用于药物递送的聚合物纳米颗粒的制作方法

文档序号:1246940阅读:483来源:国知局
用于药物递送的聚合物纳米颗粒的制作方法
【专利摘要】本发明公开了包含嵌段共聚物和任选的一种或多种活性剂的纳米颗粒,包含所述纳米颗粒的组合物以及制备所述纳米颗粒的方法。所述嵌段共聚物包括以下嵌段:(i)作为聚酯或聚酰胺的第一聚合物和(ii)包含烃链的第二聚合物,所述烃链含有酯或醚键并且羟基数≥10。所述活性剂可以存在于所述纳米颗粒内或所述纳米颗粒的表面上。所述纳米颗粒可以任选地与表面改性部分结合以致它们可用作药物递送和分子成像装置。所述表面改性部分可以将所述纳米颗粒靶向所需靶标、细胞、组织或生物标记物。
【专利说明】用于药物递送的聚合物纳米颗粒
[0001]本发明涉及包含嵌段共聚物的纳米颗粒的领域。本发明还涉及这样的纳米颗粒,其可以结合活性剂并且任选地与表面改性部分结合以使它们可被用作药物递送和分子成像装置。本发明还涉及用于制备这样的纳米颗粒的方法和用于对其表面进行改性的方法。
[0002]生物可降解纳米颗粒已被用作缓释载体,用于施用活性剂如天然或合成的有机或无机实体、蛋白质、肽和核酸。所述活性剂被溶解在、捕获在、包封在或连接至纳米颗粒基质。生物可降解纳米颗粒,特别是涂覆有亲水聚合物如聚(乙二醇)(PEG)的那些,可用作药物递送装置,因为它们长时间循环并且可以靶向用于递送的特定位点(Mohanraj & ChenTrop.J.Pharm.Res.5, 561-573 (2006))。 [0003]在设计作为递送系统的纳米颗粒中的主要目标是控制粒度、表面性质和药理学活性剂的释放以便实现药物在治疗最佳速率和剂量方案下的位点特异性作用。纳米颗粒可以制备自各种各样的材料如蛋白质、多糖和合成聚合物。基质材料的选择依赖于许多因素,包括所需纳米颗粒的尺寸、包封的药物的固有性质(例如,水溶性和稳定性)、表面特性(如电荷和渗透性)、生物可降解度、生物相容性和毒性、所需的药物释放特征以及最终产品的抗原性。
[0004]尽管脂质体已被用作潜在的载体,其具有的优势包括保护药物免于降解、靶向作用位点和降低的毒性或副作用,但是它们的应用会受到诸如低包封效率、在血液组分存在下水溶性药物的快速泄露和储存稳定性差的问题所限制。相对于脂质体,纳米颗粒提供一些特定的优势。例如,它们在储存期间更稳定,有助于增加药物和蛋白质的稳定性并且具有有用的受控释放性质。
[0005]使用纳米颗粒作为药物递送系统的优势有很多。纳米颗粒的粒度和表面特性可以容易地进行控制以在全身性通过之后实现被动和主动的药物靶向。它们在传输期间并且在定位位点处控制并缓释药物,改变药物的器官分布和药物的后续清除而通过最小化与其他器官的相互作用而增加药物疗效并减少副作用。受控释放和颗粒降解特性可以容易地通过基质组分的选择进行调控。药物加载相对高并且药物可以结合到系统中而不需任何化学反应;这对于保持药物活性来说是一个重要因素。位点特异性靶向可以通过将靶向配体连接至颗粒的表面或使用磁力引导而实现。纳米颗粒的尺寸、表面电荷和表面修饰可以被调控。所述系统可以用于各种给药路径,包括经口、经鼻、胃肠外、肺部、阴道和眼内给药。
[0006]对于开发这样的用于药物递送的新纳米颗粒存在持续需要:所述纳米颗粒可以针对精确释放特征而被调节并且能够包封所述纳米颗粒的较高重量百分比的较宽范围的活性剂,包括极性活性剂。还需要用于对这些纳米颗粒的表面进行改性的新方法。还需要可以用作用于将活性剂递送至脑的载体的纳米颗粒。
[0007]本发明提供一种纳米颗粒,所述纳米颗粒包含嵌段共聚物,和任选的一种或多种活性剂,其中:
[0008](i)所述嵌段共聚物包含嵌段A和D ;
[0009](ii)嵌段A由包含单体单元B和C的第一聚合物构成,其中B是碳原子总数≤30
的脂肪族二羧酸并且C是二羟基或二氨基单体;并且[0010](iii)嵌段D由包含烃链的第二聚合物构成,所述烃链含有酯或醚键并且羟基数^ 10。
[0011]本发明还提供一种组合物,特别是一种药物组合物,其包含纳米颗粒,其中所述纳米颗粒包含嵌段共聚物和任选的一种或多种活性剂,并且其中:
[0012](i)所述嵌段共聚物包含嵌段A和D ;
[0013](ii)嵌段A由包含单体单元B和C的第一聚合物构成,其中B是碳原子总数≤30
的脂肪族二羧酸并且C是二羟基或二氨基单体;
[0014](iii)嵌段D由包含烃链的第二聚合物构成,所述烃链含有酯或醚键并且羟基数≥10 ;并且
[0015](iv)所述组合物任选地还包含载体。
[0016]本发明还提供一种组合物,所述组合物包含以下各项的混合物:(i)包含一种本文中所述的嵌段共聚物的纳米颗粒和Qi)包含本文中所述的一种不同的嵌段共聚物的纳米颗粒。
[0017]本发明的纳米颗粒能够加载具有宽范围变化的极性的活性剂。如果存在,所述活性剂可以被结合到纳米颗粒中,例如通过吸附、吸收或包埋,并且从所述纳米颗粒释放,例如通过解吸、扩散、聚合物侵蚀、酶介导释放、用于加速释放的纳米颗粒崩解,或这些机制的
一些组合。
[0018]所述活性剂可以存在于纳米颗粒内或在纳米颗粒的表面上。活性剂和纳米颗粒之间的相互作用通常是非共价的,例如氢键、静电相互作用或物理包封。然而,在备选实施方案中,活性剂和纳米颗粒通过共价键或连接物(linker)连接。
[0019]本发明的纳米颗粒的另一个优势是防止结合的活性剂的突释。在施用后活性剂从受控递送系统的早期突释可以导致活性剂的毒性水平或阻止活性剂到达其靶向的目的位点。所述聚合物的生物可降解性,并因此纳米颗粒的释放特征(profile),可以通过改变以下各项来调节:嵌段A和D中的单体的数量;各嵌段的分子量的比;聚合物的总分子量;或聚合物的亲水性。例如,可以改变嵌段A的长度以获得更长或更短的释放特征。赋形剂如聚山梨醇酯、脱水山梨糖醇与脂肪酸的酯、糖类和脂酶也可以包封在纳米颗粒内。
[0020]所述纳米颗粒还可以包含崩解剂、超级崩解剂或润湿剂以有助于活性剂的释放。备选地,所述纳米颗粒可以包括水溶性分子,所述水溶性分子溶解从而在纳米颗粒中形成活性剂可以通过其释放的孔隙或通道。
[0021]本发明的纳米颗粒的另一个优势在于,它们允许与pH无关的释放以致活性剂的释放不受身体中、例如在胃肠道中的不同PH环境的影响。与pH无关的释放在本文中定义为在pH为I至9的环境中活性剂从所述纳米颗粒扩散的速率的变化小于10%。
[0022]所述纳米颗粒是生物相容的并且充分耐受它们的使用环境,以致足量的纳米颗粒在进入哺乳动物身体后基本上保持完整从而能够到达所需靶标并实现所需生理学作用。本文中所述的嵌段共聚物和它们的组成嵌段是生物相容的并且优选是生物可降解的。
[0023]如本文使用的,术语“生物相容的”描述为可以插入或注入活受试者中而不引起有害反应的物质。例如,它不会引起不能被充分控制的炎症或免疫系统的极性排斥。应理解,〃生物相容的〃是一个相对术语,并且预期甚至对于与活组织高度相容的物质也会有一定程度的免疫反应。用来评估物质的生物相容性的体外试验是将其暴露于细胞;生物相容的物质通常在中等浓度(例如,50 μ g/106个细胞)不会导致显著的细胞死亡(例如,>20%)。
[0024] 如本文使用的,术语“生物可降解的”描述这样的聚合物,其在生理环境中降解而形成可以被细胞再用或在没有显著毒性作用下处置的单体和/或其他非聚合部分。降解可以是生物学的,例如通过酶活性或细胞机构,或者可以是化学的。聚合物的降解可以以变化的速率进行,其中半衰期的数量级为天、周、月或年,这取决于所使用的聚合物或共聚物。
[0025]所述纳米颗粒还是血液相容的。血液相容性可以根据IS010993-4确定。包含本发明的纳米颗粒的组合物可以容易地制备为无内毒素的(优选地<2EU/ml,通过LimulusAmebocyte Lysate (LAL)试验)。而且,空的纳米颗粒显示低的细胞毒性(对癌细胞和非非癌细胞,优选地IC5(I>1 μ Μ,更优选地>1.0 μ Μ,更优选地>10.0 μ Μ,更优选地>lmM)。
[0026]如本文使用的,术语“纳米颗粒”是指直径为约I至约1000nm的固体颗粒。本发明的纳米颗粒的平均直径可以通过本领域已知的方法,优选通过动态光散射确定。尤其是,本发明涉及这样的纳米颗粒,其在使用用过滤水适当稀释的样品和合适仪器如来自Malvern Instruments (UK)的 Zetasizer? 仪器,根据标准测试方法 IS022412:2008 (累积量法A.1.3.2),以90°的散射角和在25°C的温度通过动态光散射进行分析时,是直径为约I至约1000nm的固体颗粒。当颗粒被说成具有x nm的直径时,通常存在在此平均值附近的颗粒的分布,但按数量计至少50%(例如,>60%、>70%、>80%、>90%或更多)的颗粒具有在范围X ±20%内的直径。
[0027]优选地,所述纳米颗粒的直径为约10至约1000nm,更优选地为约5至约500nm,更优选地为约50至约400nm,更优选地为约50至约150nm。备选地,所述纳米颗粒的直径为约I至约lOOnm。在一个实施方案中,所述纳米颗粒表现出的聚集度小于10%,优选地小于5%,优选地小于1%,并且优选地所述纳米颗粒基本上是非聚集的,如通过透射电子显微镜法确定的。
[0028]本发明的纳米颗粒可以提供在对于哺乳动物并且特别是人用途可接受的药物组合物中。它们通常被提供在载体中。所述载体通常是液体并且在组合物中形成连续相。因此,本发明的优选组合物是包含所述组合物的连续相的纳米颗粒在液体载体中的分散体。特别是,所述载体是在施用后允许将所述纳米颗粒运输到哺乳动物身体内的靶标的载体。所述载体可以是任何药用稀释剂或赋形剂,如本领域已知的。所述载体通常是药理学无活性的。优选地,所述载体是极性液体。特别优选的载体包括水和生理学可接受的含有盐和/或缓冲剂的水溶液,例如盐水或磷酸盐缓冲盐水。任选地,所述载体是生物学流体。液体载体可以通过例如冻干、蒸发或离心除去以储存,或者提供用于肺部或经鼻施用的粉剂,用于灌注用混悬剂的粉剂、或用于口服施用的片剂或胶囊。
[0029]载体的选择受诸如所预期的组合物的施用模式的因素的影响。例如,固体载体可以用来提供用于肺部或经鼻施用的粉剂、用于灌注用混悬剂的粉剂,或用于口服施用的片剂或胶囊;并且液体载体可以用来提供用于静脉内灌注的混悬剂或用于经鼻施用的溶液。
[0030]优选地,所述纳米颗粒构成所述组合物重量的约1%至约90%。更优选地,所述纳米颗粒构成所述组合物重量的约5%至约50%,更优选地,约10%至约30%。
[0031]本发明的纳米颗粒也可以用于不同于医药和药物递送的领域,例如农业、电子、涂料和粘合剂。
[0032]所述嵌段共聚物包含至少一个嵌段A和至少一个嵌段D。在存在多个嵌段A和/或嵌段D重复单元的情况下,在整个所述嵌段共聚物中各个嵌段A和/或各个嵌段D可以是相同的,或者在本文的定义范围内,所述嵌段共聚物可以包含不同类型的嵌段A和/或不同类型的嵌段D。嵌段A和D的同一性的变化包括单体的同一性(即,化学组成)和各个嵌段的分子量。类似地,在任何嵌段A中的各个单体B和C在整个嵌段中可以是相同的,或者该嵌段可以包含独立选择的落入本文中的定义范围内的单体。所述嵌段共聚物可以是无规嵌段共聚物。在一个优选的实施方案中,所述共聚物中的各个嵌段A具有相同的化学组分,和/或各个嵌段D具有相同的化学组成。优选地,各个嵌段A具有相同的分子量或分子量分布,和/或各个嵌段D具有相同的分子量或分子量分布。
[0033]优选地,所述嵌段共聚物是刚性-柔性嵌段共聚物,其中A是刚性嵌段并且D是柔性嵌段。所述嵌段共聚物可以仅通过嵌段A、或仅通过嵌段D,或通过嵌段A和D的混合物封端。优选地,所述嵌段共聚物在各个末端通过嵌段D封端。优选地,A是疏水嵌段并且D是未水嵌段。
[0034]优选地,A具有式-[(B-C)n-B]-或-[(C-B)n-C] _,其中η是至少I的数字且对于各个嵌段A被独立地选择。在A具有式-[(C-B)n-C]-的情况下,可以采用连接基团将嵌段A结合至嵌段D。连接基团可以是二羧酸。优选地,A具有式-[(B-C)n-B]-。优选地,η至少是5,更优选地为5至20,更优选地为5至15。 [0035]优选地,B含有2至20碳原子,更优选地2至15碳原子,更优选地4至10碳原子。备选地,B含有5至20碳原子,更优选地5至10碳原子。优选地,B是直链饱和二羧酸。B可以含有≥2个官能团。优选地,B选自包含以下各项的组:琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸和癸二酸,优选地选自戊二酸、己二酸、庚二酸、辛二酸、壬二酸和癸二酸,并且更优选地选自戊二酸和己二酸。在一个实施方案中,B是含有一个或多个碳碳双键的直链二羧酸,如马来酸、富马酸或戊烯二酸。
[0036]优选地,C是含有< 30个碳原子的脂肪族二胺或二醇,其优选地含有4至10个碳原子。优选地,C是直链脂肪族二醇,其优选地含有2至15,更优选地含有4至10个碳原子,更优选地为1,8-辛二醇。备选地,C是直链脂肪族二胺,优选地含有2至15、更优选地4至10个碳原子。
[0037]优选地,所述嵌段D选自以下各项的组:聚亚烷基二醇(特别是聚乙二醇)、聚酰胺型胺、多胺、多元醇及其组合。优选地,所述嵌段D选自聚亚烷基二醇,优选为聚乙二醇(PEG)。
[0038]所述聚合物D的分子量优选地为150 - 20, OOOkDa,更优选地1500 - 10, OOOkDa,更优选地2000 - 3000kDa。所述聚合物D的分子量优选地为150 - 20,OOODa,更优选地1500 - 10,0000&,更优选地2000 - 350003。所述聚合物D的分子量可以为150Da,200Da,300Da,400Da,600Da,1000Da,1450Da,1500Da,3350Da,4000Da,6000Da 或8000Da。
[0039]可以对所述嵌段的分子量进行选择以调控所述纳米颗粒特性如活性剂亲和性和所得的包封效率、活性剂释放动力学、水摄取和纳米颗粒降解。例如,可以改变嵌段A和D的相对平均长度以调控所述嵌段共聚物中的亲水性/亲脂性比并由此调控活性剂的释放特征。在一个实施方案中,η为5至20或5至15并且嵌段D具有分子量2500-5000Da。
[0040]本发明中采用的嵌段共聚物可以通过本领域已知的常规技术合成。一种优选的方法包括以下步骤:(i)使单体单元B与单体单元C反应,优选地以使得B位于所得嵌段A的末端的比例;(ii)使嵌段A与嵌段D反应以产生嵌段共聚物,优选地以使得D位于所得嵌段共聚物的末端的比例。所述反应可以例如通过使用微波照射(即,波长为1mm至Im)作为能量来源来进行。
[0041]本发明中采用的嵌段共聚物可以用来生产纳米颗粒。所述嵌段共聚物具有这样的优势,即它适合用于宽泛的各种各样的用于生产纳米颗粒的方法。本发明的纳米颗粒可以通过本领域已知的方法生产,这些方法可以分成两大类:(i)包括聚合反应的形成;和(ii)通过分散预形成的共聚物的形成。
[0042]包括聚合反应的纳米颗粒的形成可以进一步分成乳液和界面聚合。乳液聚合可以是有机的或含水的,这取决于连续相。
[0043]通过分散预形成的共聚物的纳米颗粒的形成可以包括以下技术:乳化/溶剂蒸发,溶剂置换和界面沉积,乳化/溶剂扩散,和通过增大盐浓度的沉淀。在这些技术中,所述嵌段共聚物首先被制备,然后进一步加工形成所述纳米颗粒。
[0044]所述方法可以利用用于生产纳米颗粒的界面浓缩、超临界流体加工技术、离子凝胶化或凝聚。
[0045]在本发明的纳米颗粒包含活性剂的情况下,所述活性剂可以在生产纳米颗粒期间存在,典型地其中所述活性剂存在于用于生产所述纳米颗粒的液体介质中。备选地,或另外地,所述活性剂可以在纳米颗粒制备后通过吸收到纳米颗粒中而被结合。
[0046]优选地,所述纳米颗粒通过使用溶剂置换和界面沉积技术分散预形成的共聚物而形成。所述溶剂置换方法(Fessi等Int.J.Pharmaceutics55,R1-R4(1989))已被用于形成纳米颗粒。Bilati等(Eur.J.Pharm.Sc1.24,67-75(2004))描述了已被本方法用以实现亲水药物的包封的方法。
[0047]所述溶剂置换法 不需要高的搅拌速率、超声处理或极高的温度。例如,它可以在25°C和搅拌速率为50-150rpm、更优选约IOOrpm的情况下进行。其特征在于没有油-水界面,这减少损害活性剂的可能性。该方法可以在以下情况下进行:不使用表面活性剂,并且不使用有机溶剂,所述有机溶剂可能是有毒的并因此如果超过可接受界限的残余物留在所述纳米颗粒中则与药物和兽医学应用不相容。
[0048]所述溶剂置换法使用可混溶并且构成扩散介质和分散介质的两种溶剂。优选地,所述共聚物和任选的所述活性剂在扩散介质(通常称为“溶剂”)中是可溶的但在分散介质(通常称为“非溶剂”)中都是不溶的。将所述共聚物和任选的所述活性剂溶解在扩散介质中并将所得溶液加入到分散介质中。任选地,所述分散介质包括表面活性剂。一旦所述扩散介质扩散到分散介质中,通过所述共聚物的快速去溶剂化发生纳米沉淀(nanoprecipitation),从而形成其中所述活性剂位于所述共聚物内的纳米颗粒。所述扩散介质优选被直接添加至所述分散介质,例如经由注射器,以避免在该方法中引入气-液界面。可获得各种方法用于将所述纳米颗粒与所述分散和扩散介质分离,例如,冻干,切向过滤(tangential filtration),离心和超速离心,或这些方法的组合。在一些情形中,例如当所述纳米颗粒较大时,离心是优选的。在一些情形中,例如在大批的制备中,所述纳米颗粒组合物可以通过切向过滤浓缩然后冻干。优选地,所述分散和扩散介质通过离心或旋转蒸发除去。所述颗粒任选被重悬在溶剂中以从纳米颗粒的表面除去粘附的活性剂。这种溶剂可以通过进一步的离心步骤除去。所述纳米颗粒可以最终重悬在合适的极性液体中。[0049]因此,一种用于制备本发明的纳米颗粒的优选方法(溶剂置法)包括:
[0050]i)将所述嵌段共聚物和任选的所述活性剂溶解在扩散介质中以形成第一溶液;
[0051]ii)将所述第一溶液与分散介质混合以形成包含所述嵌段共聚物和任选的所述活性剂的沉淀的纳米颗粒,和包含所述扩散和分散介质的液相;和
[0052]iii)将所述纳米颗粒与所述液相分离,
[0053]其中所述扩散介质包含所述嵌段共聚物和任选的所述活性剂在其中可溶的溶剂,其中所述分散介质包含所述嵌段共聚物和任选的所述活性剂在其中不可溶的溶剂,并且其中所述扩散介质和所述分散介质是可混溶的。
[0054]本发明的纳米颗粒可以在存在或不存在用于包封的活性剂下合成。所述嵌段共聚物是足够疏水的而在水中是不溶的并且能够与活性剂及其自身形成适当氢键以用于纳米颗粒形成。
[0055]一种用于制备本发明的组合物的优选方法包括所述用于制备纳米颗粒的方法,并且还包括以下步骤:
[0056]iv)将所述纳米颗粒重悬在载体中。
[0057]本发明还提供一种用于制备本文中定义的纳米颗粒和组合物的方法,其中所述方法包括使用包含所述活性剂的至少一种液体介质,优选地,其中所述活性剂溶解在其中。
[0058]本文中所述的溶剂置换法能够通过选择本文中使用的工艺参数和组分的性质而调控所述纳米颗粒的性质。特别是,可以控制纳米颗粒尺寸、多分散性、电势、活性剂包封效率、活性剂包埋(entr apment)、活性剂的释放特征以及纳米颗粒的降解特征。所述ζ -电势优选地为_45mV至+20mV,更优选地为约_40mV至约_20mV。备选地所述ζ -电势可以为-20mV至+20mV。
[0059]本文中,活性剂包封效率是指结合到纳米颗粒中的活性剂占制备含活性剂的纳米颗粒的方法中使用的总活性剂的重量百分比。其通常多达并且包括95%,更典型地为70%至95%。
[0060]本文中,活性剂包埋是指活性剂在载有活性剂的纳米颗粒中的重量百分比。活性剂包埋优选为至少2重量%,更优选地为至少5重量%,更优选地为至少10重量%并且典型地为2重量%至20重量%,更优选地为5重量%至20重量%,更优选地为10重量%至20
重量%。
[0061]在生产本发明的纳米颗粒中采用的嵌段共聚物的一个优势是,它允许高的活性剂包埋。活性剂包埋大于之前利用其他纳米颗粒证实的活性剂包埋。例如在通过溶剂置换法生产本发明的纳米颗粒的情况下,活性剂包埋为I至10重量%或2至5重量%,而通过溶剂置换制备本领域已知的纳米颗粒允许~I重量%的包埋。优选地,活性剂包埋为>4重量%。在通过双乳液法生产本发明的纳米颗粒的情况下,活性剂包埋通常为至少5重量%并且优选地为至少10重量%。相反,通过双乳液法由其他材料制备纳米颗粒提供仅约为3-4重量%的活性剂包埋。
[0062]本发明的纳米颗粒可以在高活性剂含量(例如>5%)和高包封效率(例如70-95%)的情况下制成。
[0063]非溶剂、溶剂:非溶剂比、聚合物浓度、溶解的药物的百分比和将纳米颗粒与介质分离的方法的变化可以用来调控这些性质。[0064]所述溶剂合适地选自其中所述聚合物和任选的所述活性剂可溶的液体。其优选是极性的、非质子溶剂。优选的溶剂包括丙酮、甲乙酮、甲基丙基酮、乙腈、二甲基甲酰胺、二甲亚砜、2-吡咯烷酮和N,N-二甲基乙酰胺或它们的混合物。所述非溶剂合适地选自所述聚合物和任选的所述活性剂在其中不溶的液体。优选的非溶剂包括水、甲醇和乙醇,或它们的混合物。在欧洲药物代理指南参考号(European Medicines Agency Guidelines ReferenceNumber) EMA/CHMP/ICH/82260/2006中被视为可接受的任何物质可以用作溶剂或非溶剂。可以使用缓冲剂来获得这样的PH,在该pH活性剂是不可溶的。所述非溶剂的同一性影响所获得的纳米颗粒的尺寸。所述溶剂和非溶剂优选地以1:1至1:50溶剂:非溶剂,更优选地1:2至1:20,更优选地1:10的体积比存在。
[0065]扩散介质中的嵌段共聚物的浓度没有限制。然而,优选地该浓度为I至1000mg/ml,更优选地为5至100mg/ml,更优选地为10至50mg/ml,更优选地为20mg/ml。如果聚合物浓度太高,则这会阻止纳米颗粒的形成。
[0066]活性剂或(在存在超过一种的情况下)每一种活性剂在扩散或分散介质中的浓度优选为I至500mg/ml,更优选为5至100mg/ml,更优选为10至50mg/ml,更优选为20mg/ml。更高的活性剂浓度导致更高的活性剂包封效率和更高的活性剂包埋。
[0067]用于制备所述纳米颗粒的另一种方法包括:
[0068]i)将所述嵌段共聚物溶解在不可与水混溶的溶剂中;
[0069]ii)将任选的活性剂溶解在可与水混溶的溶剂中;
[0070]iii)形成油包水乳液;和
[0071]iv)蒸发第一溶剂以形成纳米颗粒;
[0072]其中所述不可与水混溶的溶剂和所述可与水混溶的溶剂是不可混溶的。
[0073]用于制备纳米颗粒的另一种方法(双乳液法)包括:
[0074](i)将所述嵌段共聚物溶解在不可与水混溶的溶剂中;
[0075](ii)将任选的所述活性剂溶解在可与水混溶的溶剂中;
[0076](iii)形成油包水乳液;
[0077](iv)将所述油包水乳液分散在含有聚合物表面活性剂的可与水混溶的溶剂中;
[0078](V)形成水包油包水乳液;和
[0079](vi)过滤所述水包油包水乳液以获得纳米颗粒;
[0080]其中所述不可与水混溶的溶剂和所述可与水混溶的溶剂是不可混溶的。
[0081]用于制备纳米颗粒的另一种方法(改进的双乳液法)包括以下步骤:
[0082](i)将所述嵌段共聚物溶解在不可与水混溶的溶剂中;
[0083](ii)将任选的所述活性剂溶解在可与水混溶的溶剂中;
[0084](iii)形成水包油乳液;
[0085](iv)将所述水包油乳液分散在含有聚合物表面活性剂的不可与水混溶的溶剂中;
[0086](V)形成油包水包油乳液;和
[0087](vi)过滤所述油包水包油乳液以获得纳米颗粒;
[0088]其中所述不可与水混溶的溶剂和所述可与水混溶的溶剂是不可混溶的。
[0089]本文中,“活性剂”是指当施用至动物时引起生物学作用的生物活性或治疗部分。预期需要递送至哺乳动物身体的任何活性剂与本发明的纳米颗粒联合或结合。本发明的纳米颗粒可以包含一种或多种活性剂,并且在一个实施方案中仅包含一种活性剂。所述活性剂可以是亲脂的或亲水的并且可以是天然或合成的有机或无机实体、蛋白质(包括抗体,抗体片段和干扰素)、肽、核酸、脂质或多糖。优选地所述至少一种活性剂选自包含紫杉醇(paclitaxel)和多西他赛(docetaxel)的组。优选地所述至少一种活性剂包括紫杉醇。
[0090]当本发明的纳米颗粒已结合了活性剂时,所述纳米颗粒显示有利的特性,例如,相比于单独的活性剂的类似或更高的效力。在所述活性剂是细胞毒性剂、例如紫杉醇的情况下,所述纳米颗粒显示类似或更高的抗肿瘤活性但对健康细胞的毒性类似或降低。
[0091]当通过溶剂置换法生产所述纳米颗粒时,所述活性剂的同一性仅受其在扩散介质中的溶解性限制。如果该溶解性太高,则它将不会结合到所述纳米颗粒中。然而,在生产本发明的纳米颗粒中采用的嵌段共聚物的一个优势是,它允许增大可以被包封的药物的范围。因此,所述活性剂优选具有的1gP值为-1.0至+5.6。例如,1gP值为+3.0至+5.6的疏水活性剂可以用于本发明。也可以使用1gP值为-1.0至+3.0的亲水活性剂。
[0092]所述纳米颗粒可以包含两种以上活性剂的组合。例如,多于一种的活性剂可以结合到所述纳米颗粒中,和/或多于一种的活性剂可以粘附至所述纳米颗粒的表面。包含第一活性剂(或活性剂的第一混合物)的纳米颗粒和包含第二活性剂(或活性剂的第二混合物)的纳米颗粒的混合物在本发明的范围内。
[0093]所述纳米颗粒可以包含第一活性剂部分和第二活性剂部分。所述第一活性剂部分可以结合到所述纳米颗粒内而所述第二活性剂部分可以吸附到所述纳米颗粒的表面上。活性剂或活性剂部分可以具有特定的释放特征,例如,它可以是快速释放、非快速释放或延迟释放。优选地,释放的速率在至少80%的释放期内,更优选在至少90%的释放期内约为零级(即,与时间无关)。
[0094]所述活性剂自所述纳米颗粒的释放特征可以通过透析法确定。例如,在含有IM水杨酸钠的含水介质中,将Iml的载有活性剂的纳米颗粒溶液(含有0.1mg活性剂)引入到透析袋(MWC0 14000 Da,含有IM水杨酸钠,通过透析法)中并将末端密封的透析袋在37°C在IOOrpm搅拌下完全浸没在50ml的IM水杨酸钠溶液中达96h。以适当的时间间隔,取出0.2ml等分试样并用相等体积的新鲜介质替换。活性剂在样品中的浓度通过HPLC确定,其中对体积置换进行校正。
[0095]术语“快速释放”是指,例如,在12小时后,至少50%、优选地至少70%、更优选地至少90%的活性剂或活性剂部分被释放。备选地,它可以指,在24小时后,至少50%、优选地至少70%、更优选地至少90%的活性剂或活性剂部分被释放。
[0096]术语“非快 速释放”是指,例如,在12小时后,少于50%、优选地少于70%、更优选地少于90%的活性剂或活性剂部分被释放。备选地,它可以指,在24小时后,少于50%、优选地少于70%、更优选地少于90%的活性剂或活性剂部分被释放。
[0097]术语“延迟释放”是指,例如,在24小时后,少于50%、优选地少于40%、更优选地少于30%的活性剂或活性剂部分被释放。备选地,它可以指,在48小时后,少于50%、优选地少于40%、更优选地少于30%、甚至更优选地少于20%的活性剂或活性剂部分被释放。
[0098]第一活性剂部分可以具有与第二活性剂部分不同的释放特征。例如,第一活性剂部分可以是延迟释放部分而第二活性剂部分可以是快速释放部分,或反之亦然。第一活性剂部分中包含的活性剂与第二活性剂部分中包含的活性剂可以是相同的或不同的。
[0099] 例如,纳米颗粒可以包含结合到纳米颗粒内的第一活性剂部分和吸附在纳米颗粒表面上的第二活性剂部分,其中所述第一活性剂部分和所述第二活性剂部分包含相同的活性剂。在这种情形中,第一活性剂部分可以是延迟释放部分并且第二活性剂部分可以是快速释放部分。在这种情形中,优选地,小于30%的所述延迟释放部分在48小时后释放。
[0100]在第一活性剂部分和第二活性剂部分包含相同活性剂的情况下,第一活性剂部分与第二活性剂部分的比率(重量:重量)可以为20:1至1:1,10:1至1:1,2:1至1:1,1:1至至 10:1 或 1:1 至 20:1。
[0101]备选地,(i)具有特定活性剂释放特征的纳米颗粒和(ii)具有不同活性剂释放特征的纳米颗粒的混合物在本发明的范围内。具有不同释放特征的纳米颗粒可以包含不同或相同的活性剂。
[0102]本发明还提供一种用于制备包含本文中定义的一种或多种活性剂的纳米颗粒的方法,所述方法包括以下步骤:
[0103]i)制造纳米颗粒;
[0104]ii)将所述纳米颗粒与活性剂的浓溶液温育;和
[0105]iii)将包含活性剂的纳米颗粒与液相分离。
[0106]本发明还提供一种用于制备其中纳米颗粒包含一种或多种活性剂的本发明的组合物的方法,所述方法包括以下步骤:
[0107]i)制造纳米颗粒;
[0108]ii)将所述纳米颗粒与所述活性剂的浓溶液温育;
[0109]iii)将包含所述活性剂的纳米颗粒与液相分离;和
[0110]iv)将所述纳米颗粒重悬在载体中,
[0111]本发明的纳米颗粒可以有利地包含一种或多种表面改性剂,用于调控其药理学性质。预期用于本发明的表面改性剂包括诊断剂,靶向剂,成像剂和治疗剂。可以使用带正电的表面改性剂。表面改性剂可以是多肽,多核苷酸,多糖,脂肪酸,脂质,以及天然和合成的小分子。包含不同表面改性剂的纳米颗粒的混合物在本发明的范围内。
[0112](i)包含表面改性剂(例如是用于血脑屏障的靶向剂的表面改性剂)的纳米颗粒和(ii)不包含表面改性剂的纳米颗粒的混合物在本发明的范围内。这样的混合物可用来治疗脑中的继发性肿瘤和身体的另一部分如肺或乳腺中的原发性肿瘤。
[0113]靶向剂将所述纳米颗粒引向所需靶标,细胞,组织或生物标记,并且可以识别细胞表面上的疾病相关生物标记物。它们可以包括信号肽、抗体和适配体。靶向剂将根据靶标而变化并且合适的靶向剂对于技术人员来说容易获得。优选的靶向剂包括巯基化聚合物(例如以改善粘膜粘附性),血脑屏障(BBB)信号肽和细胞粘附肽,包括但不限于RGD,RGDC,RGDV和RGDS肽(例如用于靶向整联蛋白受体)。所述表面改性剂可以是肽,优选SEQ ID#1。
[0114]本发明的纳米颗粒能够越过BBB。在本发明的纳米颗粒包含是BBB信号肽的表面改性剂(即,祀向剂)的情况下,信号纳米颗粒可以充当纳米梭(nanoshuttle),越过BBB递送多个活性剂部分。优选的BBB信号肽包括这样的肽,所述肽包含在表1中以单字母编码显示的SEQ ID#1、2、3、4、5、6、7和8(5-TAMRA表示5-羧基四甲基罗丹明;ΒΙ0表示生物素,CARB表示糖)。[0115]表1
[0116]
【权利要求】
1.一种纳米颗粒,所述纳米颗粒包含嵌段共聚物和任选的一种或多种活性剂,其中: (i)所述嵌段共聚物包含嵌段A和D ; (?)嵌段A由包含单体单元B和C的第一聚合物构成,其中B是碳原子总数< 30的脂肪族二羧酸并且C是二羟基或二氨基单体;(iii)嵌段D由包含烃链的第二聚合物构成,所述烃链含有酯或醚键并且羟基数> 10。
2.根据权利要求1所述的纳米颗粒,其中A具有式-[(B-C)n-B]_,其中η是至少1的数字且每个嵌段A的η被独立地选择
3.根据权利要求1或2所述的纳米颗粒,其中C是包含4至10个碳原子的直链脂肪族二醇。
4.根据任一在前权利要求所述的纳米颗粒,其中C是1,8-辛二醇。
5.根据任一在前权利要求所述的纳米颗粒,其中B包含4至10个碳原子。
6.根据权利要求5所述的纳米颗粒,其中B包含5至10个碳原子。
7.根据任一在前权利要求所述的纳米颗粒,其中所述聚合物D选自由以下各项组成的组:聚乙二醇、聚酰胺型胺、多胺、多元醇及其组合。
8.根据任一在前权利要求所述的纳米颗粒,其中所述纳米颗粒结合了至少一种活性剂。
9.根据任一在前权利要求所述的纳米颗粒,其中所述至少一种活性剂具有的1gP值为-1.0 至 +5.6。
10.根据任一在前权利要求所述的纳米颗粒,其中所述至少一种活性剂选自包含多西他赛和紫杉醇的组。
11.根据任一在前权利要求所述的纳米颗粒,其中所述纳米颗粒包含适用于将一种或多种表面改性剂共价连接至所述纳米颗粒的一种或多种偶联剂。
12.根据任一在前权利要求所述的纳米颗粒,其中所述纳米颗粒联合或结合了至少一种表面改性剂。
13.根据权利要求11所述的纳米颗粒,其中所述至少一种表面改性剂选自由以下各项组成的组:诊断剂、靶向剂、成像剂和治疗剂。
14.根据权利要求11或12的纳米颗粒,其中所述至少一种表面改性剂选自包含以下各项的组:巯基化聚合物、荧光基团、BBB信号肽和RGDS。
15.根据权利要求11、12或13所述的纳米颗粒,其中至少一种表面改性剂是包含SEQID#1、2、3 或 4 的肽。
16.根据权利要求10、11、12、13或14所述的纳米颗粒,其中所述表面改性剂经由选自由以下各项组成的组的偶联剂被共价连接:
17.根据权利要求10至14中任一项所述的纳米颗粒,其中所述偶联剂是式(IV)的基团:
18.—种组合物,所述组合物包含任意在前权利要求所述的纳米颗粒和载体。
19.根据权利要求17所述的组合物,其是药物组合物,其中所述载体是药用稀释剂或赋形剂。
20.根据权利要求17或18所述的组合物,其中所述载体是极性液体。
21.根据权利要求17-19中任一项所述的组合物,其中所述载体是生物学流体。
22.一种用于制备权利要求1-16所述的纳米颗粒的方法,所述方法包括: i)将所述嵌段共聚物和任选的所述活性剂溶解在扩散介质中以形成第一溶液; ii)将所述第一溶液与分散介质混合,以形成包含所述嵌段共聚物和任选的所述活性剂的沉淀的纳米颗粒和包含所述扩散和分散介质的液相;和 iii)将所述纳米颗粒与所述液相分离, 其中所述扩散介质包含其中所述嵌段共聚物和任选的所述活性剂可溶的溶剂,其中所述分散介质包含其中所述嵌段共聚物和任选的所述活性剂不可溶的溶剂,并且其中所述扩散介质和所述分散介质是可混溶的。
23.一种用于制备根据权利要求17-20中任一项所述的组合物的方法,所述方法包括权利要求21所述的步骤并且还包括以下步骤: iv)将所述纳米颗粒重悬在载体中。
24.一种用于制备权利要求1至20所述的含有活性剂的纳米颗粒和组合物的方法,其中所述方法包括使用至少一种液体介质,所述至少一种液体介质包含溶解在其中的所述活性剂。
25.一种用于制备权利要求1-16所述的含有活性剂的纳米颗粒的方法,所述方法包括以下的步骤: i)制造纳米颗粒; ii)将所述纳米颗粒与所述活性剂的浓溶液一起温育;和 iii)将包含所述活性剂的所述纳米颗粒与所述液相分离。
26.一种用于制备权利要求17至20中任一项所述的含有活性剂的组合物的方法,所述方法包括权利要求24所述的步骤并且还包括以下步骤: iv)将所述纳米颗粒重悬在载体中。
【文档编号】A61K9/51GK103635182SQ201280022200
【公开日】2014年3月12日 申请日期:2012年5月9日 优先权日:2011年5月9日
【发明者】萨尔瓦多·巴路士·戈麦斯, 普里米亚诺·皮奥·迪毛罗 申请人:萨里亚化学研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1