粘结用聚酰亚胺树脂及粘合性层压板的制作方法

文档序号:8120092阅读:457来源:国知局
专利名称:粘结用聚酰亚胺树脂及粘合性层压板的制作方法
技术领域
本发明涉及作为电子元件用胶粘剂适用的粘结用聚酰亚胺树脂及具有该粘结用聚酰亚胺树脂层的层压板。
背景技术
近年,随着电子装置的小型化、高密度化,半导体片在进行高集成化。随之,对半导体的封装也提出了各种方法。例如,封装的绝缘基板使用环氧树脂系或聚酰亚胺系的有机封装基板、或硅等的无机基板。也使用为了放热的金属板。因此这些各种不同种类材料的粘结成为影响封装整体可靠性的重要的要素技术。
另一方面,封装的制造工序中,也有时为了提高作业性,预先在一面的被粘基板等的表面使之形成胶粘剂。在这样的工序中用的胶粘剂由于经基板的加工工序等,故在经受热或药品等的处理时,要求特性不产生变化。而,这些半导体周边使用的胶粘剂,由于也经过软熔工序等,故高温时粘结力的降低少,且成为电路污染原因的挥发成分少的胶粘剂相当重要。
过去,这些用途的胶粘剂使用环氧系树脂、丙烯酸系树脂等的热固性树脂,或热塑性的聚酰亚胺系树脂等。通常,粘结工序是在一方的被粘基材上形成胶粘剂(层),利用热、压力等与另一方的被粘体进行粘结,然而,在实际制造过程中,形成胶粘剂层的基材,有时在粘结前经过干燥或预热等的加热工序。若经过这样的工序,如前述的热固性树脂容易固化,使作为胶粘剂的特性明显下降。而,要在上述工序中避免裸露,必须在正要粘结时进行胶粘剂用清漆的涂布或胶粘剂用薄膜的粘贴,这明显地妨碍作业工序的自由度。
另外,作为热熔型胶粘剂用的热塑性树脂,要确保耐热性,必须提高玻璃化转变温度,于是,粘结时需要非常高的温度,这对周边材料有可能造成大的热损害。而要在低温下粘结,必须降低玻璃化转变温度,因此有导致降低耐热性的问题。
因此,特开平8-34968号等提出了将热塑性树脂与热固性树脂混合的掺混型胶粘剂。也有在热塑性聚酰亚胺树脂中掺混热固性的环氧树脂等确保作业性和耐热性的报道,但未反应成分残存后容易引起放出气体成分的增加。另外,也提出了将粘合性好的硅氧烷聚酰亚胺树脂作为热塑性胶粘剂利用的方案。然而,硅氧烷聚酰亚胺树脂有加热时的弹性模量降低明显、加热时的剥离等的问题。为此,为了提高耐热性,采用在具有活性基的硅氧烷聚酰亚胺树脂中掺混环氧树脂的方法。虽然可以改善加热时的弹性模量降低,但在200℃以下比较低的温度下进行固化,与其他的热固性胶粘剂同样地对制造工艺制约很大,有明显妨碍作业工序自由度的问题。
另外,众知作为对半导体的母板的连接方法,过去广泛采用在引线框上装配半导体,用环氧树脂封装材料进行连续封装的方法。但,最近从细线化、放热特性、传送特性的方面考虑,将聚酰亚胺带作为绝缘层的配线基板非常引人注目。
过去用胶粘剂将聚酰亚胺膜与铜箔贴合的层压板(3层带)作为TAB(带自动粘接)连接方法的液晶驱动用的半导体连接方法广为人知。但由于用作胶粘剂的环氧、丙烯酸系胶粘剂的影响,耐热性、电蚀性、连接形成凸台用的激光加工性还不充分,在要求高可靠性封装方面的应用中受到限制。
另外,虽然也有使聚酰亚胺薄膜与铜箔直接贴合的挠性基材(2层带材)形成配线基板的方法,但这种情况下,有由于与半导体的粘结封装,与放热板、加强筋的粘结采用的耐热性低的胶粘剂因250℃左右的软熔温度而产生膨胀,或从耐电蚀性不够的角度看,不能得到充分可靠性的问题。反之,采用耐热性高的胶粘剂时,因为这些胶粘剂是热固性,故受加热压结工序前的热处理的影响,在加热压结工序中的流动性损坏,或有与半导体片的粘合性被损坏的问题。

发明内容
本发明目的在于提供粘结用聚酰亚胺树脂,即使在电子元件粘结前处理工序中裸露多的温度(270℃以下)下,粘结力的降低也少,粘结层形成后工序的自由度高,耐热性也好。
另外,其他目的是提供即使在前述热处理后,加热压结时的流动性也良好,而且对硅、聚酰亚胺、各种金属的粘结力与软熔时的耐热性好的层压体。
本发明人对这样的课题反复潜心研究的结果。发现通过使用具有交联性反应基的二胺成分所得特定的硅氧烷聚酰亚胺树脂而解决了上述课题,从而完成了本发明。
本发明是粘接用聚酰亚胺树脂,其特征是主要含有由芳香族四羧酸二酐(A)与含有具有交联性反应基的二胺(B1)及硅氧烷二胺(B2)的二胺(B)制得的硅氧烷聚酰亚胺树脂,玻璃化转变温度是50-250℃,250℃下的杨氏模量(储能弹性模量)是105Pa以上。
另外,本发明是在基材上涂布形成前述粘结用聚酰亚胺树脂前的聚酰亚胺前体的树脂溶液、干燥后、在180℃施加5分钟热处理后、与被粘体热压结的剥离强度P1与将其再在270℃施加5分钟热处理后与被粘体进行热压结的剥离强度P2之比(P2/P1)定义的剥离强度保持率在50%以上的电子元件粘结用聚酰亚胺树脂。
此外,本发明是按导体,至少有一层聚酰亚胺系树脂层的绝缘支撑层,粘接用聚酰亚胺树脂层顺序形成的层压体中,绝缘支撑层是平均热膨胀系数为30×10-6以下、粘结用聚酰亚胺树脂层由上述粘结用聚酰亚胺树脂组成的层压体。
另外,本发明是至少1个的硅片通过粘结用聚酰亚胺树脂层粘结在上述层压体上、硅片表面与粘结用聚酰亚胺树脂层的常温下的90°剥离强度为0.8kN/m以上的层压体。
此外,本发明是通过在导体上直接涂布形成至少1层的聚酰亚胺系前体树脂溶液,通过加热固化成为导体-聚酰亚胺层压体,由涂布和干燥粘结用聚酰亚胺前体树脂溶液构成的上述层压体的制造方法。
另外,本发明是由芳香族四羧酸二酐(A)与含有有交联性反应基的二胺(B1)及硅氧烷二胺(B2)的二胺(B)所制得的硅氧烷聚酰亚胺树脂,是玻璃化转变温度在50-250℃、250℃下的杨氏模量(储能弹性模量)为105Pa以上的聚酰亚胺树脂。
以下,对本发明详细地进行说明。
本发明的粘结用聚酰亚胺树脂,主成分是硅氧烷聚酰亚胺树脂,由芳香族四羧酸二酐(A)与二胺(B)制得。
芳香族四羧酸二酐(A)没有特殊限制,可列举如下的化合物。均苯四羧酸二酐,2,2’,3,3’-、2,3,3’,4’-或3,3’,4,4’-二苯甲酮四羧酸二酐、2,3,6,7-、1,2,4,5-、1,4,5,8-、1,2,6,7-或1,2,5,6-萘-四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氢萘-1,2,5,6-四羧酸二酐、2,6-或2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-(或1,4,5,8-)四氯萘-1,4,5,8-(或2,3,6,7-)四羧酸二酐、3,3’,4,4’-、2,2’,3,3’-或2,3,3’,4’-联苯四羧酸二酐、3,3”,4,4”-、2,3,3”,4”-或2,2”,3,3”-对三联苯四羧酸二酐、2,2-二(2,3-或3,4-二羧基苯基)丙烷二酐、二(2,3-二羧基苯基)醚二酐、二(2,3-或3,4-二羧基苯基)甲烷二酐、二(2,3-或3,4-二羧基苯基)砜二酐、1,1-二(2,3-或3,4-二羧基苯基)乙烷二酐、2,3,8,9-、3,4,9,10-、4,5,10,11-或5,6,11,12-芘-四羧酸二酐、1,2,7,8-、1,2,6,7-或1,2,9,10-菲-四羧酸二酐、环戊烷-1,2,3,4-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、4,4’-氧二邻苯二甲酸二酐。此外,这些可以用1种或2种以上混用。这些之中,4,4’-氧二邻苯二甲酸二酐、3,3’,4,4’一联苯四羧酸二酐、二(3,4-二羧基苯基)砜二酐、3,3’,4,4’-二苯甲酮四羧酸二酐、均苯四甲酸二酐,对成为聚酰亚胺树脂时的有机溶剂的溶解性、与铜面等被粘物的粘合性等好,故优选使用。
本发明中用的二胺(B),只要是含有有交联性反应基的二胺(B1)和硅氧烷二胺(B2),则没有特殊限制。此外,也可用这些以外的其他二胺成分(B3)。
作为有交联性反应基的二胺(B1),只要是有交联性反应基的二胺则没有限制,但作为交联性反应基,优选具有由酚性羟基、羧基及乙烯基选出的至少1种交联性反应基的二胺成分。这些的交联基在高温的加热压结时通过与聚酰亚胺树脂末端的氨基、酸酐基或羧基之间进行反应,在高温下的弹性模量上升,有使软熔耐热性提高的效果,由于该交联反应在270℃以上明显地进行,故即使在加热压结前受到直到270℃的热处理也可维持加工流动性。
若列举具有交联性反应基的二胺(B1)的优选具体例,可列举3,3’-二羟基-4,4’-二氨基联苯、3,5-二氨基苯甲酸、1,8-二氨基-4,5-羟基蒽醌、2,4-二氨基-6-羟基嘧啶、2,3-二氨基苯酚、ω,ω’-二(3-氨基丙基)聚甲基乙烯基硅氧烷等。
具有交联性反应基的二胺(B1)的优选使用比例,是总二胺(B)中5-95摩尔%的范围,作为交联性反应基,具有酚性羟基或羧基时,(B1)在总二胺(B)中占的使用比例,最优选5-30摩尔%的范围。该比例在5摩尔%以下时,耐热性降低,在30摩尔%以上时,有时导致粘合性降低。另外,作为交联性反应基有乙烯基时,优选20-95摩尔%,在20摩尔%以下时耐热性降低。
作为硅氧烷二胺(B2),作为优选例列举下述通式(1)所示的硅氧烷二胺。 通式(1)中,R1及R2独立地表示2价的烃基,优选由C2-C6,更优选C3-C5的多亚甲基或亚苯基组成的基。R3-R6独立地表示C1-C6的烃基,优选甲基、乙基、丙基或苯基构成的基。而n是平均重复单元,1-10的数,优选3-9的数。
作为硅氧烷二胺(B2)的具体化合物的例子,可列举ω,ω’-二(2-氨基乙基)聚二甲基硅氧烷、ω、ω’-二(3-氨基丙基)聚二甲基硅氧烷、ω,ω’-二(4-氨基苯基)聚二甲基硅氧烷、ω,ω’-二(3-氨基丙基)聚二苯基硅氧烷、ω,ω’-二(3-氨基丙基)聚甲基苯基硅氧烷等。
硅氧烷二胺(B2)的优选使用比例,是总二胺(B)中5-95摩尔%的范围。该比例在5摩尔%以下时,粘合性低,95摩尔%以上时,有交联性反应基的二胺的比例减少,耐热性降低。
作为(B1)及(B2)成分以外的二胺成分(B3),没有特殊限制,可列举以下的芳香族二胺。例如,可列举3,3’-二甲基-4,4’-二氨基联苯、4,6-二甲基-间-苯二胺、2,5-二甲基-对苯二胺,2,4-二氨基、4,4’-亚甲基二邻甲苯胺、4,4’-亚甲基二-2,6-二甲苯胺、4,4’-亚甲基-2,6-二乙基苯胺、2,4-甲苯二胺、间-或对苯二胺、4,4’或3,3’-二氨基-二苯基丙烷、4,4’-或3,3’-二氨基二苯基乙烷、4,4’-或3,3’-二氨基二苯基甲烷、2,2-二[4-(4-氨基苯氧基)苯基]丙烷、4,4’-或3,3’-二氨基-二苯基硫醚、4,4’-或3,3’-二氨基二苯基砜、4,4’-或3,3’-二氨基二苯醚、联苯胺、3,3’-二氨基联苯、3,3’-二甲基-4,4’-二氨基联苯、3,3’-二甲氧基联苯胺、4,4”-或3,3”-二氨基-对三联苯,二(对-氨基-环己基)甲烷、二(对-β-氨基叔丁基苯基)醚、二(对-β-甲基-δ-氨基戊基)苯、对-二(2-甲基-4-氨基-戊基)苯、对-二(1,1-二甲基-5-氨基-戊基)苯、1,5-或2,6-二氨基-萘、2,4-二(β-氨基-叔丁基)甲苯、2,4-二氨基-甲苯、间-或对-二甲苯-2,5-二胺、间-或对-苯二甲基二胺、2,6-或2,5-二氨基吡啶,2,5-二氨基-1,3,4-噁二唑、哌啶、1,3-二(3-氨基苯氧基)苯等。这些可以单独使用也可以2种以上混合用。这些之中,对苯二胺、2,2-二[4-(4-氨基苯氧基)苯基]丙烷、4,4’-二氨基二苯醚、1,3-二(3-氨基苯氧基)苯,由于对有机溶剂的溶解性好、在反应中容易使用而优选。
使用二胺成分(B3)时,其优选的使用比例是总二胺(B)中0-80摩尔%的范围。该比例在80摩尔%以上时,有交联性反应基的二胺的比例减少,耐热性降低。
归纳二胺(B1)、(B2)、(B3)在二胺(B)中占的配合比例,则(B1)是5-95摩尔%,优选5-30摩尔%,更优选10-20摩尔%,(B2)为5-95摩尔%,优选10-70摩尔%,更优选30-60摩尔%,(B3)为0-80摩尔%,优选为10-70摩尔%,更优选20-50摩尔%。再者,二胺(B)是二胺(B1)、(B2)、(B3)的合计。
本发明的硅氧烷聚酰亚胺树脂的制造方法也没有特殊限制,可以用公知的聚合方法。优选为2步以上的反应,先使硅氧烷二胺(B2)与芳香族四羧酸二酐(A)反应进行酰亚胺化,然后使具有交联性反应基的二胺(B1)与芳香族四羧酸二酐(A)反应生成聚酰胺酸。使用其他的二胺(B3)时,优选与有交联性反应基的二胺(B1)与芳香族四羧酸二酐(A)反应同样地生成聚酰胺酸。通过采用这样的聚合方法,可以得到进行酰胺化的部分和停留在作为酰亚胺的前体的酰胺酸阶段的共聚硅氧烷聚酰亚胺树脂前体。
若在溶液中将有交联性反应基的二胺(B1)与芳香族四羧酸二酐(A)生成的聚酰亚胺前体树脂进行150℃以上的热处理,则交联反应容易在溶液中进行,其后的加工性困难。另外,硅氧烷二胺(B2)与芳香族四羧酸二酐生成的聚酰亚胺前体树脂,由于水解性比芳香族聚酰亚胺前体树脂高,在溶液中的保存稳定性差,故酰胺酸部位可预先酰亚胺化。
若列举有利的聚合方法,有如下的方法。预先使芳香族四羧酸二酐(A)在有机溶剂中进行溶解或悬浮。慢慢添加硅氧烷二胺(B2)。然后,混合物在150-210℃的温度下边除去缩合水,边聚合10-24小时及进行酰亚胺化,获得末端有酸酐的硅氧烷聚酰亚胺。然后,一次将反应混合物冷却到室温左右后,添加具有交联性反应基的二胺(B1)或(B1)与其他的二胺(B3),及不足的酸二酐(A),使酸二酐(A)与合计的二胺(B)大约成等摩尔量,在10-80℃反应1-3小时,得有交联性反应基的硅氧烷聚酰亚胺前体树脂溶液。
再者,反应用的有机溶剂没有特殊限制,只要是可均匀溶解本组合物的溶剂,则可用一种,也可以是二种以上并用的混合溶剂。例如,有酚系溶剂、酰胺系溶剂(吡咯烷酮系溶剂、乙酰胺系溶剂等)、噁烷系溶剂(二噁烷、三噁烷等)、酮系溶剂(环己酮等)、二醇醚系溶剂(甲基二乙二醇醚、甲基三乙二醇醚)等。另外,根据需要,也可在均匀溶解的范围内,将苯、甲苯等的芳香族烃系溶剂或己烷、癸烷等的脂肪族烃系溶剂混合使用,由于反应时间的缩短,溶剂耗散的问题,可以用沸点150℃以上的溶剂,最优选200℃以上的有机极性溶剂(例如N-甲基-2-吡咯烷酮、甲基三乙二醇醚等)。
另外,硅氧烷聚酰亚胺前体树脂溶液的分子量,与通常缩聚系聚合物的情况一样,可以通过调节单体成分的摩尔比进行控制。即,对芳香族四羧酸二酐(A)1摩尔,优选使用0.8-1.2摩尔的二胺(B)。该摩尔比在0.8以下及1.2以上时,只能得到低分子量聚合物,不能得到足够的耐热性,更优选对芳香族四羧酸二酐(A)1摩尔,二胺(B)是0.95-1.05摩尔,最优选是0.98-1.02摩尔。
上述的硅氧烷聚酰亚胺前体树脂,如果将该树脂完全酰亚胺化,则有下述通式(2)及通式(3)所示的重复单元,成为薄膜成型性容易的溶剂可溶型聚酰亚胺。 (式中,Ar1表示由前述芳香族四羧酸二酐(A)生成的4价的芳香族基,R1-R6及n表示与前述式(1)说明相同的。而Ar3表示由有前述交联性的二胺(B1)或其他的二胺(B3)生成的2价的芳香族基。)硅氧烷聚酰亚胺树脂中的上述重复单元的存在比例,根据所使用的二胺(B)中的(B1)、(B2)及(B3)的使用比例而确定。
本发明的粘结用聚酰亚胺树脂,可以是上述硅氧烷聚酰亚胺树脂一种成分,另外,在具有本发明的物性值的范围内,也可以配合少量的其他成分。
另外,作为在上述硅氧烷聚酰亚胺树脂中可配合的其他成分。例如,为了提高加热压结工序中的成型性,可列举环氧树脂、丙烯酸酯树脂、聚氨酯树脂、氰酸酯树脂等的热固性树脂。根据需要还可适宜配合公知的偶联剂、填充剂、颜料、触变性赋予剂、消泡剂等。这些优选在300℃左右的温度下不分解,不挥发。
热固性树脂通过提高高温粘结时的流动性,同时在高温粘结或后烘时与聚酰亚胺结构中的官能团之间进行交联,有提高固化后耐热性的效果。即使是配合其他成分时,其使用量也可以是树脂成分中20重量%以内的范围。
成为粘结用聚酰亚胺树脂时,优选将前述硅氧烷聚酰亚胺前体树脂的溶液,或将根据需要所配合的前述成分配合在其中的溶液进行加热、干燥,将该溶液涂布在被粘结物或可剥离的基板上,进行加热,干燥,则可得到薄膜状或具有薄膜状粘结用聚酰亚胺树脂层的物体。
获得粘结用聚酰亚胺树脂层或其薄膜的方法没有特殊限制,优选将含有硅氧烷聚酰亚胺前体树脂和根据需要所配合的成分的含硅氧烷聚酰亚胺前体树脂溶液涂布成片状,将其在300℃以下,优选180-270℃下加热数分钟使之进行酰亚胺化。但为了保持粘合性,可使交联性反应基产生的交联反应成为不充分进行的条件。
优选将这样制得的硅氧烷聚酰亚胺前体树脂含有溶液涂布在任意的基材上,在130℃以下的温度预干燥10-30分钟后,除去溶剂,为了酰亚胺化,通常在180-270℃左右的温度热处理2-30分钟左右,但该聚酰亚胺树脂通常在其玻璃化转变温度以上的温度下开始交联,只要不赋予充分的温度和时间,由交联性反应基产生的交联反应不结束。
这样热处理获得的粘结用聚酰亚胺树脂,优选厚10-100μm的薄膜状。通过变成薄膜状,可以成为适用于电子元件用途的粘结用聚酰亚胺薄膜。即,基板如果使用玻璃板或经脱模处理的薄膜等的易剥离的基材,可以将其剥离后用作粘结用聚酰亚胺薄膜。另外,也可将硅氧烷聚酰亚胺前体树脂含有溶液直接涂布在被粘结物的电子元件等上,同样进行热处理成为本发明的粘结用聚酰亚胺薄膜树脂层。
再者,180-270℃的热处理后,虽然实质上完成了酰亚胺化,但为了更完全的酰亚胺化及除去低分子量的成分,优选在大约270℃的温度下施加5分钟左右热处理。该酰亚胺化的完成可通过测定酰亚胺化率确认。可用红外吸收光谱分析法测定酰亚胺化率,酰亚胺化率基本上完成的情况,基本上观察不到酰胺键引起的吸收峰,只观察到酰亚胺闭环所产生的酰亚胺环引起的吸收峰。
本发明的粘结用聚酰亚胺树脂,从热压粘结工序中的成型性与软熔安装时的耐热性观点考虑,固化后的玻璃化转变温度必须是50-250℃,优选100-230℃,250℃下的弹性模量是105Pa以上,优选是2×105Pa以上。玻璃化转变温度低于50℃时,在树脂强度、软熔耐热性方面成为问题,在250℃以上时,在实际使用的压接温度下难以得到足够的流动性。而在250℃下的弹性模量低于105Pa时,在软熔工序中产生膨胀、剥离的可能性高。
该玻璃化转变温度是指用DMA法测定的温度。杨氏模量(储能弹性模量)是指用DMA法测定的值。
此外,本发明的粘结用聚酰亚胺树脂,将硅氧烷聚酰亚胺前体含有树脂溶液涂布在基材上,干燥后,用180℃热处理5分钟后与被粘体热压粘结的剥离强度P1,与将其再在270℃热处理5分钟后与被粘体热压粘结的剥离强度P2之比(P2/P1)定义的剥离强度保持率,优选是50%以上,再者,剥离强度可根据后述实施例的试验方法所述的方法进行测定,该剥离强度P1也是本发明的粘结用聚酰亚胺树脂通常为了在180℃以上的温度下酰亚胺化、成为聚酰亚胺树脂之前的前体状态下的剥离强度。而剥离强度P2也有同样的情况,但优选是把本发明的粘结用聚酰亚胺树脂在270℃热处理5分钟后与被粘体进行热压粘结的剥离强度。
本发明的粘结用聚酰亚胺树脂,适合用作粘结前暴露在270℃左右的高温下的众多电子元件的粘结材料。用本发明粘结用聚酰亚胺树脂粘结电子元件时,是涂布在支撑基材上,干燥后,进行热处理成为具有上述特性的本发明的粘结用聚酰亚胺树脂,将被粘结体与其进行热压粘结。
本发明的层压体是导体、绝缘支撑层与粘结用聚酰亚胺树脂层顺序形成的层压体,粘结用聚酰亚胺树脂层由本发明的粘结用聚酰亚胺树脂组成。作为该层压体使用的导体,可以是导电性的金属,具体地可以用铜、不锈钢、铝、锡、导电性的合金箔等。优选是铜。
本发明的层压体制成导体层/绝缘支撑层/粘结用聚酰亚胺树脂层构成的层结构,绝缘支撑层由至少一层的聚酰亚胺系树脂层构成。而且绝缘支撑层的热膨胀系数必须是30×10-6以下,优选25×10-6以下,超过此值时则翘曲的发生明显,绝缘支撑层由多层构成时,平均的热膨胀系数最好落入上述范围。此外,平均的热膨胀系数是从240℃到50℃的平均的热线膨胀系数,另外,粘结用聚酰亚胺树脂层是固化后的玻璃化转变温度为50-250℃、在250℃下的弹性模量为105Pa以上的具有交联性反应基的硅氧烷聚酰亚胺树脂。而且,粘结用聚酰亚胺树脂层与270℃下施加5分钟热过程后的硅片被粘结体经加热压粘的常温下的剥离强度是0.8kN/m以上,优选是1.0kN/m以上。
这里,所谓硅片被粘结体是指在单结晶硅及其表面被覆氮化硅或聚酰亚胺的钝化膜的物体的总称,加热压粘结条件及剥离强度的测定条件是实施例中定义的条件,硅片被粘结体以通常的硅片为标准,制成在有氮化硅或聚酰亚胺钝化膜的面、硅面其任一面有上述剥离强度的被粘结体。再者,本发明中的被粘结对象不限于硅片,本发明中,是指粘结用聚酰亚胺树脂的特性有上述特性即可的意思,被粘结对象物包括硅片或铜箔、其他的电子元件等。
作为本发明的层压体的制造方法,优选将构成绝缘支撑层的至少1层的聚酰亚胺系前体树脂溶液直接涂布在导体上,通过加热固化成为导体/聚酰亚胺层压体后,涂布粘结用聚酰亚胺树脂溶液或其前体树脂含有溶液,进行干燥。
对绝缘支撑层及胶粘层的导体上的涂布,可用各种装置,可以使用口模式涂布机,刀式涂布机,辊式涂布机等,也可以用多层口模等同时涂布多层的树脂。
构成绝缘支撑层的聚酰亚胺系树脂中,如果是特定化学结构的树脂,有时在酰亚胺闭环的状态下可溶于极性溶剂,但从聚酰亚胺层间的粘合力的观点考虑,即使此种情况也更优选用前体溶液进行涂布的方法。另外,根据同样的理由,形成构成绝缘支撑层的几层的聚酰亚胺树脂时,优选反复进行聚酰亚胺前体树脂溶液的涂布、干燥,或通过多层挤出的涂布后的一起干燥,一旦成为聚酰亚胺前体的多层结构后,最后进行热酰亚胺固化的方法。另外,绝缘支撑层的最终固化温度,为了将低热膨胀性聚酰亚胺的热膨胀系数抑制得足够低,优选是250℃以上,更优选是300℃以上。这样的聚酰亚胺的固化,为了防止导体的氧化和树脂的老化,优选在惰性气体环境气氛下或减压下进行。
作为粘接用聚酰亚胺树脂溶液主成分的硅氧烷聚酰亚胺树脂是溶剂可溶性时,可在聚酰亚胺溶液的状态下进行涂布,尤其是硅氧烷聚酰亚胺前体溶液,用于保存时的粘度稳定性差,优选使用聚酰亚胺溶液,另外,在粘接用聚酰亚胺树脂在绝缘支撑层固化所需的250℃以上有充分的热稳定性时,可在将绝缘支撑层完全酰亚胺化前将该树脂溶液涂布在绝缘支撑层上,同时将绝缘支撑层与胶粘剂层的聚酰亚胺进行固化。
这样制得的本发明的层压体,可通过加热压接贴合硅片,聚酰亚胺,环氧树脂等的绝缘树脂,铜,铝,其他合金金属等各种各样的被粘结物,与这些被粘结物的加热压粘除油压机、层压机外,还可使用半导体粘合用的连续加热方式或脉冲加热方式的粘结装置。
尤其是,本发明的层压体,由于即使经过热过程后也显示加热压粘时的足够流动性,保持固化后的软熔耐热性,故适合用作配线形成工序、半导体组装工序中许多热处理所需的半导体封装用薄膜基板(插入板)的材料。例如,如果预先形成贯穿聚酰亚胺胶粘剂层、绝缘支撑层的金属凸起,将该金属凸起与硅片上的铝片进行热粘合,与此同时粘结用聚酰亚胺树脂在硅表面熔融,可封住硅片表面。
本发明的层压体中,上述绝缘支撑层虽然至少有1层的聚酰亚胺树脂层,但优选有低热膨胀聚酰亚胺树脂层与高热膨胀聚酰亚胺树脂层,成为高热膨胀聚酰亚胺树脂层与导体粘合的结构。此情况下的低热膨胀聚酰亚胺树脂层的厚度(t2)与高热膨胀聚酰亚胺树脂层厚度之比,优选(t2)/(t1)=2-100的范围。
低热膨胀聚酰亚胺树脂,只要热膨胀系数低于20×10-6,则可以是任意结构的树脂,但在薄膜的机械物性、耐热性等方面优选有良好的性能,作为低热膨胀聚酰亚胺系树脂的具体例,可列举具有下述通式(4)与(5)所示结构单元的聚酰胺酰亚胺树脂或聚酰亚胺系树脂。 (式中,Ar4表示4价的芳香族基,R7、R8表示可以彼此相同、也可以不同的低级烷基、低级烷氧基或卤素的任一种,m、n是0-4的整数,至少有1个低级烷氧基。另外,Ar5是下述式(6)表示的基,R9、R10、R11表示低级烷基,低级烷氧基,卤素基或氢,l、m、n是0-4的整数,R10、R11可以彼此相同,也可以不同)。 构成高热膨胀聚酰亚胺树脂层的聚酰亚胺树脂,只要热膨胀系数在30×10-6以上,则可以是任意结构的树脂,但与导体粘合的高热膨胀聚酰亚胺树脂作为电路基板,必须呈现与导体的足够粘结力,优选在机械物性、耐热性方面有良好的性能。并优选玻璃化转变温度低于300℃的聚酰亚胺系树脂。
作为这样的聚酰亚胺系树脂的具体例,可列举下述通式(7)表示的聚酰亚胺系树脂。 (式中,X是直接键,-SO2-、-O-或-CO-、Ar6是从-φ-O-φ-、-φ-O-φ-O-φ-或-φ-O-φ-Y-φ-O-φ-(φ是苯环,Y是直接键,-C(CH3)2-、-SO2-或-C(CF3)2-)中选出的至少1种。)本发明层压体的绝缘支撑层使用的聚酰亚胺系树脂,可通过将二胺化合物与酸酐化合物在极性溶剂中反应获得的聚酰亚胺前体进行加热固化制得。
本发明的硅片装配层压体,可通过使硅片被粘接体粘结在表面有粘结用聚酰亚胺树脂的层压体的该表面上制得。此时,优选层压体在施加270℃、5分钟的热过程后,在320℃、2MPa的条件下,在粘结用聚酰亚胺树脂层上加热压粘硅片被粘结体时的硅片被粘结体与胶粘剂(粘结用聚酰亚胺树脂)层间的常温下的90°的剥离强度是0.8kN/m以上。此时,优选带有胶粘剂的导体-聚酰亚胺层压体,即使是施加270℃、5分钟的热过程后,在通常的粘结条件下,对通常的硅片被粘结体也赋予上述粘结力。
实施发明的最佳方案以下,基于实施例及比较例具体地说明本发明,但本发明不受此限制。
本实施例中用的缩写符号表示以下的化合物。MABA2’-甲氧基-4,4’-二氨基苯甲酰苯胺DDE4,4’-二氨基二苯基醚PPD对苯二胺APB1,3-二(4-氨基苯氧基)苯BAPP2,2-二[4-(4-氨基苯氧基)苯基]丙烷HAB3,3’-二羟基-4,4’-二氨基联苯PSXω,ω’-二(3-氨基丙基)聚二甲基硅氧烷(硅氧烷单元数n=8)PSX(n=1)ω,ω’-二(3-氨基丙基)二甲基硅氧烷(硅氧烷单元数n=1,分子量248.52)PSX(vi)ω,ω’-二(3-氨基丙基)聚甲基乙烯基硅氧烷(平均硅氧烷单元数m=6.82,平均分子量836) PMDA均苯四甲酸二酐BPDA3,3’,4,4’-联苯四羧酸二酐BTDA3,3’,4,4’-二苯甲酮四羧酸二酐ODPA3,3’,4,4’-氧二邻苯二甲酸二酐[玻璃化转变温度、杨氏模量]将各合成例制得的树脂溶液涂布在特氟隆脱模处理铝基材(厚50μm)上,在热风炉中进行80℃、15分钟的预干燥后,按180℃、5分钟,270℃、5分钟,320℃,10秒钟的顺序进行热处理,得膜厚约60μm的树脂薄膜。测定所得的薄膜按DMA以5℃/分从0℃升温到350℃时的动态粘弹性,求玻璃化转变温度(tanδ极大值)及25℃,250℃的杨氏模量(储能弹性模量E’)。[NMP溶解性]将各合成例制得的树脂溶液涂布在特氟隆脱模处理铝基材(厚50μm)上,在热风炉中进行80℃、15分钟的预干燥后,按180℃、5分钟,270℃、5分钟,320℃、10秒钟的顺序进行热处理,得膜厚约60μm的树脂薄膜。使所得的薄膜在N-甲基-2-吡咯烷酮(简称NMP)中,25℃浸渍10分钟,目视观察状态。[剥离强度,剥离强度保持率]在厚35μm的电解铜箔(三井金属矿业制3EC-III箔,Rz=6.0μm)的粗化面,用刮刀涂布机涂布各合成例制得的树脂溶液,使干燥后的厚度为10μm,对按80℃-15分钟,180℃-5分钟的顺序进行热处理所得的铜箔层35μm、聚酰亚胺胶粘剂层10μm的带胶粘剂铜箔(1)、和按80℃-15分钟,180℃-5分钟,270℃-5分钟的顺序进行热处理的铜箔层35μm、聚酰亚胺胶粘剂层10μm的带胶粘剂铜箔(2),用加热压接装置,在温度320℃、压力2MPa、时间10秒的条件下将1cm×1cm面积的单晶硅片镜面进行热压粘结,用拉伸试验机对其测定常温下剥离带胶粘剂层铜箔面时90度方向的剥离强度(拉伸速度20mm/分)。
设硅片对带胶粘层铜箔(1)及(2)的剥离强度分别为P1及P2时,剥离强度保持率(P)用以下表示。
(P)%=P2/P1×100[红外软熔炉耐热性试验]用加热压粘装置在温度320℃、压力2MPa、时间10秒条件下,将面积1cm×1cm的硅片热压接在带胶粘剂层电解铜箔(三井金属矿业制3EC-III箔,Rz=6.0μm)上的样品,在热恒温恒湿器中,在85℃温度,85%湿度下使之吸湿168小时后,在红外软熔炉中230℃加热60秒,判断此时的硅片与带胶粘剂层铜箔的界面有无发生膨胀。[与硅片的剥离强度测定]用加热压粘装置将1×1cm的硅片(聚酰亚胺钝化面)与如实施例5-8施加270℃、5分钟热过程的带胶粘层铜-聚酰亚胺层压体的胶粘剂层面,在温度320℃,压力2MPa下进行热压接10秒钟。对其用拉伸试验机测定在常温及250℃剥离贴铜层压板面时90度方向的剥离强度(拉伸速度20mm/分)。[线膨胀系数的测定]
用蚀刻除去各实施例制作的单面贴铜层压板的铜箔,得厚25μm的聚酰亚胺薄膜。将3mm×20mm的聚酰亚胺薄膜试样固定在热机械分析测定装置上,在250℃保持30分钟后,从250℃降到室温时的倾向,求从240℃开始50℃范围的平均线膨胀系数。
以下,在合成例1-16中示出聚酰亚胺前体树脂溶液的调制。合成例1-11是硅氧烷聚酰亚胺前体树脂溶液的调制例,合成例12-13是低热膨胀性聚酰亚胺前体树脂溶液的调制例,合成例14-16是高热膨胀性聚酰亚胺前体树脂溶液的调制例。合成例1在配有搅拌器、氮气导入管的DIN标准型反应器中,加入ODPA69.65克(0.225摩尔)和三乙二醇二甲醚150g,在氮气保护下用滴液漏斗添加PSX90.00克(0.1175摩尔)。在室温下大约搅拌2小时,然后在氮气保护下将该反应溶液加热到190℃,边除去缩合水边加热搅拌15小时。然后将该反应溶液冷却到室温,加BAPP36.54克(0.089摩尔)和HAB3.92克(0.018摩尔)及三乙二醇二甲醚150克,在氮气保护下将该反应溶液加热到70℃,大约搅拌2小时,得固体分浓度40重量%的硅氧烷聚酰亚胺前体树脂溶液。合成例2在反应器中加入ODPA48.58克(0.1566摩尔)和三乙二醇二甲醚130g,在氮气保护下用滴液漏斗添加PSX60.00克(0.0783摩尔)。在室温下大约搅拌2小时,然后在氮气保护下将该反应溶液加热到190℃,边除去水边加热搅拌15小时。然后将该反应溶液冷却到室温,加BAPP60.06克(0.1463mol)、HAB4.22克(0.0195摩尔)和ODPA27.14克(0.0875摩尔)及三乙二醇二甲醚150克,在氮气保护下将该反应溶液加热到70℃,大约搅拌2小时,再添加三乙二醇二甲醚使固体分浓度成40重量%,得硅氧烷聚酰亚胺前体树脂溶液。合成例3在反应器中加入BPDA65.61克(0.223摩尔)和三乙二醇二甲醚130g,在氮气保护下用滴液漏斗添加PSX99.96克(0.1305摩尔)。在室温下大约搅拌2小时,然后在氮气保护下将该反应溶液加热到190℃,边除去缩合水边加热搅拌15小时。然后将该反应溶液冷却到室温,加BAPP30.54克(0.0744摩尔)、HAB3.85克(0.0178摩尔)及三乙二醇二甲醚150克,在氮气保护下将该反应溶液加热到70℃,大约搅拌2小时,再添加三乙二醇二甲醚使固体分浓度成40重量%,得硅氧烷聚酰亚胺前体树脂溶液。合成例4在反应器中加入ODPA23.48克(0.0757摩尔)和NMP35克,在氮气保护下用滴液漏斗添加PSX(n=1)10.51克(0.0423摩尔)。在室温下大约搅拌2小时,然后在氮气保护下将该反应溶液加热到190℃,边除去水边加热搅拌5小时。然后把该反应溶液冷却到室温,用滴液漏斗添加PSX(vi)4.50克(0.0054摩尔),再加入BAPP11.54克(0.0281摩尔)及NMP35克,在氮气保护下将该反应溶液大约搅拌2小时,再添加NMP使固体分浓度达40重量%,得硅氧烷聚酰亚胺前体树脂溶液。合成例5在反应器中加入ODPA70.11克(0.2260摩尔)和三乙二醇二甲醚130g,在氮气保护下用滴液漏斗添加PSX80.00克(0.10444摩尔)。在室温下大约搅拌2小时,接着,在氮气保护下将该反应溶液加热到190℃,边除去缩合水边加热搅拌15小时。然后把该反应溶液冷却到室温,加入BAPP49.88克(0.1215摩尔)及三乙二醇二甲醚150克,在氮气保护下把该反应溶液加热到70℃,大约搅拌2小时,再添加三乙二醇二甲醚使固体分浓度达40重量%,得硅氧烷聚酰亚胺前体树脂溶液。合成例6在反应器中加入BPDA64.11克(0.2179摩尔)和三乙二醇二甲醚130g,在氮气保护下用滴液漏斗添加PSX99.96克(0.1305摩尔)。在室温下大约搅拌2小时,接着在氮气保护下将该反应溶液加热到190℃,边除去缩合水边加热搅拌15小时。然后将该反应溶液冷却到室温,加BAPP35.88克(0.0874摩尔)及三乙二醇二甲醚150克,在氮气保护下将该反应液加热到70℃,大约搅拌2小时,再添加三乙二醇二甲醚使固体分浓度达到40重量%,得硅氧烷聚酰亚胺前体树脂溶液。合成例7在配有搅拌器、氮气导入管的DIN标准型的反应器中,加入ODPA17.34克(0.056摩尔)和三乙二醇二甲醚175g,在氮气保护下用滴液漏斗添加PSX22.50克(0.0294摩尔)。在室温下大约搅拌2小时,接着在氮气保护下将该反应溶液加热到190℃,边除去水边加热搅拌15小时。然后将该反应溶液冷却到室温,添加BAPP62.79克(0.153摩尔)和HAB3.45克(0.0158摩尔)和ODPA44.06克(0.142摩尔)及三乙二醇二甲醚175克,在氮气保护下将该反应液加热到70℃,大约搅拌2小时,得到固体分浓度30重量%的硅氧烷聚酰亚胺前体树脂溶液。合成例8依照合成例3,制得与合成例3相同固体分浓度40重量%的硅氧烷聚酰亚胺前体树脂溶液。合成例9除了作为二胺成分用PSX100.00克(0.1305摩尔)、BAPP33.30克(0.0810摩尔)、HAB1.92克(0.0088摩尔),作为酸酐成分用BPDA65.01克(0.2204摩尔)以外,其他与合成例1同样地制得固体分浓度40重量%的硅氧烷聚酰亚胺前体树脂溶液。合成例10依照合成例5,制得与合成例5相同固体分浓度40重量%的硅氧烷聚酰亚胺前体树脂溶液。但最初的三乙二醇二甲醚(溶剂)的使用量为150克。合成例11依照合成例6,制得与合成例5相同固体分浓度40重量%的硅氧烷聚酰亚胺前体树脂溶液。合成例12在配有搅拌器、氮气导入管的反应器中,边通氮气,边加入N,N-二甲基乙酰胺556克,接着在搅拌下加入MABA28.30克(0.110摩尔)和DDE22.03克(0.110摩尔),使之溶解。将反应器冷却到10℃,不断少量地添加PMDA47.84克(0.209摩尔),使内温保持在30℃以下,添加结束后继续在室温下搅拌2小时,完成聚合反应。用B型粘度计测的25℃的表观粘度大约是800泊。合成例13除了作为二胺成分用PPD32.44克(0.30摩尔)、作为酸酐用BPDA88.26克(0.30摩尔)、作为聚合溶剂用N-甲基吡咯烷酮624.30克以外,其他与合成例12同样地调制25℃的表观粘度750泊的低热膨胀聚酰亚胺前体溶液。合成例14除了作为二胺成分用DDE60.072克(0.30摩尔)、作为酸酐用PMDA65.437克(0.30摩尔)、作为聚合溶剂用N-甲基吡咯烷酮711.22克以外,其他与合成例12同样地调制25℃的表观粘度910泊的聚酰亚胺前体溶液。合成例15除了作为二胺成分用DDE40.05克(0.200摩尔)、作为酸酐用BTDA64.45克(0.200摩尔)、作为聚合溶剂用N,N-二甲基乙酰胺592克以外,其他与合成例14同样地制得25℃的表观粘度约300泊的高热膨胀聚酰亚胺前体溶液。合成例16除了作为二胺成分用APB37.38克(0.127摩尔)、作为酸酐成分用BPDA337.02克(0.125摩尔)、作为聚合溶剂用N,N-二甲基乙酰胺425克以外,其他与合成例14同样地制得25℃的表观粘度85泊的高热膨胀聚酰亚胺前体溶液。
为了形成胶粘剂层聚酰亚胺树脂,除了分别用合成例2-6制得的聚酰亚胺前体树脂溶液以外,其他与实施例1同样地制得铜箔层35μm、聚酰亚胺胶粘剂层10μm的带胶粘层铜箔。比较例3对合成例5制得的聚酰亚胺前体树脂溶液100重量份,添加酚醛清漆型环氧树脂YDCN-704P、40重量份(东都化成制,环氧当量=207.3g/eq),在室温下搅拌混合2小时,得聚酰亚胺前体/环氧混合树脂溶液,除了用该混合树脂溶液以外,其他与实施例1同样地制得铜箔层35μm、聚酰亚胺胶粘剂层10μm的带胶粘剂层铜箔。比较例4对合成例5制得的聚酰亚胺前体树脂溶液100重量份,添加双酚A型环氧树脂YD-011、40重量份(东都化成制,环氧当量=474.7g/eq),在室温下搅拌混合2小时,制得聚酰亚胺前体/环氧混合树脂溶液,除了用该混合树脂溶液以外,其他与实施例1同样地制得铜箔层35μm、聚酰亚胺胶粘剂层10μm的带胶粘剂层铜箔。
归纳带胶粘剂层铜箔与单晶硅片镜面接合时的剥离强度及剥离强度保持率,用红外软熔炉的耐热试验结果,只胶粘剂层的薄膜的NMP溶解性、动态粘弹性测定的玻璃化转变点、杨氏模量的测定结果示于表1。
表1

*1不能测定实施例5在厚18μm的卷状电解铜箔(日本电解SLP箔)粗化面上,用刮刀涂布机涂布合成例16制得的高热膨胀性聚酰亚胺树脂溶液,使固化后的厚度成为2.0μm后,用130℃的热风式连续干燥炉处理2分钟除去溶剂。
然后,在其上面用口模涂布机涂合成例13制得的低热膨胀聚酰亚胺前体溶液使之层合,固化后的厚度为23μm后,用130℃的热风式连续干燥炉处理12分钟,再用30分钟由130℃升到360℃进行热处理使之酰亚胺化,得绝缘支撑层厚度25μm的不翘曲的单面贴铜层压板。用蚀刻除去铜箔的聚酰亚胺薄膜的线膨胀系数是19×10-6(1/K)。
然后,用刮刀涂布机在切成片状的单面贴铜层压板的低热膨胀聚酰亚胺层上涂布合成例1制得的树脂溶液,使之如同层合一样,干燥后的厚度为10μm,按80℃、15分钟,180℃、5分钟、270℃、5分钟的顺序进行热处理,得绝缘支撑层25μm、胶粘剂层10μm的几乎没有翘曲的带平整胶粘剂层的铜-聚酰亚胺层压板。
然后,在其上面如同层合一样,用口模涂布机涂合成例12制得的低热膨胀聚酰亚胺前体溶液,使之固化后的厚度为21μm后,用热风式连续干燥炉在130℃处理12分钟除去溶剂。
然后,再用刮刀涂布机涂布合成例15的高热膨胀聚酰亚胺前体树脂,使固化后的厚度成2μm,用热风式连续干燥炉在130℃处理12分钟,再用30分钟时间从130℃升至360℃进行热处理使之酰亚胺化,得绝缘支撑层厚度25μm的不翘曲的单面贴铜层压板。蚀刻后的聚酰亚胺薄膜的线膨胀系数是20×10-6(1/K)。
然后,如同层合一样在切成片状的单面贴铜层压板的低热膨胀聚酰亚胺层上,用刮刀涂布机涂布合成例7制得的胶粘剂层聚酰亚胺树脂溶液,使干燥后的厚度为10μm,按80℃、15分钟,180℃、5分钟、270℃、5分钟,300℃的顺序进行热处理,得绝缘支撑层25μm,胶粘剂层10μm的几乎不翘曲的带平整胶粘剂层的铜-聚酰亚胺层压板。
将胶粘剂层的玻璃化转变温度,在25℃及250℃的弹性模量,翘曲的发生及与硅片粘接时的特性归纳于表2。
表2

产业上的利用可能性本发明的粘结用聚酰亚胺树脂,由于耐热性好,在电子元件粘结前的处理工序等方面即使处于较高温,粘合性的降低也少,故可广泛用作电子元件粘结用材料。从这样的特性看,本发明的粘结用聚酰亚胺树脂,特别适用于半导体封装用胶粘剂、印刷线路板等配线部件的层间绝缘膜或半导体封装用模粘结剂、其他电子材料用耐热胶粘剂等。另外,本发明粘结用聚酰亚胺树脂,作为半导体封装用插入及组装配线板用基板基材在有用的加热压结工序中的流动性好,适用于有粘结力和软熔时耐热性好的前述粘结用聚酰亚胺树脂层的层压板。此外,本发明的层压板即使受到相当于270℃、5分钟的热过程后,也可高温加热压粘,与硅片及配线板导体有良好的粘合性和软熔耐热性,在电子元件制造工序中即使经受这样的热过程也可保持粘合性。因此,本发明的带胶粘剂的导体-聚酰亚胺层压板优选作为要求可靠性高的半导体用薄膜封装、组装基板用基础基材。
权利要求
1.粘结用聚酰亚胺树脂,其特征在于,主要含有由芳香族四羧酸二酐(A)与包括具有交联性反应基的二胺(B1)与硅氧烷二胺(B2)的二胺(B)制得的硅氧烷聚酰亚胺树脂,玻璃化转变温度为50-250℃,250℃下的杨氏模量(储能弹性模量)是105Pa以上。
2.权利要求1所述的粘结用聚酰亚胺树脂,其特征在于,有交联性反应基的二胺(B1)中的交联性反应基是酚性羟基、羧基或乙烯基。
3.电子元件粘结用聚酰亚胺树脂,其特征在于,含有由芳香族四羧酸二酐(A)与包括具有交联性反应基的二胺(B1)与硅氧烷二胺(B2)的二胺(B)制得的硅氧烷聚酰亚胺树脂,玻璃化转变温度是50-250℃,250℃的杨氏模量(储能弹性模量)是105Pa以上,将形成该粘结用聚酰亚胺树脂前的聚酰亚胺前体树脂溶液涂布在基材上,干燥后经180℃、5分钟热处理后与被粘结体热压接的剥离强度P1、与再将其经270℃、5分钟的热处理后与被粘结体热压接的剥离强度P2之比(P2/P1)定义的剥离强度保持率是50%以上。
4.一种层压体,由导体、至少1层的具有聚酰亚胺系树脂层的绝缘支撑层、粘结用聚酰亚胺树脂层顺序形成,绝缘支撑层的平均热膨胀系数是30×10-6以下,粘结用聚酰亚胺树脂层含有由芳香族四羧酸二酐(A)与包括具有交联性反应基的二胺(B1)与硅氧烷二胺(B2)的二胺(B)制得的硅氧烷聚酰亚胺树脂,玻璃化转变温度是50-250℃,250℃下的杨氏模量(储能弹性模量)是105Pa以上。
5.权利要求4所述的层压体,其特征在于,至少1个硅片通过粘结用聚酰亚胺树脂层而被粘结,该粘结面的硅片表面与粘结用聚酰亚胺树脂层的常温下的90℃剥离强度是0.8kN/m以上。
6.权利要求4所述的层压体,其特征在于,构成绝缘支撑层的聚酰亚胺树脂具有彼此热膨胀系数不同的多个聚酰亚胺系树脂层构成的多层结构,热膨胀系数为30×10-6以上的高热膨胀性树脂层的厚度(t1)与热膨胀系数低于20×10-6的低热膨胀性树脂层的厚度(t2)的厚度比是2<t2/t1<100,且高热膨胀性树脂层与导体相接。
7.权利要求4所述的层压体的制造方法,其中,将至少1层的聚酰亚胺系前体树脂溶液直接涂布在导体上,通过加热固化成为导体-聚酰亚胺层压体,在该层压体的聚酰亚胺面涂布粘结用聚酰亚胺前体树脂溶液,进行加热。
8.聚酰亚胺树脂,其特征在于,含有由芳香族四羧酸二酐(A)与包括具有交联性反应基的二胺(B1)及硅氧烷二胺(B2)的二胺(B)制得的硅氧烷聚酰亚胺树脂,玻璃化转变温度是50-250℃,250℃下的杨氏模量(储能弹性模量)是105Pa以上。
全文摘要
本发明提供一种由芳香族四羧酸二酐(A)与包括具有由酚性羟基、羧基或乙烯基组成的交联性反应基的二胺(B
文档编号H05K1/03GK1406262SQ01805668
公开日2003年3月26日 申请日期2001年1月26日 优先权日2000年2月1日
发明者德久极, 德光明, 金子和明 申请人:新日铁化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1