集成电路堆叠系统及方法

文档序号:8029561阅读:674来源:国知局
专利名称:集成电路堆叠系统及方法
技术领域
本发明涉及聚集(aggregate)集成电路,更特别地,涉及在芯片级封装中堆叠(stack)集成电路以及在板上提供这样堆叠的集成电路。
背景技术
多种技术被用于堆叠封装的集成电路。一些方法要求特殊的封装,而其它的技术则堆叠传统的封装。在一些堆叠中,所封装的集成电路的引线(lead)用于建立堆叠,而在其它系统中,诸如导轨(rail)此类的附加结构提供封装之间的互连的全部或部分。在一些其它的技术中,具有一定特征的挠性导体被用于有选择地互连封装的集成电路。
在过去的十年期间所采用的最主要的封装配置已经将集成电路(IC)密封在塑料外包层(surround)中,所述塑料外包层典型地具有矩形的配置。所包封的集成电路通过从塑料封装外缘露出的引线与应用环境相连。上述“引线封装”已经是堆叠封装的集成电路的技术最普遍采用的组成元件。
引线封装在电子学中起重要的作用,但是使电子元件和组件微型化的努力已经驱动了保存电路板表面面积的技术的发展。因为引线封装具有从封装外缘露出的引线,所以引线封装所占用的面积大于最小量的电路板表面面积。因此,可以替换引线封装的、通常所说的芯片级封装或“CSP”最近已赢得了市场份额。
CSP一般指的是通过排列在封装的主表面上的一组触点(contact)(常常是“凸起”或“球”)向集成电路提供连接的封装。代替从封装外缘露出的引线,触点放置在主表面上,典型的是从封装的平底面显露出来。
CSP的目标是占用尽可能小的面积,优选的是,接近密封的IC的面积。因此,CSP引线或触点不是常常延伸得超过封装的外形周边。封装侧上“引线”的不存在,使得大部分为引线封装而设计的堆叠技术不能应用于CSP堆叠。
有几种已知的用于堆叠以芯片级技术接合的封装。本发明的受让人已开发了早先的用于以节省空间的布局来聚集FBGA封装的系统。
本发明的受让人拥有用于在RAMBUS环境中在DIMM上堆叠BGA封装的系统。
在由本发明的受让人拥有的、编号为6,205,654 B1的美国专利中,描述了一种用于堆叠球栅格阵列封装的系统,所述球栅格阵列封装采用引线载体来将可连接的点从封装中延伸出来。其它已知的技术向BGA-封装的IC的堆叠添加了结构。还有一些其它的技术用封装的角度放置(angular palcement)在DIMM上聚集CSP。上述技术提供了备选方案,但是要求有附加的成本和复杂性的布局。
Forthun的No.6,262,895 B1美国专利(“Forthun专利”)声称公开了一种用于堆叠芯片级封装的IC的技术。该Forthun专利公开了一种“封装”,其显示出了部分地环绕(wrap)CSP的挠性电路。据说该挠性电路具有在该挠性电路的上下表面上的焊盘(pad)阵列。
Forthun“封装”的挠性电路具有在它上表面上的焊盘阵列以及在它下表面上中心设置的焊盘阵列。在该挠性电路的下表面上有第三和第四阵列,它们在中心的下表面焊盘阵列的相对的两侧上。为了建立Forthun的封装,CSP接触设置在该挠性电路的上表面上的焊盘阵列。正如在Forthun专利中所述的那样,在CSP的下表面上的触点被挤过上表面焊盘中的“缝隙(slit)”并通过该挠性电路推进,从下表面阵列的焊盘突出,并因而从该封装的底面突出。因此,CSP的触点充当用于该封装的触点。该挠性电路的侧边部分地环绕CSP,以在CSP的上主表面上相邻地放置第三及第四焊盘阵列,以从第三及第四焊盘阵列的结合建立用于到另一这样的封装的连接的第五焊盘阵列。因此,如上在Forthun的公开内容中所描述的那样,用上述封装建立的CSP的堆叠模块会显示出环绕该模块中每一个CSP的挠性电路。
内存扩充是堆叠模块解决方案提供了良好效果的许多领域中的一个。例如,众所周知的DIMM板常常是以来自像是本发明的受让人这样的人的堆叠模块组装的。这在不增加插座(socket)的情况下增加了板的容量。
例如,诸如DIMM此类的内存扩充板,提供了沿着板的两个主表面用于内存IC放置的多个部位,该板具有沿着板的至少一条边散布的触点阵列。尽管堆叠降低了每个内存单元的互连长度,并因此利用了这样的一般规则小于信号的前沿长度一半的互连用作集总元件而不仅仅是传输线,但是它并没有增加DIMM板上的器件的原始数目。因此,尽管每个内存单元的互连长度降低了,但是对物理地放置在DIMM板上的内存电路中所存储的数据进行访问的信号典型的是以相对高的阻抗来提供的,因为总线上的器件的数目是通过堆叠来增加的。
所需要的是用于在热效率高、可靠的结构中堆叠电路的方法和结构,以及在内存扩充板和设计中采用的时候显著降低互连长度和/或负载的方法和寻址系统,所述热效率高、可靠的结构在比较高的频率上执行良好,但是没有显示出非常的高度,但是允许用容易理解和管理的材料以合理的成本的生产。

发明内容
本发明将集成电路(IC)堆叠成保存PWB或其它板表面面积的模块。本发明可以用于与有各种尺寸和配置的CSP或引线封装一起提供良好效果,所述CSP或引线封装的范围是从具有数十个触点的较大封装的基座元件到诸如例如,如DSBGA此类的管芯尺寸的封装这样较小封装。
可以根据本发明堆叠多个CSP。四个高度的CSP堆叠模块对于在所公开的高性能内存访问系统中使用来说是优选的,然而对于许多应用来说,根据本发明优选实施例设计的两个高度的CSP堆叠或模块是优选的。在根据本发明设计的堆叠模块中所采用的IC是用挠性电路来连接的。那种挠性电路可以显示出一个或两个或更多的导电层,优选实施例具有两个导电层。
形状支架(form standard)提供了一种物理形状,其允许在采用标准连接的挠性电路设计的同时,在CSP封装的大家族中的多个不同封装尺寸中产生有益效果。在优选的模块中,挠性电路部分地环绕形状支架。形状支架可以采用许多配置,并可以在将挠性电路用于将IC连接到堆叠模块中的另一个的场合中使用,其中该堆叠模块具有两个或更多的组件IC。例如,在包括四个层次(level)的CSP的堆叠模块中,在优选实施例中采用了三个形状支架,尽管可以使用更少的。在一个优选实施例中,形状支架会被设计为导热材料来提高热性能,诸如铜之类的金属会是优选的。
在根据本发明设计的替换优选实施例中,基座元件IC和一个或多个的支撑元件IC是通过具有两个导电层的挠性电路来聚集的,所述两个导电层被形成图案以有选择地连接所述两个IC单元。更简单的实施例可以使用具有一个导电层的挠性电路。连接在支撑元件上的挠性电路的一部分折叠在基座元件上,并在形状支架附近以将支撑元件布置在基座元件上面,并且同时降低IC所占用的全部覆盖区。挠性电路连接IC并提供模块与诸如印刷线路板(PWB)此类的应用环境之间的热和电通道。
在另一方面,本发明提供了较低容量的内存扩充寻址系统和方法,优选的是使用在此提供的CSP堆叠模块。在本发明的一个优选实施例中,根据本发明的内存扩充系统和方法,将四个高度的堆叠CSP模块布置在内存扩充板上,所述内存扩充系统和方法可以和CSP或其它IC堆叠模块一起采用。高速转换系统选择与堆叠模块的每一层次关联的数据线以降低在内存访问过程中对数据信号的负载效应。这顺利地改变了板的负载所显示出的阻抗特性。在一个优选实施例中,高速DQ选择转换器可以,例如,用高速FET转换器来实现。根据一个优选实施例,FET多路复用器,例如在逻辑控制下,选择与DIMM组装的堆叠模块的特定层次关联的特定数据线,以连接到内存扩充系统中的控制芯片组。


图1是高密度电路模块的正视图,该模块是根据本发明优选的四个高度的实施例来设计的;图2是堆叠的高密度电路模块的正视图,该模块是根据本发明优选的两个高度的实施例来设计的;图3以放大图的形式示出了图2中标为“A”的区域;图4以放大图的形式示出了图2中标为“B”的区域;图5是根据优选实施例设计的堆叠模块中典型连接区域的放大图;图6图示了具有单个导电层的由挠性电路构成的挠性电路连接组;图7图示了根据本发明优选实施例,安装在内存扩充板上的四个高度的堆叠模块;图8图示了安装有四个高度的模块的内存扩充板或DIMM;图9图示了根据本发明设计的内存系统;图10是模块的正视图,示出了本发明的替换优选实施例的特征;图11是模块的正视图,示出了本发明的替换优选实施例的特征;图12是示出了替换优选实施例的特征的模块的正视图;图13是另一个图示了本发明的替换优选实施例的特征的视图;图14是图示了本发明的替换优选实施例的模块的正视图;图15以放大图的形式,图示了图14中标为“C”的区域;图16以放大图的形式图示了,根据本发明的优选实施例中模块和挠性电路之间的组成元件之间的替换的连接策略;图17图示了在该发明优选实施例中采用的挠性电路的典型的第一导电层;图18图示了在该发明优选实施例中采用的挠性电路的典型的第二导电层;图19图示了本发明的另一替换实施例;图20是图19中图示的该发明的实施例的侧视图,是沿着标为200的箭头的方向获得的;图21图示了本发明另一实施例的早期装配阶段;
图22图示了本发明另一实施例的图21阶段之后的装配阶段;图23图示了本发明另一实施例的图22阶段之后的装配阶段;图24图示了本发明另一实施例的图23阶段之后的装配阶段;图25图示了本发明再另一实施例的早期装配阶段;图26图示了本发明另一实施例的图25阶段之后的装配阶段;图27图示了本发明另一实施例的图26阶段之后的装配阶段;图28图示了本发明另一实施例的图27阶段之后的装配阶段;图29图示了本发明再另一实施例的早期装配阶段;图30图示了本发明另一实施例的图29阶段之后的装配阶段;图31图示了图30中所图示的本发明的替换实施例,从略在模块10之下的另一角度;图32图示了本发明另一实施例的早期装配阶段;图33图示了本发明另一实施例的图32阶段之后的装配阶段;以及图34图示了本发明另一实施例的图33阶段之后的装配阶段。
具体实施例方式
图1是根据本发明优选实施例而设计的模块10的正视图。模块10包括四个CSP层次四CSP 12、层次三CSP 14、层次二CSP 16、以及层次一CSP 18。所述层次中的每一个都具有上表面20和下表面22以及相对的侧边24和26,并且典型的包括被塑料壳体27所包围的至少一个集成电路。该壳体不必是塑料的,但是在CSP技术中很大部分的封装都是塑料的。技术人员应当理解,本发明可以设计来建立具有不同尺寸的CSP的模块,以及在同一模块10中组件CSP可以是不同的类型。例如,组件CSP中的一个可以是具有拥有呈现“侧面”的明显高度的侧边24和26的典型CSP,而同一模块10的其它组件CSP可以设计在这样的封装中封装所具有的侧边24和26更多的是作为边缘而不是具有明显高度的侧面。
该发明用于具有多种类型和配置的CSP封装,诸如,例如管芯尺寸的那些类型和配置,以及接近芯片级的那些类型和配置和本领域已知的各种球栅格阵列封装。它也可以用于在一个主表面上显示出裸管芯连接的那些类似CSP的封装。因此在本申请的上下文中术语CSP”应当宽泛地考虑。总起来说,这些在此将称为芯片级封装集成电路(CSP),并且一些优选实施例将就CSP来加以描述,但是,在示范性图中所使用的特定配置不要理解成限制性的。
包括引线封装和CSP以及封装IC的其它配置在内的封装的各种结合可以被该发明采用来产生良好效果。例如,图1和2的正视图是以具有特定剖面的CSP的形式来图示的,所述特定剖面对本领域的人员来说是已知的,但是应当理解该图仅仅是示范性的。
后面的图示出了该发明的实施例,所述实施例采用了以引线封装聚集的其它配置的CPS,作为可以使用本发明的许多替换的IC封装配置和结合中的一些的实例。在模块本身向应用环境提供凸起或球的阵列时,本发明的系统也可以用于引线封装。
诸如,例如球栅格阵列(“BGA”)、微球栅格阵列、以及细距球栅格阵列(“FBGA”)封装此类的典型CSP,具有由连接触点构成的阵列,其中所述触点体现为,例如在若干图案和管脚间距中的任何一种中从塑料外壳的下表面22延伸出来的引线、凸起、焊球、或球。连接触点的外部部分常常是以由焊料球来完成的。图1中所示的是沿着所示出的组件CSP 12、14、16和18的下表面22的触点28。触点28提供了到各个封装内的一个(或多个)集成电路或电路的连接。在本发明的实施例中,模块10可以设计用来通过从各个CSP剥去图1所示的作为触点28的球并在触点28处提供连接装置来提供下剖面,其中,触点28是由焊膏产生的,焊膏被应用于CSP的焊盘触点或者应用到要连接到触点28的挠性电路上的接触部位,其中该焊盘触点典型的是存在于在CSP装置上提供的典型球触点之下或之内。
在图1中,挠性电路(“挠性”、“挠性电路”或“挠性电路结构”)30和32的累接(iteration)显示为连接各种组件CSP。一些实施例可以采用一个以上的挠性电路。整个挠性电路可以是挠性的,或者,正如本领域的技术人员应当理解的那样,在本发明中可以采用一个PCB结构作为替换的挠性电路,该PCB结构在某些区域被制成挠性的以允许在一些区域中的一致性(conformability),而在其它区域内为了沿着接触表面的平面度而被制成刚性的。例如,可以采用称为刚柔结合(rigid-flex)的结构。
形状支架34显示为布置在层次四CSP 12之下的每个CSP的上表面20附近。形状支架34可以用粘合剂35固定在各个CSP的上表面20上,其中粘合剂35优选的是导热的。在替换实施例中,形状支架34也可以只是放置在上表面20上,或是通过气隙或者诸如散热片或非热层(non-thermal layer)此类的介质与上表面20分开的。在其它实施例中,形状支架34可以相对于相应的CSP来倒转,所以,例如,它会在CSP 18的上表面上开启。此外,形状支架可以在模块10中的每一个CSP上采用,以提高散热性。但是,在形状支架34是诸如在优选实施例中所采用的铜此类的导热材料的场合,在形状支架34和各个CSP之间插入的层或间隙(而不是诸如粘合剂此类的导热层)不是非常优选的。
在一个优选实施例中,如在图1图示的优选实施例中所显示的那样,形状支架34是根据铜来设计的,以建立心轴,所述心轴在提供标准尺寸形状的同时减轻热累积,其中挠性电路布置在该标准尺寸的形状的附近。形状支架34可以采用其它形状或形式,诸如,例如置于各个CSP壳体上的有角的“帽”,或如同另一实例,其可以折叠以在提供适当的用于该挠性电路的轴形状的同时增加它的冷却表面区域,其中,如后面的图14中所示该挠性电路环绕形状支架34的一部分。它也不必是热增强的,尽管这样的属性是优选的。形状支架34允许该发明与具有各种尺寸的CSP一起采用,同时将可与各种尺寸的CSP一起使用的单个连接结构组接合起来。因此,可以设计诸如挠性电路30和32的单个连接结构组(或者是采用使用单个挠性电路替代挠性电路对30和32的模式的单个挠性电路)并与形状支架34方法和/或者在此所公开的系统一起使用,以用具有不同尺寸的封装的CSP建立堆叠模块。这会允许采用同一挠性电路组设计来由具有属性Y上的第一任意尺寸X(其中Y可以是,例如,封装宽度)的组件CSP建立堆叠模块10的累接,以及由具有同一属性Y上的最初的第二任意尺寸X的组件CSP建立模块10。因此,可以用相同的连接结构(即,挠性电路)组将具有不同尺寸的CSP堆叠成模块10。此外,正如本领域的人员应当理解的那样,混合尺寸的CSP可以实现相同的模块10,这样对于实现堆叠上系统(system-on-a-stack)的实施例来说很有用,该实施例的一个实例在图14中示出了。
优选的是,挠性电路30和32的部分通过粘合剂35固定在形状支架34上或者可以放置在该封装上的分离位置上,其中粘合剂35优选的是胶粘带,但是可以是液体粘合剂。优选的是,粘合剂35是导热的。
在优选实施例中,挠性电路30和32是具有至少两个导电层的多层挠性电路结构。但是,其它实施例可以将挠性电路用作一个电路或只有单个导电层的两个挠性电路。
优选的是,导电层是诸如合金110此类的金属。多个导电层的使用提供了良好效果并在模块10上建立了用于降低噪音或回弹效应(bounce effect)的分布电容,正如本领域的技术人员应当清楚的那样,噪音或回弹效应会使信号完整性退化,特别是在比较高的频率上。图1的模块10具有总起来标识为模块阵列40的多个模块触点38。挠性电路之间的连接显示为用挠性电路之间的触点43来实现,其中触点43显示为球,但是可以是用焊盘和/或环构成的不明显触点,所述焊盘和/或环用焊膏连接到适当的连接。诸如由共形(conformal)介质参考41所指示的那样的适当装填物能够在期望的场合为附加结构提供稳定性和共面性。介质41仅就CSP 14和16显示出来并且仅仅显示在一侧上以保持视图的清楚。
图2示出了根据该发明的优选实施例的两个高度的模块10。图2具有随后在图3中以放大图示的形式显示的标为“A”的区域,以及随后在图4中以放大图示的形式显示的标为“B”的区域。
图3以放大图的形式图示了,图2中标为“A”的区域。图3示出了在优选实施例中,两个高的模块10中形状支架34的一种布置和其与挠性电路32的关系。挠性电路32的内部层结构没有在这个图中显示。还显示了挠性电路32与形状支架34之间的粘合剂35。技术人员应当注意粘合剂35不是必需的,而是优选的,并且对于本实施例来说它的应用位置可以确定为最好是在CSP之间的区域中,更少量的在形状支架34的端点附近,像图3中所示那样。在图3中还示出了形状支架34与CSP 18之间的粘合剂36的应用。
图4示出了示例性触点28与模块触点38之间通过下挠性触点44的连接,以说明从层次一CSP 18到模块触点38并由此到模块可以连接的应用PWB或内存扩充板的优选固体金属通路。如图4中所示,下挠性触点44优选的是由在第二导电层58的层次上的金属构成,第二导电层58在第二外表面52的内部。正如本领域的技术人员应当理解的那样,因此可以促进来自模块10的热传递。
挠性电路30在图4中显示为包括多个层。这仅仅是可以用于本发明的一个典型挠性电路。正如技术人员应当清楚的那样,在所描述的挠性电路上的单个导电层和其它变型可以在本发明中采用来产生有益效果。挠性电路30具有第一外表面50和第二外表面52。挠性电路30具有在第一和第二外表面50和52内部的至少两个导电层。在挠性电路30和挠性电路32中可以存在两个以上的导电层。在图示的优选实施例中,第一导电层或平面54和第二导电层或平面58在第一和第二外表面50和52的内部。中间层56位于第一导电层54与第二导电层58之间。可以存在一个以上的中间层,但是由聚酰亚胺构成的一个中间层是优选的。
图5是优选实施例中在下挠性触点44周围的典型区域的放大图示。窗口60和62分别在第一和第二外表面层50和52中开启,以提供到驻留在该挠性电路中第二导电层的层次中的特定下挠性触点44的接入。在模块10的两个高度的实施例中,上挠性触点42是通过第二层次CSP 16的触点28来接触的。在所图示的优选实施例中,下挠性触点44和上挠性触点42是由在该挠性电路中第二导电层58的层次上的导电材料(优选的是诸如合金110此类的金属)所构成的特定区域。上挠性触点42和下挠性触点44在第二导电层58中加以区分,并可以连接到第二导电层58的导电平面或与其隔离。将下挠性触点44与第二导电层58进行区分在图5中是通过显示在第二导电层58上的分界间隙63来表示的。在上或下挠性触点42或44没有完全与第二导电层58隔离的场合,分界间隙不延伸得完全环绕该挠性触点。第一层次CSP 18的触点28通过穿过第一外表面层50、第一导电层54、以及中间层56而开启的窗口60,以接触适当的下挠性触点44。窗口62是穿过第二外表面层52开启的,其中模块触点38通过第二外表面层52接触适当的下挠性触点44。
第二层次CSP 16和第一层次CSP 18的触点28中的相应触点在挠性电路30和32中第二导电层58的层次上进行连接,以互连所述两个CSP的适当信号和电压触点。在优选实例中,传送接地(VSS)信号的第二层次CSP 16和第一层次CSP 18的相应触点28借助于通过中间层56的通孔,在挠性电路30和32的第一导电层54的层次上进行连接,以连接所述层次,正如随后将更详细说明的那样。由此,CSP 16和18被连接。因此,当挠性电路30和32在第一层次CSP 18附近的位置的时候,CSP 16和18中的每一个的相应触点28分别和上下挠性触点42和44接触。上挠性触点42和下挠性触点44中所选择的触点被连接。因此,通过和下挠性触点44接触,模块触点38既和CSP 16接触又和CSP 18接触。
在优选实施例中,模块触点38通过在第二外层52中开启的窗口62来接触下CSP触点44。在一些实施例中,如图16中所示的那样,模块10会显示出模块触点阵列,该模块触点阵列与模块10的组件CSP相比具有比较大的数目的触点。在上述实施例中,一些模块触点38可以接触没有接触第一层次CSP 18的触点28之一而是连接在第二层次CSP 16的触点28上的下挠性触点44。这允许模块10表现出比组件CSP所表现出的数据通路更宽的数据通路。模块触点38可以也和下挠性触点44接触,以提供一个位置,在没有任何不用的触点是可用的时候或者为了方便起见,通过这个位置可以使得该模块中的不同IC变得有效。
在一个优选实施例中,第一导电层54被用作接地平面,而第二导电层58则提供作为信号传导层和电压传导层的功能。技术人员应当注意第一和第二导电层的角色可以伴随着开窗和匹配的互连的使用方面的附随改变而颠倒。
图6图示了由挠性电路30和32构成的挠性电路连接组,该挠性电路连接组具有单个导电层64。参考图6应当理解,挠性电路30和32延伸得比所示的更深,并具有这样的部分在模块10的构造中所述部分形成形状支架34的弯曲区域66,然后被布置在该模块的CSP18或各个CSP的壳体上,并因此布置在该形状支架上,其中,弯曲区域66标记了该优选形状支架的实例的横向延伸。在模块10的该单个导电层挠性电路实施例中,显示有第一和第二外层50和52以及中间层56。在图6中还显示了在导电层64的层次上区分了的一组单层的下挠性触点68。
形状支架34显示为通过粘合剂附着于第一层次CSP 18的壳体27。在一些实施例中,它可以也安置为直接接触各个CSP的壳体27。形状支架34可以采用许多不同的配置,以允许连接的挠性电路被准备来显示出单个尺寸组,单个尺寸组在结合形状支架34使用的时候,被用来建立由具有多种不同尺寸的CSP构成堆叠模块10。在优选实施例中,形状支架34会提供比CSP的上主表面要宽阔的横向延伸,其中形状支架34布置在该CSP之上。因而,来自一个厂商的CSP可以用相同的挠性电路来聚集成堆叠模块10,其中该挠性电路被用来将来自另一个厂商的CSP聚集成不同的堆叠模块10,尽管来自两个不同厂商的CSP具有不同的尺寸。
此外,热传递可以随着形状支架34的使用而得到改善,形状支架34由诸如金属或者优选的由铜或铜化合物或合金此类的热传递材料构成,以提供用于热能的有效散热器。在更大数目的CSP聚集在单个堆叠模块10中的场合,模块10的这种热增强特别地提供了改善热性能的机会。
图7图示了根据本发明优选实施例安装在内存扩充板70上的四个高度的堆叠模块10。正如典型DIMM板那样,图7中所示的扩充板70具有沿着一个边的一组触点,像所图示的一样所述触点设置在接插件72中。那些触点将模块10连接到逻辑系统,该逻辑系统在板74上或与其连接,在板74上安装了扩充板70。应当理解,在此提供的内存扩充系统和方法的优选实施例中,如果该堆叠模块每个由四个装置构成的话,扩充板70会以每侧九个这样的模块10,总共72个装置来组装。
图8图示了安置有四个高度的模块10的内存扩充板70。正如技术人员应当清楚的那样,在扩充板70上使用四个高度的堆叠模块降低了用于所接入的装置的数目的互连长度,却增加了装置的总数,因此,增加了由密集组装的DIMM板所提供的阻抗,特别是电容性负载。
图9图示了根据本发明设计的内存系统80。在优选的模式中,系统80是和根据本发明设计的堆叠模块10一起使用的。该优选实施例用于用4个高度的堆叠模块10组装的DDRII注册的DIMM,尽管它可以和相等数目的DRAM一起使用,即72个在具有任何数目层次的堆叠中聚集的引线封装或CSP封装的装置。
图9中图示的芯片组82典型的是包括对用系统80进行的内存访问进行控制的微处理器或内存控制器。时钟84提供给所图示的内存扩充板70(1)、70(2)、70(3)、和70(4)中的每一个上的译码逻辑电路86。技术人员应当理解,系统80及其方法可以和一个或更多的DIMM或其它内存扩充板70一起使用。可以也采用的是,脱离内存扩充板来分开地访问构成堆叠电路模块的集成电路。如图9中所示,内存扩充板70(1)、70(2)、70(3)、和70(4)中的每一个上的译码逻辑电路86提供了对于提供给各个存储扩充板70的各个CS信号的译码。正如技术人员应当理解的那样,在该系统中所采用的特定互连应该优选地设计成最小化并平衡该系统中采用的电路模块的功耗。
正如在图9中图示的实例显示的那样,CS0、CS1、CS2、以及CS3从芯片组82提供给内存扩充板70(1),而CS4、CS5、CS6、以及CS7则提供给70(2),同样地CS8、CS9、CS10、以及CS11提供给内存扩充板70(3),CS12、CS13、CS14、以及CS15提供给内存扩充板70(4)。
在优选实施例中,内存扩充板70是以每侧九个四个高度的CSP模块10来组装的。但是,图9的图示每个存储扩充板70仅仅显示一个模块10,以保持该视图的清楚。所示的模块10被分解,以图示模块10的四个层次,在模块10的一个优选结构中所述四个层次包括具有形状支架34的CSP 18、16、14、以及12。
因此,译码逻辑电路86可以根据来自时钟84的适当信号生成层次选择信号,在一个优选实施例中该层次选择信号是控制与若干数据线相关联的多路复用转换器90的多比特信号。在优选实施例中,转换器90是高速转换器,在该发明的优选模式的实践中FET多路复用器会提供优选的多路复用转换器90。多路复用转换器90的扇出(fun-out)可以是提供从来自芯片组82的DQ线中选择多种装置数据线的选择能力的任何东西。芯片组82与转换器90之间的DQ线是由双头箭头94(1)、94(2)、94(3)和94(4)来图示的。如同堆叠模块10的图示一样,每个内存扩充板70仅仅显示了一个多路复用转换器90,但是技术人员应当理解,在所图示的该发明的优选实施例中的实践中采用了多个多路复用转换器90。多路复用转换器90的数目应当取决于扇出率。例如,九个8∶32多路复用转换器90的使用会是优选的(如果可得到),或者作为一个实例,4∶8或1∶4的多路复用转换器90也会提供便利。应当理解这里仅仅是实例,多种多路复用转换器和比率可以用于多路复用转换器90,尽管转换器的类型和比率会影响负载图。因此,FET多路复用器对于多路复用转换器90来说是优选的,1∶4的比率是采用的优选比率中的一个。
图9中的图示仅仅是说明性的,不意味着是限制性的。例如,单个DIMM板或扩充板70可以在根据本发明的系统80采用,更大数目的扩充板70也可以采用。在系统80可能起作用的扩充板70的数目部分地是所必需访问速率和信号一致性的函数。
典型的多路复用转换器90具有多个输入92(a)、92(b)、92(c)、以及92(d),以提供用于典型的模块10的每一层次的独立数据线,模块10被组装在各个内存扩充板70上。因此,采用1∶4的转换器90,会存在18个多路复用转换器90的累接,其与对应所述18个四个高度的模块10的组装内存扩充板70(1)一一对应。因此图9中所示的系统80提供了总共288个存储装置。应当指出,系统80可以和任何封装类型的IC一起使用,并不必限于DDR或DDRII乃至CSP。
每一模块10的组件CSP的每一层次的数据线连接在相应的典型多路复用转换器90的一个输入92上。响应于来自DIMM扩充板70上译码逻辑电路86的CS信号88,多路复用转换器90将DQ信号94中适当的一个连接到该内存扩充板70上的模块10的四个层次中的一个。正如本领域的技术人员应当清楚的那样,在一些系统中,通过多路复用转换器90的数据总线的这种转换,可以实现所必需的更多的控制信号连接,以调节一个或更多时钟周期的例如数据等待时间、CAS等待时间、以及脉冲时间。在优选模式中,扩充板70可以将模块10的所有组成装置保持得好像模块10的每一个组成装置是目标一样,而不是必须在每一次不同的CS被选择的时候转换终端。在一些应用中,优选的是,端接数据线的末端至越过上一个DIMM扩充板70。其它特征可以实现系统80的效率的提高,例如通过对芯片选择线进行译码来建立更多的CS束。
在系统80中,提供给芯片组82的电容性负载应当接近转换多路复用器90的输入电容乘DIMM槽的数目加一个DRAM装置负载加一乘多路复用转换器90的输出电容的结果。在大的系统中,这会显著降低电容性负载,因而允许在更高速率情况下的更多DIMM槽和/或更密集组装的DIMM。内存访问系统80提供了改善高速内存性能的机会,并允许使用内存扩充配置,否则由于传统DIMM系统中的电容性负载是不能使用内存扩充配置的。
图10是模块的正视图,图示了本发明的替换优选实施例的特征。所图示的模块10由基座元件120和支撑元件140和160组成。在所图示的实施例中,基座元件120和支撑元件140和160显示为CSP装置,但是该发明并不限于CSP的布置,可以被用来聚集多种封装类型。在所图示的实施例中,基座元件120和支撑元件140和160各自具有上表面20和下表面22以及外围或侧面或边24和26,它们可以用作侧边,或者如果该CSP特别薄的话可以用作边缘。
图10图示了在堆叠的布置中的基座元件120和支撑元件140和160,所述组成元件的上主表面是近似地以这种背对背的配置来放置的。支撑元件140和160的上表面20与基座元件120的上表面20之间显示了粘合剂层35,为了图示的清楚性,粘合剂层35是以放大的比例来显示的。触点28是从基座元件120以及支撑元件140和160的下表面22浮起的。模块触点38显示为是沿着模块10的底部,并为该模块提供了到PWB或PCB或其它安装部位的连接。
支撑元件140和160优选地是通过显示为胶粘带的粘合剂35而固定在基座元件120的上表面20上,但是也可以采用液体粘合剂或将可以将其放置在该封装上的分离位置上。优选的是,粘合剂35是导热的。包括焊剂在内的粘合剂可以用来在模块10的装配中产生有益效果。层35可以也是导热的介质,以增强模块10的元件之间的热流。可选择的是,一个或者多个机械夹钳可以用来使基础和支撑元件结合在一起。该模块本身的触点可以更靠近该模块的基座元件或支撑元件,尽管典型且优选的是,模块触点会更靠近基座元件。支撑元件可以也遍布基座元件的边,或可以布置在基座元件的周边之内。尽管在这视图中没有示出,格式标准34的使用是优选的。
图11示出了具有基座元件120与支撑元件140之间的引线310(即,像这个实施例中的支撑元件160那样)的引线封装装置的聚集。图11还图示了附在基座元件120上侧边的挠性电路30的放置,支撑元件140和160放置在挠性电路30的相对的上面而不是以上如图10所示的放置在下面。挠性电路30优选的是采用图11中通过参考符号35图示的导热粘合剂附着于基座元件120的上表面20上。共形介质41在图11中指示为放置在触点28之间,以辅助建立模块10的结构区域的共形性。优选的是,共形介质41是导热的并且是沿着基座元件120的下表面22放置的,尽管为了保持该视图的清楚,在图11中显示的仅仅是其在基座元件120的少数几个触点28之间的位置。
图12图示了本发明的另一个替换实施例。所示的是基座元件120和支撑元件140。替换在之前显示的单个封装支撑元件160的是引线堆叠170,包括上IC 190和下IC 210。
图13图示的模块使用了采用挠性电路30互连的CSP基座元件120以及CSP支撑元件140和160。散热片340布置在基座元件120与支撑元件140和160之间。如图13中所示,散热片340和其中使用了模块10的应用的外壳36的一部分接触。
图14是本发明的替换的优选实施例。在图14中示出的是基座元件120以及支撑元件140和160,所有图示的IC都是以CSP的形式封装的,支撑元件140和160延伸得超过了基座元件120的物理边界。形状支架34提供了一种标准形状,挠性电路30在该标准形状附近形成弧。正如早些时候描述的那样,形状支架可以采取多种形式,并且在这个实施例中,形状支架34被折叠,以在提供适当的轴向圆周和用于挠性电路30的标准形状的同时增加冷却表面面积。还示出了共形底层填料(underfill)41的大范围优选的使用。
图15以放大图的形式示出了图14中标为“C”的区域的细节,并示出了支撑元件的示范性触点28和挠性电路30的支撑挠性触点57之间的一种典型连接。在这个图示中,支撑挠性触点57显示为在挠性电路30的第一导电层54的层次上。图15示出了在和最右边示出的触点28接触的支撑挠性触点57与第二导电层58之间的通孔59。导电层的层次之间的通孔的使用允许用于连接基座元件120与支撑元件的策略中的挠性,并且允许,例如,从支撑元件140或160的触点到所选择的模块触点38的连接。通常,支撑元件140和/或160会具有不直接连接到基座元件120,却具有与整个模块10的工作有关的功能性的信号。在该情况下,模块触点38提供到支撑元件140或160的信号连接,而没有到基座元件120的相应的直接连接。这样的连接策略在图16中示出。
图17示出了用于在与图14所示类似的优选实施例中第一导电平面54的层次上的导电区域的线图的抽象。正如技术人员应当注意的那样,在图17中所示的线图中,用参考符号65标识的连接范围粗略地对应于支撑元件140的连接区域,而用参考符号67标识的连接范围则粗略地对应于图14中所示的支撑元件160。连接范围69提供了用于基座元件120的连接。连接范围65和67提供了支撑挠性触点57以及迹线(trace),该迹线与通孔59结合提供了用于将支撑元件140和160互连到基座元件120的连接装置。该视图是抽象了的,实际的走线线路中的许多被去掉了,以有助于该视图的清楚性。
图18示出了用于在与图14所示类似的优选实施例中的第二导电层或平面58的层次上的导电区域的走线图的抽象。
在用来连接基座元件120的图17和18的区域中,示出了一个使用通孔59来更加充分地使用优选实施例的两个导电层的实例。连接范围55和61指示了通孔59以及迹线,迹线提供了用于将支撑元件140和160互连到基座元件120的连接装置的部分(为了视图的清楚而没有在该图示中示出)。
在图18的图示中,找到了可以由基座元件120使用的下挠性触点44的标识。参考前面的图5和16,基座元件120具有穿过窗口60并因此穿过第一导电层54,接触所标识的下挠性触点44的触点28,下挠性触点44在图18中所示的第二导电层的层次上。应当理解,这是启发式的说明,具有的意义仅仅是一个说明在该发明的一些优选实施例中找到的特征的实例。
在第二导电层58的层次上的所标识的下挠性触点54通过迹线71连接到通孔59。通孔59朝着基座元件120的壳体以相对向上的方向通过。由于通孔59向上地通过挠性电路30,它在范围69中通过通孔59的标识而接触如图17中所示的第一导电层54的层次上的导电区域。然后所标识的通孔59连接到迹线73,迹线73提供到所图示的实施例中的多种其它触点的连接网络。因此,通过使用所说明的通过中间层的通孔而为两个导电层的使用给予了附加的挠性。
通过中间层56走线至互连迹线或挠性触点或在不同导电层上的导电区域的通孔可以是“在焊盘上的”或与它们所连接的支撑或基础挠性触点一致。上述通孔还可以是“脱离焊盘的”并位于与挠性触点关联的窗口附近,其中信号将从所述挠性触点传送到另一导电层。这给连接方案和布置走线提供了更多的灵活性。
图19图示了本发明的另一个替换实施例。在图19所图示的是基座元件120,支撑元件140在相对于基座元件120的倒转的位置上。形状支架34显示为位于基座元件120与支撑元件140之间(相对于这个实施例,一起称为“所图示的CSP”),辐射形状(radiating form)部分192在基座元件120的横向延伸外面的区域内向上和向下延伸。在各种实施例中,辐射形状部分192可以采取各种形状和形式。例如,辐射形状部分192部分地延伸到围绕所图示的CSP、基座元件120和支撑元件140的周边,或可以仅仅布置在所图示的CSP的一个或更多的侧面上,或可以延伸到完全围绕所图示的CSP的周边。作为附加的范例,辐射形状部分192可以具有设计来增加它们的表面面积的空腔或叶片或其它不连续的特征。
在这个实施例中,散热(heat spreader)部分194是形状支架34的中心部分,其放置在所图示的CSP之间,可以延伸得超过指定IC中的一个或两个的横向延伸,如虚线所示。散热部分194和辐射形状部分192可以由相似的材料组成,或者它们可以由不同的适当的导热材料组成。此外,散热部分194和辐射形状部分192可以各种不同的方式来制作。例如,所图示的IC的可以首先被附到扁平配置的挠性电路30上,辐射形状部分192放置在每一个所图示的IC附近,然后散热部分194被放置在基座元件120和所选择的辐射形状部分192的顶上,并用粘合剂或其它适当的附着方法来固定,诸如,例如胶粘带、液体粘合剂、焊接(solder)、熔接(weld)、或夹紧此类的。因此,挠性电路30可以折叠以产生图19中所示的相对位置。粘合剂或其它适当的附着方法可以用来将与支撑元件140关联的辐射形状部分192稳固在散热部分194上。正如本领域的技术人员应当理解的那样,在理解本说明书之后,辐射形状部分192和散热部分194可以是以设计实现形状支架34的方式相互邻接地放置的分离的部件。此外,正如技术人员应当理解的那样,在替换实施例中,辐射形状部分192可以布置成围绕所图示的CSP中的一个或两个,而没有所图示的CSP之间的散热器件194。
在这个实施例中,挠性电路30通过触点28连接到基座元件120,并环绕形状支架34的一侧以连接到支撑元件140的触点28。在这个实施例中,形状支架34的辐射形状部分192具有设计来提供用于挠性电路30的适当轴形状的曲边196,该轴形状环绕形状支架34的一部分。此外,在这个实施例中,形状支架34具有布置在挠性电路30的横向延伸外面的辐射形状部分192上的安装脚198。共形底层填料的使用没有显示,以简化该图示,但是一些实施例可以使用如参考图14描述的那样的共形底层填料。
图20是图19中图示的该发明的实施例的侧视图,是沿着标为200的箭头方向获得的。挠性电路30显示为环绕形状支架34的曲边196。模块触点38在挠性电路30上以将模块10连接到它的工作环境。在优选实施例中,挠性电路30是具有至少两个导电层的多层挠性电路结构。但是,其它实施例可以将挠性电路用作为仅仅具有单个导电层的一个电路或两个电路。安装脚198采用设计来为模块10提供稳定性和到其工作环境的机械连接的方式延伸到挠性电路30的横向延伸的外面。
图21-24图示了装配过程中本发明的另一实施例。
图21图示了本发明另一个实施例的早期装配阶段。基座元件120和支撑元件140优选的是CSP。挠性电路30显示为连接有基座元件120和支撑元件140。在这个实施例中,该连接是通过多种手段来实现的,可以通过其它手段来实现,诸如,例如焊接、随后回流的焊膏、粘合剂、层压粘合剂、和/或这些的结合以及其它已知的连接方案。此外,在其它实施例中,基座元件120和支撑元件140可以在稍后的阶段中附着上去,并可以在这个阶段用其它方案来保持在适当位置,诸如,例如粘合剂或膏剂此类的。
图22图示了本发明另一个实施例的图21所示阶段之后的装配阶段。尽管装配本发明的典型实施例的优选方案是通过该图及其相关图来图示的,但是该顺序不是限制性的,并且正如技术人员应当在理解本说明书之后意识到的那样,本发明的不同实施例可以不同的顺序来装配。基座元件120具有上表面224。辐射形状部分192显示为布置在基座元件120和支撑元件140(“所图示的CSP”)的周围。在这个实施例中,辐射形状部分192具有在此形成的散热片222。优选的是,在辐射形状部分192和所图示的CSP之间存在热传导。在不同实施例中,辐射形状部分192可以放置成与所图示的CSP相邻或与之接触,或可以通过粘合剂或干涉配合(interference fit)来联接,或可以附着在挠性电路30上。在其它实施例中,辐射形状部分192可以在所图示的CSP附近但不接触它们。距离‘D’分开了辐射形状部分192的临近边。距离D被设计来便于在模块10的稍后的装配阶段中的挠性电路的折叠。在特定实施例中,距离D可以通过求形状部分192或所图示的CSP的附加高度来设计,无论哪一个更大。如果特定实施例包含散热部分194的话,总计的高度可以通过散热部分194的高度来增加。此外,距离D可以通过这样的因素来增加例如环绕曲边196所需的附加距离(参考图24描述了其实例),或者若有的话,折叠和装配所需的‘松弛’,或者若有的话,在装配后所希望的‘松弛’。
图23图示了本发明另一个实施例的在图22的阶段之后的装配阶段。在这个实施例中,散热部分194显示为放置在基座元件IC 120的上表面224上。但是,在其它实施例中,形状支架34可以不同的顺序来装配,诸如,例如将形状支架34的散热部分194放置在所图示的CSP上,或者如同另一个典型装配顺序,将两个或更多的部件放置在所图示的CSP中的任一个或两个的顶部之上。形状支架34的散热部分194可以用粘合剂固定在各个CSP的上表面224上,该粘合剂优选的是导热的。在替换实施例中,散热部分194也可以仅仅是放在上表面224上或通过气隙或者通过诸如散热片或非热层此类的介质来与上表面224分离。散热部分194的横向延伸优选地是大于所图示的CSP中的一个或两个的横向延伸,并且,在这个实施例中优选的是,在每一横向方向上等于辐射形状部分192的最大横向延伸。但是,在其它实施例中,散热部分194的横向延伸可以在任一方向上大于辐射形状部分192的横向延伸或在任一方向上小于所图示的CSP的横向延伸。
图24图示了本发明另一个实施例的图23的阶段之后的装配阶段。图24(a)中的图示是来自略在模块10之上的视角的,是在挠性电路30已经折叠以将支撑元件140放置在基座元件120之上的堆叠的、倒转的位置中之后查看得到的图。在这个实施例中,挠性电路30被图示为具有在辐射形状部分192的曲边196之上的弯曲布置中的部分。模块10在这个实施例中可以通过许多方案来稳固,诸如,例如粘合剂、层压粘合剂、以及焊接。图24(B)中的图示是来自略在模块10之下的角度的。安装脚198显示为从辐射形状部分192延伸。模块触点38存在于模块10的底表面面242上,以将模块10连接到其工作环境。优选的是,安装脚198所具有的尺寸使得其在垂直于底表面242的方向上延伸与模块触点38相同的距离。
图25-28以装配的不同阶段图示了本发明另一个实施例。
图25图示了本发明再另一个实施例的早期装配阶段。这个阶段与根据图21所描述的阶段相似,基座元件120和支撑元件140附着在挠性电路30上。
图26图示了本发明再另一个实施例的图25的阶段之后的装配阶段。尽管装配该发明的典型实施例的优选方案是通过该图及其相关图来图示的,但是该顺序不是限制性的,并且正如技术人员应当在理解本说明书之后意识到的那样,本发明的不同实施例可以不同的顺序来装配。基座元件120具有上表面224。辐射形状部分192显示为布置在基座元件120和支撑元件140(“所图示的CSP”)的周围。分离距离D和从辐射形状部分194到挠性电路30的连接可以遵循相对于图22做出的说明。在这个实施例中,形状支架34的辐射形状部分194是具有形状弯曲(form curve)262和形状翼片(form tab)264的金属部件,该金属部件将参考图27更详细地加以描述。在其它实施例中,辐射形状部分194可以由适当的刚性导热材料制成,诸如,例如,各种金属、合金、以及合成物。
图27图示了本发明另一个实施例的图25的阶段之后的装配阶段。在优选实施例中,散热部分194由铜制成,并且厚度约1mm。图27中的图示具有与图26中的图示相同的定向。在这个实施例中,散热部分194显示为放置在基座元件IC 120的上表面224上。形状支架34的散热部分194可以用粘合剂固定在各个CSP的上表面224上,该粘合剂优选的是导热的。在替换实施例中,散热部分194也可以仅仅是放在上表面224上或通过气隙或者通过诸如散热片或非热层此类的介质来与上表面224分离。散热部分194的横向延伸优选地大于所图示的CSP中的一个或两个的横向延伸,并且,在这个实施例中优选的是,在所显示的三个横向方向上的每一方向上大于辐射形状部分192的最大横向延伸,其中在所述三个横向方向上,散热部分194具有支架(mount)272。优选的是,支架272具有导热性质。在这个实施例中,散热部分194具有从它的四个侧边中的三个上延伸出来的支架272。在这个实施例中,第四侧边没有支架272,而是代替地存在侧边缘276,侧边缘276优选的是与由相邻形状弯曲262提供的外面的边缘齐平。优选的是,散热器件194以设计来提升热传导的方式接触形状弯曲262。支架272优选的是在相对于基座元件120的上表面224向下的方向上延伸(图26),优选的是延伸得超过辐射形状部分192。挠性电路30具有部分‘F’,该部分在根据图27中图示的随后的装配阶段中进行折叠。在散热器件194之下的辐射形状元件192的形状翼片264优选的是与散热器件194的下表面(在这个图示中不可见)接触,以设计来提供机械支撑和热传导性的方式。
图28图示了本发明另一个实施例的图27的阶段之后的装配阶段。图28(a)中的图示是来自略在模块10之上的视角的,是在挠性电路30已经在部分F处折叠以将支撑元件140放置在基座元件120之上堆叠的、倒转的位置中之后查看得到的图。在这个实施例中,挠性电路30被图示为具有在辐射形状部分192的形状弯曲262之上的弯曲布置中的部分。模块10在这个布置中可以通过许多方案来固定,像是,例如,粘合剂、层压粘合剂、焊接、夹紧、以及焊接。图28(b)中的图示是来自略在模块10之下的视角的。支架272被图示为从辐射形状部分192延伸。模块触点38存在于模块10的底表面242上,以将模块10连接到其工作环境。优选的是,支架272在垂直于底表面242的方向上向下延伸与模块触点38相同的距离,但是优选的是在基座元件120的横向延伸的外面。但是,在其它实施例中,支架272可以延伸得小于或大于模块触点38,这取决于封装方案和工作环境。支架272的底部安装表面274优选的是焊接至在模块10的工作环境中所使用的电路板的接地平面。但是,在其它实施例中,支架272拥有在不同方向上延伸的不同形状,并且支架272可以焊接或焊接或搁在在模块10的工作环境中的多种表面上,像是,例如,电路板、在电路板上形成的支架、底盘、壁或者气密封装容器的其它内部表面等等。在理解本说明书之后,本领域的技术人员应当理解,模块10可以采用设计来在苛刻的工作环境中提供高可靠性的各种密封电子封装的形式来加以封装。
图29-31以装配的不同阶段图示了本发明的另一实施例。
图29图示了本发明的再另一实施例的早期装配阶段。在这个实施例中,挠性电路30挠性电路30具有挠性延伸292和294。支撑元件140和160布置在挠性延伸292和294上,并且,在所图示的装配阶段中,可以通过不同方式来附着上去,像是,例如,焊接、焊膏、粘合剂、以及层压粘合剂。
图30图示了本发明另一个实施例的图29的阶段之后的装配阶段。尽管装配该发明的典型实施例的优选方案是通过这个及相关的图来图示的,但是该顺序不是限制性的,并且正如技术人员应当在理解本说明书之后意识到的那样,本发明的不同实施例可以不同的顺序来装配。在这个实施例中,挠性延伸292和294图示为环绕形状支架34。在这个图示中不可见的基座元件120在形状支架34的下面,其上表面224与形状支架34相邻。在这个实施例中,形状支架34具有折叠的部分304和306,被设计用来提供放置有支撑元件140和160的支撑和热吸收表面。在这个图示中,支撑元件140和160相对于图29中它们的图示是倒转的,这是因为挠性延伸292和294的折叠。尽管在这个实施例中,挠性电路30显示为具有两个挠性延伸,但是这不是限制性的,其它的实施例可以包含一个或两个或三个或更多的挠性延伸,所述挠性延伸被设计来为挠性电路提供到彼此和/或基座元件120和/或模块10的工作环境的连接。此外,尽管在这个实施例中,形状支架34具有两个折叠的部分304和306,其它的实施例还是可以具有一个或两个或三个或更多的折叠的部分,并且这样的部分可以被设计来提供用于支撑元件140和160的支撑和/或热吸收,并且可以被设计来提供用于支撑元件140和/或160的附着和/或支撑和/或热吸收的表面,支撑元件140和/或160可以是水平或垂直的,或布置在相对于基座元件120的其它角度上。尽管在这个实施例中示出了折叠的部分304和306,形状支架34可以采用折叠的配置来制作,或者由固体材料或采用各种形状的空腔来成形的材料制作,所述各种形状的空腔被设计来提供热辐射和/或制造的方便。在这个实施例中,折叠的部分206是用一个轮廓来成形的,以为可能具有不同高度的支撑元件140和160作准备。形状支架34具有部分地围绕其外部边缘而布置的辐射部分302。
图31从略在模块10之下的另一视角,图示了图30中所示的本发明的替换实施例。
图32-34以装配的过程图示了本发明的另一个实施例。
图32图示了本发明另一实施例的早期装配阶段。挠性电路30显示为连接有基座元件120和支撑元件140。
图33图示了本发明另一个实施例的图32的阶段之后的装配阶段。尽管装配该发明的典型实施例的优选方案是通过该图及其相关图来图示的,但是该顺序不是限制性的,并且正如技术人员应当在理解本说明书之后意识到的那样,本发明的不同实施例可以不同的顺序来装配。辐射形状部分192显示为布置在基座元件120和支撑元件140(“所图示的CSP”)的周围。在这个实施例中,散热部分194显示为放置在基座元件IC 120的上表面224上及相应的辐射形状部分192的顶部上。在这个实施例中,散热部分194具有辐射管脚332,辐射管脚332被设计来提供用于热辐射的增大的表面面积,以及为形状支架34和所装配的模块10提供机械支撑。在这个实施例中,布置在散热器件194的内部部分附近的辐射管脚332具有扁平的内边334,以在挠性电路30被折叠以将模块10放置到其已完成配置中的时候(在随后的装配阶段中),提供一个用于接触支撑元件140或在其附近的放置的齐平的表面。在散热部分194的中心表面336的下面了提供更多的辐射管脚。在这个实施例中,辐射管脚332被图示为具有统一的尺寸和间隔,但是,这并不是限制性的,辐射管脚332可以具有不同的尺寸和间隔,并且可以在不同的方向上延伸。
图34图示了本发明另一个实施例的图33的阶段之后的装配阶段。图34(a)中的图示是来自略在模块10之上的视角的,是在挠性电路30已经折叠以将支撑元件140放置在基座元件120之上的堆叠的、倒转的位置中之后查看得到的图。在这个实施例中,挠性电路30被图示为具有在辐射形状部分192的形状弯曲边缘196之上的弯曲布置中的部分。图34(b)中的图示是来自略在模块10之下的视角的。模块触点198图示为从辐射形状部分192延伸。模块触点38存在于模块10的底表面242上,以将模块10连接到其工作环境。在这个实施例中,辐射管脚332具有扁平边缘342,扁平边缘342被设计来在模块10的横向延伸上的提供扁平轮廓。在模块10是紧靠封装单元的壁或可以存在于模块10的工作环境中的其它表面放置的时候,这样的扁平轮廓可以增强热传递特性。尽管本发明已经详细加以描述了,对于本领域的技术人员来说应当是显而易见的是,该发明可以多种具体形式来加以具体化,以及各种改变、替换和更改可以在不偏离该发明的精神和范围的情况下做出。所描述的实施例仅仅是说明性的而不是约束性的,因此,该发明的范围是由下面的权利要求来指示的。
权利要求
1.一种高密度电路模块,包括第一CSP,其具有侧向周边以及上主表面和下主表面以及第一和第二边缘,所述边缘勾画出了所述上主表面的横向延伸;第二CSP,其处在相对于所述第一CSP的倒转堆叠布置处,所述第二CSP具有侧向周边以及上主表面和下主表面;散热元件,其被布置为部分地处于所述第一和第二集成电路之间;第一辐射形状元件,其被布置为至少部分地沿着所述第一CSP的侧向周边的第一部分,所述第一辐射形状元件的一部分热连接到所述散热元件;挠性电路,其连接所述第一和第二CSP,并被布置为将所述挠性电路的第一部分放置在所述第一集成电路的下主表面之下,并将所述挠性电路的第二部分放置在所述第二集成电路之上。
2.如权利要求1所述的高密度电路模块,还包括第二辐射形状元件,其被布置为至少部分地沿着所述第二CSP的侧向周边,所述第二辐射形状元件的一部分热连接到所述散热元件。
3.如权利要求1所述的高密度电路模块,其中,所述散热元件具有至少一个在所述散热元件的至少一个边缘上形成的导热支架。
4.如权利要求3所述的高密度电路模块,其中,所述至少一个导热支架在所述第一CSP的横向延伸的外面延伸至所述第一CSP的下主表面之下的层次。
5.如权利要求3所述的高密度电路模块,其中,所述至少一个导热支架是与电路板上的热吸收安装表面进行热传递的。
6.一种高密度电路模块,包括第一CSP,其具有侧向周边以及第一和第二边缘,所述边缘限制上主表面和下主表面,以勾画所述上主表面的横向延伸;第二CSP,其处在相对于所述第一CSP的倒转堆叠布置处,所述第二CSP具有侧向周边以及上主表面和下主表面;至少一个辐射形状元件,其被布置为至少部分地沿着所述第一和第二CSP中的至少一个的侧向周边,所述至少一个辐射形状元件的一部分热连接到所述第一和第二CSP中的所述至少一个;挠性电路,其连接所述第一和第二CSP,并被布置为将所述挠性电路的第一部分放置在所述第一集成电路的下主表面之下,并将所述挠性电路的第二部分放置在所述第二集成电路之上。
7.如权利要求6所述的高密度电路模块,还包括在所述第一和第二集成电路之间的散热元件。
8.如权利要求6所述的高密度电路模块,其中,所述至少一个辐射形状元件中具有空腔,以在所述辐射形状元件中形成热辐射形状。
9.如权利要求8所述的高密度电路模块,其中,所述热辐射形状是管脚。
10.一种高密度电路模块,包括第一CSP,其具有侧向周边和以及第一和第二边缘,所述边缘限制上主表面和下主表面,以勾画所述上主表面的横向延伸;第二CSP,其处在相对于所述第一CSP的堆叠布置处,所述第二CSP具有侧向周边以及上主表面和下主表面;散热元件,其在所述第一和第二集成电路之间,所述散热元件具有从其至少一个侧边延伸并与主机系统的热吸收部分热耦合的至少一个导热支架;挠性电路,其连接所述第一和第二CSP,并被布置为将所述挠性电路的第一部分放置在所述第一集成电路的下主表面之下。
11.如权利要求10所述的高密度电路模块10,还包括具有曲面的形状支架,所述挠性电路被所述曲面部分地包住。
12.一种封装的高密度集成电路模块,包括如权利要求1所要求的高密度电路模块,其被包在被气密地密封的封装中。
13.一种封装的高密度集成电路模块,包括如权利要求10所要求的高密度电路模块,其被包在气密密封的封装中。
14.一种封装的高密度集成电路模块,包括如权利要求6所要求的高密度电路模块,其被包在气密密封的封装中。
15.一种制作高密度电路模块的方法,包括步骤(a)在挠性电路上不连续的位置上放置第一和第二CSP,从而使得在所述第一CSP的底部主表面上的第一组CSP触点和在所述第二CSP的底部主表面上的第二组CSP触点都连接到多个挠性触点中相应的触点上;(b)至少部分地沿着所述第一和第二CSP中的至少一个的侧向周边固定至少一个辐射形状支架元件;(c)在所述第一CSP的顶部主表面上固定散热形状支架元件;(d)折叠所述挠性电路从而使得所述第二CSP的顶部主表面与所述散热形状支架元件相邻。
16.如权利要求15所述的方法,还包括步骤在所述第二CSP的顶部主表面与所述散热形状支架元件之间固定粘合剂。
17.如权利要求15所述的方法,其中,步骤(b)包括至少部分地围绕所述第一和第二CSP来固定所述辐射形状支架元件。
18.如权利要求15所述的方法,其中,步骤(b)包括利用层压粘合剂来固定。
19.如权利要求15所述的方法,其中步骤(c)包括利用层压粘合剂来固定。
全文摘要
本发明将集成电路(IC)堆叠成保存PWB或其它板的表面区域的模块。在另一方面,该发明提供了一种比较低的容量的内存扩充寻址系统和方法,并且优选的是采用同在此提供的CSP堆叠模块10。在根据该发明的优选实施例中,形状支架34提供了一种物理形状,该物理形状允许在CSP封装的广大家族中的各种封装尺寸中的许多封装尺寸,用于在采用标准连接的挠性电路设计32的同时产生有益效果。在优选实施例中,形状支架34会被设计为是诸如铜此类的热传递材料的,以提高热性能。在替换实施例中,形状支架34可以包括具有安装脚198的散热部分192。在一个内存寻址系统的优选实施例中,高速转换系统选择与堆叠模块10的每一层次相关联的数据线,来在存储器访问中降低对数据信号的负载效应。
文档编号H05K1/18GK1961421SQ200580017467
公开日2007年5月9日 申请日期2005年3月30日 优先权日2004年3月31日
发明者詹姆斯·卡迪, 詹姆斯·怀尔德, 戴维·罗珀, 道格拉斯·小韦赫里 申请人:斯塔克泰克集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1