一种重组谷氨酸棒杆菌及其构建方法与应用的制作方法

文档序号:453960阅读:186来源:国知局
专利名称:一种重组谷氨酸棒杆菌及其构建方法与应用的制作方法
技术领域
本发明涉及应用微生物和发酵工程领域中一种重组谷氨酸棒杆菌及其构建方法与利用该菌发酵生产谷氨酰胺方面的应用。
背景技术
谷氨酰胺是机体血液中含量最丰富的氨基酸,在生物代谢中起着举足轻重的作用,它是一种重要的能量中间体、细胞呼吸的燃料和氨基转移的载体(Labow B I,Souba WW.Abcouwer S F.Mechanisms Governing the Expression of the Enzymes of GlutamineMetabolism-Glutaminase and Glutamine Synthetase,J.Nutr.,2001,1312467S-2474S);近年来,医学上的发现还表明谷氨酰胺是一种条件必需性氨基酸,缺乏时将引发多种疾病(刘利军,赵瑾.L-谷氨酰胺研究进展.天津化工,2003,1717-20)。它可有效治疗溃疡、神经衰弱,改善脑后遗症的记忆性障碍等(王伟平,吴思方,杨金树,汪世华.谷氨酰胺代谢控制发酵工艺研究.食品科学,2002,23(4)82-85),此外,它还具有增进神经机能,促进智力不佳儿童的智力发展,防止癫痫发作等功能(张军民.条件性必需氨基酸谷氨酰胺研究进展.中国饲料,1999,1722-24)。谷氨酰胺还可以调节蛋白质的合成,目前大量用于治疗运动员的运动综合症及疲劳修复,重建免疫系统,有利于治疗和支持肝脏功能,减少癌症治疗中化疗和放射性治疗的副作用(刘颖,金宏.谷氨酰胺防治辐射损伤的作用.氨基酸和生物资源,2002,24(2)53-55)。总之,药用谷氨酰胺的需求量很大,有巨大的潜在市场(安秀林,李庆忠,刘海平。产谷氨酰胺菌株的诱变育种.微生物学杂志,2003,23(1)28-29)。
目前谷氨酰胺的生产方法有三种发酵法、酶法和化学法。酶法生产由于底物及产物的抑制作用较强,所以谷氨酰胺产量很低,不具备工业生产意义(杨春玉,马崔卿,许平,张兆斌,李金山.酶法转化谷氨酰胺.过程工程学报,2002,2(6)529-533)。化学合成法由于原料价格较高,也不利于工业化推广。所以目前主要是发酵法生产谷氨酰胺。日本利用发酵法生产谷氨酰胺起步早,技术日臻成熟,并有多项专利(Azumaguchi T,Emoto M,Umesaka C.Glutamine containing oral compositions,useful as foods,and oral pharmaceuticals and quesi drugs,comprise glutamine,oligosaccharide and dietary fiber.Japanese patent,JP 2002226369-A,2001-01-30)。
工业上用来生产谷氨酰胺的菌种主要是谷氨酸棒杆菌(Corynebacteriumglutamicum)(Schulz A A,Collett H J,Reid S J.Nitrogen and Carbon Regulationof Glutamine Synthetase and Glutamate Synthase in Corynebacterium glutamicumATCC 13032,2001,205361-367)。在谷氨酸棒杆菌C. glutamicum中,催化谷氨酸合成谷氨酰胺的谷氨酰胺合成酶已经被分离出来(Nolden L,Farwick M,Krmer R,Burkovski A.Glutamine synthetases of Corynebacterium glutamicumTranscriptional Control and Regulation of Activity.FEMS Microbiology Letters,2001,20191-98),其编码基因为glnA(Jakoby,M.,Tesch,M.,Sahm H,Krmer,R.,Burkovski,A.Isolation of the Corynebacterium glutamicum glnA geneencoding glutamine synthetase.FEMS Microbiol.Lett.,15481-88(1997))。谷氨酰胺合成酶/谷氨酸合酶(GS/GOGAT)体系是由铵离子浓度调节的,在低铵离子浓度下发挥作用,在高铵离子浓度条件下受抑制。谷氨酰胺合成酶的调节开关是在其肽链405位置的酪氨酸被腺苷酸化,而其突变glnA’基因编码的蛋白就是在405位置的酪氨酸被定点突变为苯丙氨酸,从而失去了这种调节机制,使得谷氨酰胺合成酶可以在高铵离子条件下发挥催化功能,将谷氨酸转化为谷氨酰胺(Jakoby,M.,Krmer,R.Burkovski A.Nitrogen regulation in Corynebacterium glutamicumIsolation ofgenes involved and biochemical characterization of corresponding proteins.FEMS Microbiol.Lett.,173303-310(1999))。因此在谷氨酸棒杆菌C.glutamjcumATCC 14067中过表达glnA’基因可以提高谷氨酰胺产量。
据文献报导的发酵溶氧浓度(D.O.)及培养基还原力(culture reducing power,CRP)与氨基酸产量之间的关系,在合成氨基酸阶段,需要有较高的供氧速率才能得到较高的氨基酸产量(Kwong S C,Rao G.Utility of culture redox potential foridentifying metabolic state changes in amino acid fermentation,Biotechnologyand Bioengineering,1991.381034-1040)。而由谷氨酸和铵离子合成谷氨酰胺是一个需能反应,需要ATP的参与(Merrick M J,Edwards R A.Nitrogen Control inBacteria,Microbiological Reviews,1995,59604-622)。因此,生产谷氨酰胺比生产谷氨酸需要在更高的供氧条件下,强化三羧酸循环,增加ATP的生成量,使得谷氨酰胺合成酶的活性增加,加快谷氨酰胺的生成(Jetten M S M,Sinskey A J.RecentAdvances in the Physiology and Genetics of Amino Acid-Producing Bacteria,Critieal Reviews in Biotechnology,1995,15(1)73-103)。通常谷氨酰胺发酵所需要的高D.O.控制条件,是限制大规模生产谷氨酰胺的一个重要因素。
细菌Vitreoscilla是严格好氧的,但多生长在贫氧环境中,它能合成一种可溶性的血红素蛋白(Vitreoscilla Hemoglobin,VHb)以适应贫氧环境,编码该蛋白的基因即为透明颤菌血红蛋白基因(Vitreoscilla hemoglobin gene,vgb)(Fish P A,Webster D A,Stark B C.Vitreoscilla hemoglobin enhances the first step in2,4-dinitroluene degradation in vitro and at low aeration in vivo,Journal ofMolecular Catalysis BEnzymatic,2000,975-82)。VHb是以氧合态参与和氧有关的代谢,通过将氧传递给呼吸链,而调节末端氧化酶的活性,改变氧化磷酸化的效率,进而改变低氧条件下的代谢途径,以至影响到某些基因的表达。它能够从分子水平上提高重组菌对氧气的利用能力(Jacobsen J R,Khosla C.New directions inmetabolic engineering.Current Opinion in Chemical Biology 1998,2133-137)。一些文献报导了vgb基因的应用实例,表明它促进细胞生长,提高细胞培养密度和外源基因表达的作用。如vgb基因在金色链霉菌中的表达可将产物合成提高40%-60%(孟春,叶勤,石贤爱,邱荔,宋思扬,郭养浩.透明颤菌血红蛋白基因在金色链霉菌中的克隆与表达.微生物学报,2002,42(3)305-310);vgb基因在链霉菌(Stretomyces lividans)中的表达可促进菌体生长(朱怡非,朱春宝,朱宝泉.透明颤菌血红蛋白基因在链霉菌中的克隆与表达.中国医药工业杂志,1998,29(6)253-258);vgb基因在生产聚羟基丁酸[poly(β-hydroxybutyrate),PHB]的重组大肠杆菌E.coli中表达,有效的提高了细胞生长密度和PHB的产量(Yu H M,Shi Y,ZhangY P,Yang S L,Shen Z Y.Effect of Vitreoscilla hemoglobin biosynthesis inEscherichia coli on production of poly(β-hydroxybutyrate)and fermentativeparameters.FEMS Microbiology Letters,2002,214223-227)等。
发明创造内容本发明的目的是提供一种可在较低溶氧水平下生产出较高产量的谷氨酰胺的重组谷氨酸棒杆菌及其构建方法。
本发明所提供的重组谷氨酸棒杆菌,是含有透明颤菌血红蛋白基因vgb的野生谷氨酸棒杆菌C.glutamicum ATCC 14067。
为在较低溶氧水平下生产出更高产量的谷氨酰胺,所述重组谷氨酸棒杆菌中还可含有谷氨酰胺合成酶突变基因glnA’。
一种构建重组谷氨酸棒杆菌的方法,是将含有透明颤菌血红蛋白基因vgb的重组质粒转入野生谷氨酸棒杆菌C.glutamicum ATCC 14067中,得到含有透明颤菌血红蛋白基因vgb的野生谷氨酸棒杆菌C.glutamicum ATCC 14067。
所述重组质粒可为pJC1-vgb,该质粒是通过如下方法得到的用PstI和SalI酶切pBR322-vgb,将其2.2kb片段插入E.coli/C.glutamicum的穿梭载体pJC1的PstI/SalI酶切位点处,构建出质粒pJC1-vgb。
为在较低溶氧水平下生产出更高产量的谷氨酰胺,所述重组质粒还可为pJC1-VG1或pJC1-VG2;所述pJC1-VG1或pJC1-VG2是通过如下方法得到的以pJC1-vgb为PCR模版,通过PCR扩增,使vgb片段的两端接上SalI位点,然后插入经SalI酶切的pJCY405F,得到质粒pJC1-VG1和pJC1-VG2。
在构建所述pJC1-VG1或pJC1-VG2的过程中,由于vgb片段和pJCY405F两端连接位点相同,则vgb片段插入顺序有正反两种,所以得到质粒pJC1-VG1和pJC1-VG2,都含有vgb基因和glnA’基因。
所述PCR扩增的引物为正义链5’-ttagtcgacacaggacgctggggtt-3’;反义链5’-acagtcgacatgccaaggcacacct-3’。
所述经SalI酶切的pJCY405F在被插入两端带有SalI位点的vgb片段之前,还用去磷酸化酶CIAP对其进行去磷酸化处理,防止其两端自连。
本发明的重组谷氨酸棒杆菌由于含有透明颤菌血红蛋白基因vgb,进行发酵时,在D.O.低于通常发酵水平的条件下,细胞生长及谷氨酰胺合成都不受影响;在较低供氧条件下,该重组菌的细胞干重及谷氨酰胺产量比野生菌有明显提高,从而降低了工业生产中的通气和搅拌的条件要求;又由于含有谷氨酰胺合成酶的突变基因glnA’,大部分的谷氨酸都被转化为谷氨酰胺,可以得到更高产量的谷氨酰胺,强化了谷氨酰胺的合成,为谷氨酰胺大规模工业化生产提供了可行性。本发明的重组谷氨酸棒杆菌可实现在较低D.O.水平、较低成本下,生产较高产量的谷氨酰胺,解决了谷氨酰胺大规模生产过程中要求高溶氧的问题。


图1为质粒pJC1-vgb酶切验证电泳图谱图2为质粒pJC1-vgb的构建过程示意3为质粒pJC1-VG1和pJC1-VG2的构建过程示意图具体实施方式
实施例1、重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)的构建及发酵实验1、重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)的构建(1)菌种谷氨酸棒杆菌C.glutamicum ATCC 14067(2)外源基因质粒pJC1-vgb(3)载体E.coli/C.glutamicum的穿梭载体pJC1(Cremer J,Eggeling L,SahmH.Cloning of the dapA dapB cluster of the lysine-secreting bacteriumCorynebacterium glutamicum.Mol.Gen.Genet.1990,220478-480)。
(4)质粒pJC1-vgb的构建质粒pBR322-vgb含有来自透明颤菌基因组的vgb基因。
质粒pJC1-vgb的构建过程如图2所示,用PstI和SalI酶切pBR322-vgb,将其2.2kb片段插入E.coli/C.glutamicum的穿梭载体pJC1(6.1kb)的PstI/SalI位点处,构建出质粒pJC1-vgb(8.3kb)。
(5)质粒pJC1-vgb转化C.glutamicum ATCC 14067用电转化的方法(M.E.van der Rest,Lange C,Molenaar D.A heat shockfollowing electroporation induces highly efficient transformation ofCorynebacterium glutamicum with xenogeneic plasmid DNA.Appl Microbiol.Biotechnol.,1999,52541-545)将质粒pJC1-vgb转化入C.glutamicum ATCC 14067中。由于pJC1带有卡那霉素抗性基因,所以连接成功的质粒pJC1-vgb也具有对卡那霉素的抗性,转化成功的重组菌能够在含有卡那霉素的LB平板上生长,而质粒没有转化成功的野生菌将不能生长。以此筛选出阳性克隆,得到重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)。
(6)重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)的鉴定用提取质粒的方法(Feliciello I,Chinali G.A modified alkaline lysis methodfor the preparation of highly purified plasmid DNA from Escherichia coli.AnalBiochem,1993,212394-401)对重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)进行验证从重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)中提取质粒并进行酶切(SalI单切和EcoRI双切)验证,结果如图1所示,表明分别得到约8.3kb和5.5kb、2.8kb的特异性片段,与序列图谱相符,证明为含有质粒pJC1-vgb的重组谷氨酸棒杆菌。图1中,1为EcoRI双切;2为SalI单切;M为分子量标准。
2、利用重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)发酵生产谷氨酰胺和谷氨酸(1)发酵菌种重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-vgb)(2)培养基a.种子LB培养基酵母粉5.0g/L,蛋白胨10.0g/L,NaCl10.0g/L,卡那霉素20mg/L,pH值中性。
b.摇瓶种子培养基葡萄糖35g/L,硫酸铵7.5g/L,尿素5.0g/L,K2HPO4·3H2O 8.0g/L,KH2PO42.0g/L,MgSO4·7H2O 0.5g/L,CaCl2·2H2O 0.1g/L,柠檬酸钠·2H2O 3.0g/L,NaCl 2.0g/L,微量元素10ml/L,生物素6μg/L,硫胺素1mg/L,卡那霉素20mg/L,pH值中性。
c.发酵罐培养基葡萄糖80g/L,硫酸铵25g/L,尿素5.0g/L,K2HPO4·3H2O 8.0g/L,KH2PO42.0g/L,MgSO4·7H2O 0.5g/L,CaCl2·2H2O 0.1g/L,柠檬酸钠·2H2O 3.0g/L,NaCl 2.0g/L,微量元素10ml/L,生物素6μg/L,硫胺素1mg/L,卡那霉素20mg/L,pH7.0。
微量元素溶液每升1N HCl含有MnSO4·7H2O 0.4g,Na2B4O7·10H2O 0.04g,(NH4)6MO7O24·4H2O 0.02g,FeCl2·6H2O 0.4g,ZnSO4·7H2O 0.1g,CuSO4·5H2O 0.04g,FeSO4·7H2O 5g。
(3)培养条件a.一级种子从平板上挑取单菌落接入LB培养基(20ml培养基/50ml摇瓶)。30℃培养14hr,摇床转速200r/min。
b.二级种子采用摇瓶种子培养基(100ml培养基/500ml摇瓶),接种量5%一级种子(v/v)。30℃培养12hr,摇床转速200r/min。
c.三级种子采用摇瓶种子培养基,接种量5%二级种子(v/v)。培养条件与二级种子相同。
d.发酵罐发酵培养基体积3L,30℃,pH7.0,分别用H2SO4和氨水来调节酸碱。将三级种子以10%(v/v)接种量接入发酵罐。溶氧D.O.通过搅拌自动控制在设定值。分级(即每隔2-3小时,将D.O.升高10%)升高D.O.至40%后,将溶氧降到较低水平(10%以下)保持一段时间,然后再升高至正常水平(20%-40%),至发酵结束。通气量也分级提高,由初始的1.0L/min按每次1.0L/min的梯度提高到5~7L/min)。搅拌转速控制范围为200-950r/min。发酵过程中监测葡萄糖浓度,低于10g/L时补糖,发酵72小时过程中补加两次,每次补加50g/L。
培养结束后,用液相色谱检测谷氨酸和谷氨酰胺的含量(张嘉麟,孙继英,徐文安.高效液相色谱-PITC衍生法的血浆游离氨基酸分析.昆明医学院学报,1994,1528-33)。
发酵结果表明,重组菌C.glutamicum ATCC 14067(pJC1-vgb)CDW、谷氨酰胺和谷氨酸产量都明显高于对比例1中的野生菌C.glutamicum ATCC14067。重组菌CDW最高为54.1g/L,比野生菌提高了1.5倍。重组菌中谷氨酸产量最高达到9.56g/L比野生菌提高了7.5倍;重组菌中谷氨酰胺最高达到5.51g/L,比野生菌提高了2.4倍。相对于单位细胞来说,其生产能力也有明显提高。重组菌单位细胞谷氨酸的生产能力为0.177Glu/g干细胞,比野生菌提高了6.3倍,单位细胞谷氨酰胺的生产能力为0.102Gln/g干细胞,比野生菌提高了2.0倍。在本发明中,在D.O.受限制的条件下,而重组菌仍然有接近10g/L的谷氨酸产量,表明在细胞内部的氧浓度仍维持在相对高的水平,使代谢向谷氨酸合成的方向进行。此实验说明了透明颤菌血红蛋白基因在重组谷氨酸棒杆菌中发挥了一定作用,能够使其适应低氧环境。
实施例2、重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)的制备及发酵实验1、重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)的构建(1)菌种谷氨酸棒杆菌C.glutamicum ATCC 14067(2)外源基因质粒pJC1-VG1和pJC1-VG2(3)载体E.coli/C.glutamicum的穿梭载体pJC1(4)质粒pJC1-VG1和pJC1-VG2的构建质粒pJC1-VG1(pJC1-VG2)含有来自透明颤菌基因组的vgb基因和谷氨酸棒杆菌的glnA’基因。
质粒pJC1-VG1和pJC1-VG2的构建过程如图3所示,用pJC1-vgb做为PCR模版,设计引物将其vgb片断两端接上SalI位点。上述引物为正义链5’-ttagtcgacacaggacgctggggtt-3’;反义链5’-acagtcgacatgccaaggcacacct-3’。同时用SalI酶切pJCY405F(8.4kb),并用去磷酸化酶CIAP对其进行去磷酸化处理,防止其载体两端自连。然后将pJCY405F的线性片段与所得vgb基因片段的SalI位点连接,构建出质粒pJC1-VG1和pJC1-VG2(9.1kb)。由于两端连接位点相同,则插入顺序有正反两种,分别为质粒pJC1-VG1和pJC1-VG2,都含有vgb基因和glnA’基因。
(5)质粒pJC1-VG1(pJC1-VG2)转化C.glutamicum ATCC 14067用电转化的方法将质粒pJC1-VG1(pJC1-VG2)转化入C.glutamicumATCC 14067中。由于pJC1带有卡那霉素抗性基因,所以由此构建的质粒pJC1-VG1(pJC1-VG2)也具有对卡那霉素的抗性,转化成功的重组菌能够在含有卡那霉素的LB平板上生长,而质粒没有转化成功的野生菌将不能生长。以此筛选出阳性克隆,得到重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)和C.glutamicum ATCC 14067(pJC1-VG2)。
(6)重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)和C.glutamfcumATCC 14067(pJC1-VG2)的鉴定用提取质粒的方法对重组谷氨酸棒杆菌C.glutamfcum ATCC 14067(pJC1-VG1)和C.glutamicum ATCC 14067(pJC1-VG2)进行验证。结果表明重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)和C.glutamfcum ATCC 14067(pJC1-VG2)分别含有质粒pJC1-VG1和pJC1-VG2。选择其中一株C.glutamicum ATCC 14067(pJC1-VG1)进行发酵实验。
2、利用重组谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)发酵生产谷氨酰胺和谷氨酸(1)发酵菌种谷氨酸棒杆菌C.glutamicum ATCC 14067(pJC1-VG1)。
(2)培养基及培养条件与实施例1中野生菌发酵实验相同(培养基需加入卡那霉素20mg/L)。发酵结果表明,重组菌C.glutamicum ATCC 14067(pJC1-VG1)细胞生长及谷氨酰胺产量都明显高于下述对比例1中的野生菌C.glutamicum ATCC 14067。重组菌CDW最高达到40g/L。在D.O.受限制的条件下,重组菌中谷氨酰胺产量达到50g/L左右;重组菌中谷氨酸为5g/L左右。
对比例1、利用野生谷氨酸棒杆菌C.glutamicum ATCC 14067发酵生产谷氨酰胺和谷氨酸菌种谷氨酸棒杆菌C.glutamicum ATCC 14067(从ATCC购买)培养基及发酵条件同实施例1,但培养基中不含卡那霉素。发酵结果表明,野生菌C.glutamicum ATCC 14067细胞干重(cell dried weight,CDW)最高达到40g/L。野生菌中谷氨酸产量最高为1.27g/L;野生菌中谷氨酰胺最高为2.27g/L。相对于单位细胞来说,野生菌生产能力为0.028Glu/g干细胞,0.050Gln/g干细胞。此实验说明了在D.O.受限制的条件下,野生菌的代谢明显受到了低氧条件的影响,使得谷氨酸的生成路径不能顺利进行,导致谷氨酸的产量偏低。
权利要求
1.一种重组谷氨酸棒杆菌,是含有透明颤菌血红蛋白基因vgb的野生谷氨酸棒杆菌C.glutamicum ATCC 14067。
2.根据权利要求1所述的重组谷氨酸棒杆菌,其特征在于所述重组谷氨酸棒杆菌中还含有谷氨酰胺合成酶突变基因glnA’。
3.一种构建重组谷氨酸棒杆菌的方法,是将含有透明颤菌血红蛋白基因vgb和谷氨酰胺合成酶突变基因glnA’的重组质粒pJC1-VG1或pJC1-VG2转入野生谷氨酸棒杆菌C.glutamicum ATCC 14067中,得到含有透明颤菌血红蛋白基因vgb和谷氨酰胺合成酶突变基因glnA’的野生谷氨酸棒杆菌C.glutamicum ATCC 14067。
4.根据权利要求3所述的方法,其特征在于所述重组质粒为pJC1-vgb,所述质粒pJC1-vgb是通过如下方法得到的用PstI和SalI酶切pBR322-vgb,将其2.2kb片段插入E.coli/C.glutamicum的穿梭载体pJC1的PstI/SalI酶切位点处,构建出质粒pJC1-vgb。
5.根据权利要求3所述的方法,其特征在于所述重组质粒为pJC1-VG1或pJC1-VG2;所述pJC1-VG1或pJC1-VG2是通过如下方法得到的以pJC1-vgb为PCR模版,通过PCR扩增,使vgb片段的两端接上Sal I位点,然后插入经Sal I酶切的pJCY405F,得到质粒pJC1-VG1和pJC1-VG2;所述质粒pJC1-vgb是通过如下方法得到的用PstI和SalI酶切pBR322-vgb,将其2.2kb片段插入E.coli/C.glutamicum的穿梭载体pJC1的PstI/SalI酶切位点处,构建出质粒pJC1-vgb。
6.权利要求1和2所述重组谷氨酸棒杆菌在谷氨酰胺生产中的应用。
全文摘要
本发明公开了一种重组谷氨酸棒杆菌及其构建方法与应用,目的是提供一种可在较低溶氧水平下生产出较高产量的谷氨酰胺的重组谷氨酸棒杆菌及其构建方法。本发明所提供的重组谷氨酸棒杆菌,是含有透明颤菌血红蛋白基因vgb和谷氨酰胺合成酶突变基因glnA’的野生谷氨酸棒杆菌C.glutamicum ATCC 14067。本发明的重组谷氨酸棒杆菌可实现在较低D.O.水平、较低成本下,生产较高产量的谷氨酰胺,解决了谷氨酰胺大规模生产过程中要求高溶氧的问题,为谷氨酰胺大规模工业化生产提供了可行性。
文档编号C12P13/00GK1614008SQ200310103230
公开日2005年5月11日 申请日期2003年11月3日 优先权日2003年11月3日
发明者陈国强, 梁楠, 孙智杰 申请人:北京理工大学, 清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1