应用于晶圆级半导体器件的散热结构的制作方法

文档序号:9305606阅读:218来源:国知局
应用于晶圆级半导体器件的散热结构的制作方法
【技术领域】
[0001]本发明涉及一种半导体器件,特别涉及一种应用于晶圆级半导体器件的散热结构。
【背景技术】
[0002]近年来,人们对LED照明的功率提出了越来越高的要求。为获得大功率光源,当前业界通常是将以传统工艺制成的多个小尺寸LED芯片集成组装于一个器件中。而作为其中一种典型的方案,参考CN103137643A、CN103107250A等,研究人员通过将多个小尺寸LED芯片通过粘接等方式固定组装在一基底上,并采用一定的电路形式将该多个LED芯片电性连接,从而形成大功率LED器件。藉由此类工艺,诚然可以获得大功率LED器件,但其中必不可少的芯片封装、系统集成及安装工序等操作均非常繁复,因而使得器件的总制造成本急剧提升,限制了大功率LED器件的推广应用。
[0003]增加LED器件芯片的面积是实现大功率LED的最直接的途径之一,但为获得具有理想良率的产品,尚有诸多技术问题需要解决。本案发明人此前曾提出了一种晶圆级半导体器件,但其在工作时会产生大量热能,若不能及时将这些热量转移,则可能影响器件的工作性能及使用寿命。

【发明内容】

[0004]鉴于现有技术中的不足,本发明的主要目的在于提供一种应用于晶圆级半导体器件的散热结构,以实现晶圆级半导体器件工作过程中热量的快速转移,并有效提升晶圆级半导体器件的工作性能及使用寿命。
[0005]为实现上述发明目的,本发明采用了如下技术方案:
一种应用于晶圆级半导体器件的散热结构,包括与所述晶圆级半导体器件连接的至少一散热壳体,所述晶圆级半导体器件包括晶圆级基片及由生长在所述基片一面上的外延层直接加工形成的复数功能单胞,所述散热壳体内设有可储纳导热介质的空腔,且至少所述晶圆级半导体器件一面的至少与所述功能单胞相应的局部区域暴露于所述空腔内。
[0006]进一步的,所述晶圆级半导体器件包括:
直径在2英寸以上的晶圆级基片,
形成于基片表面且并联设置的多个串联组,每一串联组包括串联设置的多个并联组,每一并联组包括并联设置的多个功能单胞,其中每一功能单胞均是由直接外延生长于所述基片表面的半导体层加工形成的独立功能单元,
以及导线,其至少电性连接于每一串联组中的一个选定并联组与所述半导体器件的一个电极之间和/或两个选定并联组之间,用以使所有串联组的导通电压基本一致。
[0007]进一步的,至少所述晶圆级半导体器件的暴露于所述空腔内的一面的至少局部区域上分布有散热机构。
[0008]进一步的,所述晶圆级半导体器件采用半导体发光器件,且所述半导体发光器件的出光面上还分布有减反增透机构。
[0009]与现有技术相比,本发明的有益效果包括:该晶圆级半导体器件结构简单,制程简单便捷、低成本,良品率高,便于安全维修,适于规模化制造和应用。
【附图说明】
[0010]图1a-图1b分别是本发明一实施方案中一种晶圆级半导体器件的散热结构示意图及局部放大示意图;
图2a_图2b是本发明一典型实施方案中一种晶圆级半导体器件的散热结构示意图及A-A向首I]视图;
图3a-图3b分别是本发明若干典型实施例中晶圆级半导体器件的散热机构的结构示意图;
图4是本发明另一典型实施方案中一种晶圆级半导体器件的散热结构示意图;
图5是本发明又一典型实施方案中一种晶圆级半导体器件的散热结构示意图;
图6a-6c分别是本发明若干典型实施例中减反增透结构的示意图;
图7是本发明再一典型实施方案中一种晶圆级半导体器件的散热结构示意图;
附图标记说明:晶圆级基片11、功能单胞12、η型半导体121、P型半导体122、发光的量子阱123、绝缘介质124、互连金属13、阴极14、阳极15、反射层16、鳍状散热片171、散热柱172、空腔21、散热壳体22、相变散热外壳23、散热翅片24、焊料层3、光子晶体结构421、大透镜422、小透镜组423、压块51、密封圈53、螺栓52、相变散热液体61、相变蒸汽62。
【具体实施方式】
[0011]为了使本发明目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
[0012]本发明首先提供了一种应用于晶圆级半导体器件的散热结构,其包括与所述晶圆级半导体器件连接的至少一散热壳体,所述晶圆级半导体器件包括晶圆级基片及由生长在所述基片一面上的外延层直接加工形成的复数功能单胞,所述散热壳体内设有可储纳导热介质的空腔,且至少所述晶圆级半导体器件一面的至少与所述功能单胞相应的局部区域暴露于所述空腔内。
[0013]在本发明中,前述的“晶圆级”系指基片的直径在2英寸以上,而所述基片的材质可选自蓝宝石晶片、SiC晶片、Si晶片等,且不限于此。
[0014]在本发明中,前述功能单胞是指具有独立完整功能的器件单元,并且任意两个功能单胞的导电半导体层隔离开,使任一功能单胞电学上独立;通过金属互连,使多个功能单胞实现电学连接,形成更大的器件,实现更高的器件性能,如:功率增加等。
[0015]进一步的,前述晶圆级半导体器件可以包括:
晶圆级基片;
形成于基片表面且并联设置的多个串联组,每一串联组包括串联设置的多个并联组,每一并联组包括并联设置的多个功能单胞,其中每一功能单胞均是由直接生长于所述基片表面的半导体层加工形成的独立功能单元;以及, 导线,其至少电性连接于每一串联组中的一个选定并联组与所述半导体器件的一个电极之间和/或两个选定并联组之间,用以使所有串联组的导通电压基本一致。
[0016]本发明中所述的半导体器件,其可以为半导体发光器件,例如LED、LD等,亦可以为具有其它半导体功能元件。
[0017]前述的外延层,亦可以被称为“磊晶层”、“半导体功能层”等,其通常包含由不同类型的半导体材料,例如GaN、AlGaN、InGaN等形成的异质结构等。
[0018]例如,对于LED器件,前述的外延层可以包括P型半导体层、η型半导体层及有源层(发光的量子阱)等。
[0019]进一步的,以晶圆级LED芯片为例,其可以具有如下设计:
O芯片中形成电学独立的LED功能单胞;
2)先将这些功能单胞分组并联,以防止断路失效;
3)将这些并联组串联成若干串联组,以防止短路失效;串联的级数是受实际电源限制的,因为如果串联级数过大,如500级串联、每级3.5伏,则驱动电源的电压需要达到1750伏,现实中是很难实现且代价很大的,所以把并联组串联起来,每个串联组的额定电压接近电力供应的110V、220V或380V是较为合理的方案;
4)再把若干串联组并联起来,形成大面积、大功率LED芯片。
[0020]进一步的,还可采用如下优化设计:在串联组中设计若干冗余级,串联组中冗余级与串联组中并联级的不同之处在于,冗余级的电极较大,能够利用探针与其接触,进行电学测试,当芯片制作完成后,对串联组及其冗余级做电学测试,然后根据开启电压一致的原贝U,对冗余级进行跳线连接到输出电极。为了更加精确匹配各串联组及其冗余级的开启电压,采用连接电阻的方式,根据设定的工作电流来进一步匹配。
[0021]此处所述的“跳线”,其应理解为:用以将电路、特别是串联电路中特定的两个需求点直接电连接的导线,并且该两个需求点之间间隔有一个以上用以构成该串联电路的功能元件,例如一个以上前述并联组。
[
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1