特性,即反复进行充放电时的放电容量维持率来说,不能说是充分的。
[0005] 并且,在现有的制备用于锂二次电池或钠二次电池的正极活性材料方法中,最常 规的制法是固态反应法,是指如下方法,其中将每种组成元素的碳酸盐或氢氧化物作为原 料,将该些粉末混合,然后烧成,并重复几次此过程。但是,固态反应法具有以下缺点:固态 之间很难形成固溶体(solid solution),并且当混合时引入杂质量大;很难控制一定的粒 子大小;以及需要高生产温度和长生产时间。
[0006] 相反地,在湿法中,共沉淀法具有能够将组成元素控制在原子范围内,并且能够制 备球形复合金属碳酸化物等优点。然而,为了制备用于钠二次电池的正极活性材料,在现有 方法中主要采用了固态反应法,还没有进行对于采用共沉淀法制备用于钠二次电池的正极 活性材料方法的研宄。

【发明内容】

[0007] 技术问题
[0008] 为了解决上述现有技术的问题,本发明目的在于提供一种利用共沉淀法的钠二次 电池用正极活性材料前驱体的制备方法。
[0009] 进一步地,本发明目的在于提供一种由本发明的制备方法制备的寿命特性改善且 具有新组成的钠二次电池用正极活性材料前驱体。
[0010] 技术方案
[0011] 为了解决上述技术问题,本发明提供一种利用共沉淀法的钠二次电池用正极活性 材料前驱体的制备方法,包括以下步骤:
[0012] (a)将蒸馏水和第一 pH调节剂倒入共沉淀反应器中,并且供入空气或氮气进行搅 拌并保持反应器内部的pH值在6. 5至7. 5 ;
[0013] (b)将第二pH调节剂连续供入到所述反应器中进行混合,以调整反应器内的pH值 在6. 5至11 ;以及
[0014] (c)供入含有当量比例的镍盐、铁盐和锰盐的过渡金属化合物水溶液和络合剂,形 成钠二次电池用正极活性材料前驱体粒子。
[0015] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,所 述步骤(a)中的所述第一 pH调节剂为氨水溶液或硫酸铵水溶液。
[0016] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,所 述步骤(b)中的所述第二pH调节剂选自草酸铵、KOH和NaOH所构成的群组。
[0017] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,在 所述步骤(b)中供入K0H或NaOH作为所述第二pH调节剂时,调整反应器内的pH值在9至11〇
[0018] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,在 所述步骤(b)中供入草酸铵作为所述第二pH调节剂时,调整反应器内的pH值在6. 5至11。
[0019] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,所 述步骤(c)中的所述镍盐选自硫酸镍、硝酸镍、氯化镍、氟化镍、乙酸镍和氢氧化镍所构成 的群组,所述铁盐选自硫酸铁、硝酸铁、氯化铁、氟化铁、乙酸铁和氢氧化铁所构成的群组, 所述锰盐选自硫酸锰、硝酸锰、氯化锰、氟化锰、乙酸锰和氢氧化锰所构成的群组。
[0020] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,所 述步骤(C)中的所述络合剂选自氨水溶液(NH40H)、硫酸铵((NH4) 2S04)、硝酸铵(NH4N03)和 第一磷酸铵((NH 4)2HP04)所构成的群组。
[0021] 根据本发明的钠二次电池用正极活性材料前驱体的制备方法中,其特征在于,所 述步骤(c)中的所述络合剂的浓度与所述过渡金属化合物水溶液的浓度之比为0. 8至1. 2。
[0022] 进一步地,本发明提供一种由本发明的制备方法制备的钠二次电池用正极活性材 料前驱体,其特征在于,其是粒子大小为5至15 ym的球形,粒度分布呈单分散型。
[0023] 根据本发明的钠二次电池用正极活性材料前驱体,其特征在于,其由 NixFeyMnh-JOHh表示,其中 0? 1 彡 x 彡 0? 3,0. 2 彡 y 彡 0? 7,0. 1 彡 1-x-y 彡 0? 5。
[0024] 根据本发明的钠二次电池用正极活性材料前驱体,其特征在于,其由 NixFeyMrih-yCA表示,其中 0? 1 彡 x 彡 0? 3,0. 2 彡 y 彡 0? 7,0. 1 彡 1-x-y 彡 0? 5。
[0025] 根据本发明的钠二次电池用正极活性材料前驱体,其特征在于,其由 [NixFeyMrihjA表示,其中 0? 1 彡 x 彡 0? 3,0. 2 彡 y 彡 0? 7,0. 1 彡 1-x-y 彡 0? 5。
[0026] 进一步地,本发明提供一种利用根据本发明的钠二次电池用正极活性材料前驱体 制备的钠二次电池用正极活性材料及包含其的钠二次电池。
[0027] 技术效果
[0028] 根据本发明利用共沉淀法的钠二次电池用正极活性材料的制备方法,是在利用共 沉淀法的同时适当地调节络合剂的种类和pH值,从而能够提供一种寿命特性改善且具有 新组成的钠二次电池用正极活性材料前驱体。
【附图说明】
[0029]图1至图4表示本发明一实施例中制备的前驱体的SME图;
[0030]图5至图8表示对本发明一实施例中制备的前驱体进行粒度分布测定的结果;
[0031] 图9和图10表示对本发明一实施例中制备的前驱体进行XRD测定的结果;
[0032] 图11表示对本发明一实施例中制备的前驱体进行粒度分布测定的结果;
[0033] 图12和图13表示本发明一实施例中制备的前驱体的SME图;
[0034] 图14和图15表示对本发明一实施例中制备的前驱体进行粒度分布测定的结果;
[0035] 图16至图21表示对本发明一实施例中制备的正极活性材料进行XRD测定的结 果;
[0036] 图22表示对本发明一实施例中制备的正极活性材料进行XRD测定的结果;
[0037] 图23和图24表示本发明一实施例中制备的正极活性材料的SME图。
【具体实施方式】
[0038] 以下,根据实施例更详细阐述本发明。但是,本发明并不仅限于以下实施例。
[0039] <实施例1>
[0040]将4L蒸馏水倒入反应器中,在加入氨的同时在lOOOrpm下搅拌,并保持反应器内 部pH值在7、内部温度在50°C。供入4M的NaOH溶液作为第二pH调节剂,以调整反应器内 部pH值在10. 2并保持30分钟。
[0041] 将NiS04 ? 6H20、FeS04 ? 7H20、MnS04 ? 5H20按当量比例混合作为过渡金属化合物水 溶液,并且与作为络合剂的NH40H-起供入到反应器中,以制备如下表1所示的前驱体。
[0042] 重复实施例1的操作,不同在于,调节所述实施例1中过渡金属化合物水 溶液的混合比例,以制备实施例2至4的前驱体,它们分别由Ni a25Fea 35Mna 4 (0H) 2、 Ni〇. 25Fe。. 5Mn。. 25 (OH) 2和 Ni。. 15Fe 0 35此0. 5 (OH) 2表示。
[0043]表1
[0044] [Tablel]
[0045]

[0046] <测试例1 > SEM图的测定
[0047] 测定所述实施例1至4中制备的前驱体的SEM图,并示于图1至图4。
[0048] <测试例2>粒度分布的测定
[0049] 对所述实施例1至4中制备的前驱体进行粒度分布测定,并示于图5至图8。从图 5至图8可知,根据本发明的实施例制备的前驱体粒子的粒度分布呈单分散型。
[0050] <实施例5至12 >
[0051] 重复实施例1的操作,不同在于,使用氨水溶液作为第一pH调节剂来调整反应器 内部pH值
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1