一种靶向多肽纳米探针及其制备方法和应用

文档序号:10601703阅读:1151来源:国知局
一种靶向多肽纳米探针及其制备方法和应用
【专利摘要】本发明公开了一种靶向多肽纳米探针,此靶向多肽纳米探针能够特异性靶向动脉粥样斑块及血栓形成部位,可在该靶向部位进行磁共振成像并准确反映动脉粥样斑块在活体内发生以及发展的分子生物学过程,实现了动脉粥样斑块的精确可视化,为早期预防、诊断和治疗动脉粥样硬化疾病提供了更为全面的分子信息。此外,本发明还公开了此靶向多肽纳米探针的制备方法。
【专利说明】
一种靶向多肽纳米探针及其制备方法和应用
技术领域
[0001] 本发明涉及造影剂技术领域,具体而言,涉及一种靶向多肽纳米探针及其制备方 法和应用。
【背景技术】
[0002] 目前,动脉粥样硬化性心脑血管疾病是一类严重危害人类健康,影响生活质量的 疾病,己成为我国与西方人口死亡和致残的主要病因。对动脉粥样斑块及血栓形成部位的 动态成像监测已成为动脉粥样硬化性疾病的治疗提供有用信息的重要技术手段。而现有的 用于对动脉粥样斑块及血栓形成部位成像的造影剂其靶向性差、不能准确反映脉粥样斑块 及血栓形成部位的动态进展或变化过程。

【发明内容】

[0003] 本发明的目的在于提供一种靶向多肽纳米探针,此靶向多肽纳米探针可适用于磁 共振成像,其能够特异性靶向动脉粥样斑块及血栓形成部位,准确反映动脉粥样斑块在活 体内发生、发展的分子生物学过程。
[0004] 本发明的另一目的在于提供一种靶向多肽纳米探针的制备方法,以制得靶向多肽 纳米探针,此靶向多肽纳米探针可用于磁共振成像,其能够特异性导向动脉粥样斑块及血 栓形成部位,准确反映动脉粥样斑块在活体内发生、发展的分子生物学过程。
[0005] 本发明的又一目的在于提供的靶向多肽纳米探针应用来制备用于针对动脉粥样 斑块成像的造影剂。
[0006] 本发明解决其技术问题是采用以下技术方案来实现的。
[0007] -种靶向多肽纳米探针,其由超顺磁性氧化铁纳米颗粒经偶联剂表面修饰后,再 与多肽偶联得到,多肽的氨基酸序列如SEQ ID NO. 1所示或如SEQ ID NO.2所示或如SEQ ID NO.3所示或如SEQ ID NO.4所示。
[0008] -种靶向多肽纳米探针的制备方法,其包括:
[0009] 制备超顺磁性氧化铁纳米颗粒的胶体溶液,其中,超顺磁性氧化铁纳米颗粒偶联 剂表面修饰;
[0010] 制备多肽,多肽的氨基酸序列如SEQ ID NO. 1所示或如SEQ ID NO.2所示或如SEQ ID NO. 3所示或如SEQ ID NO.4所示;以及
[0011] 将多肽加入到胶体溶液中,进行偶联反应。
[0012] 本发明实施例提供的靶向多肽纳米探针及其制备方法和应用有益效果是:将具有 如SEQ ID NO. 1所示或如SEQ ID NO.2所示或如SEQ ID NO.3所示或如SEQ ID NO.4所示的 氨基酸序列的多肽与经偶联剂表面修饰后的超顺磁性氧化铁纳米颗粒偶联,偶联后所得到 的靶向多肽纳米探针能够特异性靶向动脉粥样斑块及血栓形成部位,可在该靶向部位进行 磁共振成像。进而可准确反映动脉粥样斑块在活体内发生以及发展的分子生物学过程,实 现了动脉粥样斑块的精确可视化,为早期预防、诊断和治疗动脉粥样硬化疾病提供了更为 全面的分子信息。
【附图说明】
[0013] 为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附 图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对 范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这 些附图获得其他相关的附图。
[0014] 图1为本发明实施例1和2提供多肽偶联超顺磁性氧化铁纳米颗粒的结构模式图;
[0015] 图2为本发明实施例1的超顺磁性氧化铁纳米颗粒(PEG-SPIONs)的TEM图;
[0016] 图3为本发明实施例1的EGFl多肽偶联超顺磁性氧化铁纳米颗粒(EGF1-PEG-SPIONs)的凝胶电泳图;
[0017] 图4为本发明实施例2的El多肽偶联超顺磁性氧化铁纳米颗粒(El-PEG-SPIONs)的 TEM 图;
[0018] 图5为本发明实施例2的El多肽偶联超顺磁性氧化铁纳米颗粒(El-PEG-SPIONs)的 磁饱和曲线图;
[0019] 图6为本发明实施例2的El多肽偶联超顺磁性氧化铁纳米颗粒(El-PEG-SPIONs)的 聚丙烯酰胺凝胶电泳图;
[0020] 图7为本发明实施例3的超顺磁性氧化铁纳米颗粒(PEG-SPIONs)和EGFl多肽偶联 超顺磁性氧化铁纳米颗粒(EGFl-PEG-SPIONs)的T2加权像(T2-weighted image,T2WI);
[0021] 图8为本发明实施例3的超顺磁性氧化铁纳米颗粒(PEG-SPIONs)和EGFl多肽偶联 超顺磁性氧化铁纳米颗粒(EGFl-PEG-SPIONs)的T2弛豫率;
[0022]图9为本发明实施例3的小鼠动脉粥样硬化模型主动脉切片HE染色图;
[0023] 图10为本发明实施例3的小鼠动脉粥样硬化模型主动脉切片油红0染色图;
[0024] 图11为本发明实施例3的小鼠动脉粥样硬化模型主动脉切片免疫组化图;
[0025] 图12为本发明实施例3的小鼠动脉粥样硬化模型在注射不同浓度的超顺磁性氧化 铁纳米颗粒(PEG-SPIONs)和EGFl多肽偶联超顺磁性氧化铁纳米颗粒(EGFl-PEG-SPIONs)后 不同时间的T2WI图;
[0026] 图13为本发明实施例3的小鼠动脉粥样硬化模型尾静脉注射EGFl多肽偶联超顺磁 性氧化铁纳米颗粒(EGFl-PEG-SPIONs)并完成核磁共振扫描后的主动脉切片普鲁士蓝染色 图;
[0027] 图14为本发明实施例3的小鼠动脉粥样硬化模型尾静脉注射超顺磁性氧化铁纳米 颗粒(PEG-SPIONs)并完成核磁共振扫描后的主动脉切片普鲁士蓝染色图。
【具体实施方式】
[0028] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中 的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建 议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产 品。
[0029] 下面对本发明实施例的靶向多肽纳米探针和靶向多肽纳米探针的制备方法进行 具体说明。
[0030] 本发明实施例提供的靶向多肽纳米探针由超顺磁性氧化铁纳米颗粒 (Superparamagnetic iron oxide nanoparticles,SPIONs)经偶联剂表面修饰后,再与多 肽偶联得到。
[0031] 其中,多肽的氨基酸序列如SEQ ID NO. 1所示或如SEQ ID NO. 2所示或如SEQ ID NO.3所示或如SEQ ID NO.4所示。
[0032] 优选地,偶联剂为经羧基化的聚乙二醇(Polyethylene glycol,PEG) dPEG是一种 水溶性高分子材料,由于其在水中具有很低的界面自由能,而且分子链柔性好、活动性高, 所以具有良好的生物相容性,在血液中不引起凝血,溶血等不良反应,不容易被巨噬细胞、 抗体等消灭,在血液循环中可以存在的更久。因此,被PEG修饰的纳米颗粒能够很顺利地靶 向到相应的组织部位。PEG再经过羧基化修饰后,其末端的羧基可与多肽的氨基进行偶联, 确保多肽的活性不受影响。PEG对SPIONs表面修饰后,得到羧基化聚乙二醇修饰的超顺磁性 氧化铁纳米颗粒(PEG-SPIONs)。
[0033]当然,偶联剂也可以是羧基化的葡萄糖、聚乙烯醇、聚甲基丙烯酸甲脂(PMMA)、硅 烷以及无水硅酸等,可根据实际使用情况选用。
[0034] 本发明实施例提供的靶向多肽纳米探针的制备方法包括以下步骤:
[0035] 步骤Sl:制备超顺磁性氧化铁纳米颗粒
[0036] 制备经偶联剂表面修饰的超顺磁性氧化铁纳米颗粒的胶体溶液,即磁流体。超顺 磁性氧化铁纳米颗粒以其超顺磁特性在磁共振成像中具有独特的造影功能。相对于其他的 造影剂,以超顺磁性氧化铁纳米颗粒作为造影剂,具有更佳的灵敏性以及更好的弛豫性。其 对MR影像的作用主要是通过缩短横向弛豫时间即T2时间,从而降低目标区域的T2信号强 度,表现出更强的MR造影增强效果。
[0037]优选地,偶联剂为羧基化的聚乙二醇
[0038]以羧基化的聚乙二醇作为偶联剂对超顺磁性氧化铁纳米颗粒进行表面修饰,一方 面提高超顺磁性氧化铁纳米颗粒的亲水性,增加其稳定性以及生物相容性;另一方面羧基 化的聚乙二醇可提供羧基,为生物大分子偶联提供可能。因此,羧基化聚乙二醇表面修饰后 的超顺磁性氧化铁纳米颗粒与多妝的氣基进彳丁偶联反应,可提尚多妝与超顺磁性氧化铁纳 米颗粒偶联成功的概率,以及确保偶联后的多肽的活性不受影响。
[0039]具体的,采用高温热解法,以铁盐为原料例如是FeC13和FeC12,制得以Fe304为核 心的超顺磁性氧化铁纳米颗粒;再用羧基化聚乙二醇对其进行表面修饰,也就是功能化修 饰,在超顺磁性氧化铁纳米颗粒的表面形成亲水膜,转移到水相后,得到经羧基化的聚乙二 醇表面修饰的超顺磁性氧化铁纳米颗粒(PEG-SPIONs)的胶体溶液。
[0040] 步骤S2:制备多肽
[00411 制备多肽,多肽的氨基酸序列如SEQ ID NO. 1所示或如SEQ ID NO. 2所示或如SEQ ID NO.3所示或如SEQ ID NO.4所示。
[0042]具体的,采用合成法或宿主细胞重组表达多肽再纯化的方法得到多肽,得到多肽 后保存于_20°C。进行偶联反应前,可将多肽溶于pH7.4的磷酸缓冲盐溶液(PBS)中,再经过 滤除菌以防止多肽被降解以及氧化。
[0043]具有如SEQ ID NO.1所示氨基酸序列的多肽,即为凝血因子类表皮生长因子I区多 肽(EGFl),该EGFl多肽能够靶向任何高表达组织因子(Tissue Factor,TF)的组织部位,由 于动脉粥样斑块部位高表达TF,因此,该多肽能够特异性靶向动脉粥样斑块部位,且特异性 强。
[0044] TF以不同形式存在于各种细胞和血液循环中,依照所起功能不同可分为"解密型" TF与"静密型"TF。"解密型"TF也就是处于活化状态的TF,其主要在于血液循环中且量比较 少;"静密型"TF也就是处于非活化状态的TF,其主要存在于血管外膜。当动脉粥样斑块具有 破裂倾向时,局部的TF能迅速释放并活化,ΒΓ解密型"TF,并结合血液中的凝血因子FWa等 以启动凝血。而"静密型" TF发挥最大促凝潜能需要活化,这个活化过程被称为"解密"。
[0045] 其中,"解密型"TF促凝活性随着动脉粥样硬化斑块的增多而增强,作为凝血途径 与炎症反应中的共同因子,其在动脉粥样硬化斑块的发展和不稳定斑块的形成具有重要作 用,是早期发现易损斑块的理想靶标。
[0046]然而,目前临床有关TF的检测只能做到定量循环血浆中总游离TF水平即"解密型" TF和"静密型" TF的水平。目前,缺乏能够特异靶向"解密型" TF的造影剂,来准确评估动易损 斑块。
[0047] 优选地,制备具有如SEQ ID NO. 2所示氨基酸序列的多肽,即El多肽,该El多肽凝 血因子类表皮生长因子I区多肽(EGFl)的衍生肽,该El多肽同样具有靶任何高表达TF的组 织部位的能力,该El多肽也能够特异性靶向动脉粥样斑块部位。此外,相对于EGFl多肽,该 El多肽能够靶向表达"解密型" TF。为利用El多肽监测"解密型" TF的活化状态来评估动脉粥 样斑块提供了可靠途径。且该El多肽检测的分子量小,有利于提高偶联该El多肽后的PEG-SPIONs的穿透力,降低其免疫原性,减少体内蓄积;同时El多肽的构象敏感性高、能够准确 靶向"解密型"TF,且对正常人血浆凝血功能无影响无副作用。此外,也可以制备具有如SEQ ID NO.3所示氨基酸序列的E2多肽或如SEQ ID NO.4所示氨基酸序列的E3多肽。E2多肽和E3 多肽的功能与El多肽类似,均能够靶向"解密型" TF。
[0048] 其中,El多肽、E2多肽以及E3多肽的序列均由发明人根据现有的技术资料,利用相 关分析软件,采用序列比对、骨架叠合、对接打分进行验证等方法从EGFl多肽的序列上剪接 所得。
[0049] 步骤S3:偶联
[0050]将多肽即EGFl多肽或El多肽或E2多肽或E3多肽与经偶联剂表面修饰后的超顺磁 性氧化铁纳米颗粒混合,进行偶联反应,以得到EGFl多肽偶联的偶联剂表面修饰的超顺磁 性氧化铁纳米颗粒(EGFl-PEG-SPIONs)或El多肽偶联的偶联剂表面修饰的超顺磁性氧化铁 纳米颗粒(El-PEG-SPIONs)或E2多肽偶联的偶联剂表面修饰的超顺磁性氧化铁纳米颗粒 (E2-PEG-SPI0NS)或E3多肽偶联的偶联剂表面修饰的超顺磁性氧化铁纳米颗粒(E3-PEG-SPIONs),也就是靶向多肽纳米探针。
[0051 ]具体的,首先,将步骤Sl中得到含有PEG-SPIONs的胶体溶液,分散于MES缓冲液(2-吗啉代乙磺酸缓冲液),得到分散液。
[0052]其中,胶体溶液与MES缓冲液的质量体积比为0.8~1.2:1。优选地,胶体溶液与MES 缓冲液的质量体积比为1:1。
[0053] 其中,MES缓冲液的pH为5.8~6.2。优选地,MES缓冲液的pH为6.0。
[0054]接着,往上述分散液中加入过量的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐 (EDC)和N-羟基硫代琥珀酰亚胺(NHS),进行活化处理,在摇床上80~100rpm/min、4°C条件 下活化反应30~45min。
[0055] EDC和NHS的主要作用在于,该两种试剂可对PEG-SPIONs的羧基进行活化,提高其 后续与多肽偶联反应的成功率。
[0056]然后,将活化处理后的分散液进行超滤离心处理,将分散液转移到超滤离心管(孔 径30KD),在5000~6000rpm/min、4°C条件下离心30~45min,以去除分散液中未参与活化反 应的EDC和NHS。
[0057]再接着,往分散液中加入多肽即EGFl多肽或El多肽或E2多肽或E3多肽,多肽的量 与上述胶体溶液的质量比为0.5~0.8:1,再在摇床上80~100rpm/min、4°C条件下进行偶联 反应12~16小时。
[0058]反应结束后,再进行超滤离心,将分散液转移到超滤管超滤离心管(孔径30KD)中, 在5000~6000rpm/min、4°C条件下离心30~45min。该步骤目的在于将没有偶联上的多肽滤 去,即得到靶向多肽纳米探针,也就是EGFl-PEG-SPIONs或El-PEG-SPIONs或E2-PEG-SPI0Ns 或E3-PEG-SPI0Ns。
[0059] 以下结合实施例对本发明的特征和性能作进一步的详细描述。
[0060] 实施例1 [0061 ] 制备EGFl多肽
[0062]采用化学合成法制备EGFl多肽,由杭州中肽生化有限公司合成,EGFl多肽的氨基 酉爱序列:Cys-Ala-Ser-Asn-Pro-Cys-Gln-Asn-Gly-Gly-Thr-Cys-Gln-Asp-His-Leu-Lys-Ser-Tyr-Val-Cys-Leu-Cys-Pro-Leu-Asp-Phe-Glu-Gly-Arg-Asn-Cys。冻干 EGFl 多肽保存 于-20。。。
[0063] 制备 PEG-SPIONs
[0064] 采用高温热解法,以铁盐为原料例如是FeC13和FeC12,制得以Fe304为核心的 SPIONs;用油酸包覆、再用羧基化的PEG对其进行表面修饰,转移到水相后,得到PEG-SPIONs 的胶体溶液。当然,该PEG-SPIONs胶体溶液也可在市面上直接购买。
[0065] 偶联
[0066]首先,将5mg的胶体溶液分散于5mL MES缓冲液中,得到PEG-SPIONs分散均匀的分 散液。其中,MES缓冲液PH为6,
[0067] 然后,往上述分散液中加入0.5mL EDC(浓度为10mg/mL)和ImL NHS(浓度为IOmg/ mL),在80rpm/min的摇床上、4°C,活化反应30min。
[0068]再然后,将进行活化反应后的分散液转移到超滤离心管(孔径30KD)中,在 5000rpm/min、4°C条件下离心30min,去除多余的EDC和NHS。
[0069] 接着,往超滤离心后的分散液中加入2.5mg EGF1多肽,在80rpm/min、4 °C条件下进 行偶联反应12小时。
[0070] 再接着,将反应结束后的分散液再次转移到新的超滤离心管中(孔径30KD),在 5000rpm/min、4°C条件下离心30min,滤去没有偶联上的EGFl多肽。收集滤液,该滤液即含有 EGFl-PEG-SPIONs,即靶向多肽纳米探针。EGFl-PEG-SPIONs的结构模式图如图1所示。保存 滤液,并对该EGFl-PEG-SPIONs进行相关指标检测。
[0071] 对EGFl-PEG-SPIONs的相关指标检测结果如下。
[0072] (1)偶联效率
[0073] 采用BCA试剂盒,按照说明书操作步骤,在紫外分光光度计(SMMADZU,UV-3600)检 测滤液中所含多肽的量。结果显示,5mL的滤液中,EGFl多肽浓度为2.07mg/mL。偶联效率为 82.8 %,即2.5mg EGFl多肽进行偶联反应后有2.07mg的EGFl多肽成功偶联上PEG-SPIONs。 此外,含EGFl-PEG-SPIONs的5mL滤液中的铁浓度为1.16mg/mL。
[0074] (2)EGFl-PEG_SPI0Ns的电镜尺寸、水动力尺寸(DLS hydrodynamic diameter)以 及Zeta电位检测
[0075]利用透射电子显微镜(TEM,Tokyo,JE0L2100)分别检测超顺磁性氧化铁纳米颗粒 (PEG-SPIONs)和EGFl-PEG-SPIONs的电镜尺寸大小;利用粒度电位分析仪(Malvern,ZETA SIZER,Nano ZS90)分别检测PEG-SPIONs和EGFl-PEG-SPIONs的Zeta电位和水动力尺寸 (DLS)大小,结果如表1和图2所示。
[0076] 表1EGFI-PEG-SPI ONs的电镜尺寸、DLS尺寸以及Ze ta电位检测结果
[0078]由图2可知,在透射电镜观察下,PEG-SPIONs颗粒大小均匀、外观圆整,结合表1可 知,PEG-SPIONs的粒径大小在9.90nm左右。由于EGFl-PEG-SPIONs的偶联多肽的分子太小, 通过染色,透射电镜观察显示EGFl-PEG-SPIONs的电镜尺寸与PEG-SPIONs大小一致。
[0079] 水动力尺寸(DLS hydrodynamic diameter)-般大于TEM尺寸,其原因在于PEG-SPIONs的粒径大小包括了表面修饰层及其水化层的厚度。由表1可知,PEG-SPIONs的DLS尺 寸大于TEM尺寸,说明该PEG-SPIONs探针水化层较厚,颗粒稳定性较好。EGFl多肽偶联PEG-SPIONs后,得到的EGFl-PEG-SPIONs的DLS尺寸有一定程度的增大,说明EGFl多肽与PEG-SPIONs偶联成功。由表1可知,EGFl-PEG-SPIONs的水动力尺寸大于PEG-SPIONs,同样说明 EGFl多肽成功偶联PEG-SPIONs。
[0080] 此外,由表1可知,EGFI-PEG-SPI ONs的Ze ta电位相对于PEG-SPI ONs的发生了变化, 也就表明EGFl-PEG-SPIONs的EGFl多肽偶联成功。
[0081 ] (3)聚丙烯酰胺凝胶电泳检测EGFl多肽与PEG-SPIONs的偶联情况 [0082] 利用聚丙烯酰胺凝胶电泳分别检测EGFl-PEG-SPI0Ns、EGFl多肽、PEG-SPIONs、 EGFl多肽和PEG-SPIONs混合液的电泳情况,检测结果如图3所示。由图3可知(图中1表示样 品为EGFl-PEG-SPI0Ns、2 为EGFl多肽、3 为 PEG-SPIONs、4 为EGFl多肽和 PEG-SPIONs 的混合 液,2、3和4均为对照),EGFl-PEG-SPIONs在聚丙烯酰胺凝胶有一定的迀移,EGFl多基本未发 生迀移,说明EGFl-PEG-SPIONs的EGFl多肽成功偶联上PEG-SPIONs。
[0083] 实施例2
[0084] 制备El多肽
[0085]采用化学合成法合成El多肽或E2多肽或E3多肽,其中El多肽的氨基酸序列:116_ Cys-Phe-Cys-Leu-Pro ;E2 多肽的氨基酸序列:Ser-Pro-Cys-Gln-Asn-Gly ;E3 多肽的氨基酸 序列:Cys-Lys-Asp-Gln-Leu-Gln。将冻干El多肽或E2多肽或E3多肽、保存于-20 °C。以下以 E1多肽为例说明制备E1多肽偶联的超顺磁性氧化铁纳米颗粒(EI-PEG-SPI ONs)的制备方 法。制备E2多肽偶联的超超顺磁性氧化铁纳米颗粒(E2-PEG-SPIONs)或E3多肽偶联的超顺 磁性氧化铁纳米颗粒(E3-PEG-SPIONs)的方法原理与制备El-PEG-SPIONs的方法原理一致。
[0086]制备超顺磁性氧化铁纳米颗粒
[0087]采用高温热解法,以铁盐为原料例如是FeC13和FeC12,制得SPIONs;再用羧基化 PEG对其进行表面修饰,转移到水相后,得到PEG-SPIONs的胶体溶液。当然,该胶体溶液也可 在市面上直接购买。
[0088] 偶联
[0089]首先,将5mg的胶体溶液分散于5mL MES缓冲液中,得到PEG-SPIONs分散均匀的分 散液。其中,MES缓冲液PH为6。
[0090] 然后,往上述分散液中加入过量的0.5mL EDC(浓度为10mg/mL)和ImL NHS(浓度为 10mg/mL),在80rpm/min的摇床上、4°C,活化反应30min。
[0091] 再然后,将进行活化反应后的分散液转移到超滤离心管(孔径30KD)中,在 5000rpm/min、4°C条件下离心30min,去除未参与活化反应的EDC和NHS。
[0092] 接着,往超滤离心后的分散液中加入2.5mg El多肽,在80rpm/min、4°C条件下进行 偶联反应12小时。
[0093]再接着,将反应结束后的分散液再次转移到新的超滤离心管中(孔径30KD),在 5000rpm/min、4°C条件下离心30min,滤去没有偶联上的El多肽。收集滤液,该滤液即含有 EI-PEG-SPIONs,即靶向多肽纳米探针。EI-PEG-SPIONs的结构模式图如图1所示。保存滤液, 并对该El-PEG-SPIONs进行相关指标检测。相应地,也可以得到E2-El-PEG-SPI0Ns或E3-PEG-SPIONso
[0094] 对El-PEG-SPIONs的相关指标检测结果如下。
[0095] (1)偶联效率
[0096]采用BCA试剂盒,按照说明书操作步骤,在紫外分光光度计(SMMADZU,UV-3600)检 测滤液中所含多肽的量。结果显示,Img SPIONs与0.5mg El多肽偶联。
[0097] (2)El-PEG_SPI0Ns 的电镜观察
[0098] 利用透射电子显微镜(TEM,Tokyo, JE0L2100)观察El-PEG-SPIONs,结果如图4所 不。
[0099]由图4可知,在透射电镜观察下,El-PEG-SPIONs颗粒大小均匀、外观圆整,粒径增 大。
[0100] (3)El-PEG-SPI0Ns 磁饱和强度
[0101] 利用磁强振动计对El-PEG-SPIONs进行磁饱和强度检测,结果如图5所示。
[0102]由图5可知,El-PEG-SPIONs能够适用于磁共振成像,可适用于作为特异性靶向动 脉粥样斑块的造影剂。
[0103] (4)聚丙烯酰胺凝胶电泳检测El多肽与PEG-SPIONs的偶联情况
[0104] 利用聚丙烯酰胺凝胶电泳分别检测El-PEG-SPI0Ns、El多肽、PEG_SPI0Ns、El多肽 和PEG-SPIONs混合液的电泳情况,检测结果如图6所示。
[0105] 由图6可知(图中1表示样品为El-PEG-SPI0Ns、2为El多肽、3为PEG-SPI0Ns、4为El 多肽和PEG-SPIONs的混合液,2、3和4均为对照),El-PEG-SPIONs在聚丙烯酰胺凝胶有一定 的迀移,El多肽未发生迀移,说明El-PEG-SPIONs的El多肽成功偶联上PEG-SPIONs。
[0106] 实施例3
[0107] 采用本发明实施例提供的EGFl-PEG-SPIONs进行的动物实验的造影过程和结果如 下。
[0108] (1)不同浓度PEG-SPIONs和EGFl-PEG-SPIONs的MRI成像和弛豫率r2的测量计算
[0109] 将浓度范围从2、4、6、8到 10yg/mL的 PEG-SPIONs 和 EGFl-PEG-SPIONs分别置于 96 孔 板中进行磁共振成像。采用Bruker Biospec 7.OT小动物磁共振成像仪,对其进行T2自旋回 波多层脉冲序列扫描,扫描参数如下:F0V = 4.5/3.5cm,TR = 3000.0 ms,TE = 12,24,36,48, 60ms,FA= 180 · Odeg,层厚1.0/1.0mm。通过Bruker Biospec自带工作站分析上述图像数据 并计算各个浓度PEG-SPIONs和EGFl-PEG-SPIONs组的T2弛豫时间。以铁浓度为横坐标,所对 应的T2弛豫时间倒数(R 2 = I/T2)为纵坐标作图,绘制出不同浓度的PEG-SPIONs和EGFl-PEG-SPIONs的浓度-弛豫强度曲线,所得直线的斜率即为该样品的弛豫率。
[0110] 结果如图7和图8所示,将浓度范围从2、4、6、8到10yg/mL的PEG-SPIONs和EGFl-PEG-SPIONs进行磁共振成像,发现两组溶液均能明显降低水的T2信号,并且随着溶液浓度 增加信号强度逐渐降低,即图像灰度逐渐变暗,且EGFl-PEG-SPIONs组比PEG-SPIONs组信号 强度减低更为明显(如图7所示)。然后分别测量PEG-SPIONs和EGFl-PEG-SPIONs在各个浓度 下的T2值,并绘制出不同浓度的PEG-SPIONs和EGFl-PEG-SPIONs的浓度-弛豫强度曲线(如 图8所示),从曲线上可以看出,PEG-SPIONs和EGFl-PEG-SPIONs的浓度和弛豫时间呈线性关 系,随着样品浓度增大,其R 2也增大。根据计算得到PEG-SPIONs的弛豫率^为174.6πιΜΛ一1, EGFl-PEG-SPIONs的弛豫率r 2为216 JmT1S'由此可知,EGFl-PEG-SPIONs比PEG-SPIONs的 弛豫率更高,有更好的负性对比增强效果。(弛豫率r 2是反映MRI对比剂对T2弛豫过程速率 的影响程度,一种顺磁性物质的弛豫率越大,则表明其缩短质子弛豫时间的能力就越强,在 MRI上造成组织间的信号对比就越大,负性增强效果也就越明显,那么这种物质就越适合用 作MRI的阴性对比剂。)
[0111] (2)EGFl-PEG-SPI0Ns用于小鼠动脉粥样硬化模型的MRI成像
[0112] 首先,小鼠动脉粥样硬化模型的建立
[0113] 动物模型建立:ApoE-/-小鼠(购于北京华阜康生物科技股份有限公司,6周龄,雄 性,合格证号为SCXK(京)2014-0004),前期通过高脂饮食(Western Diet for Rodents-5TJN, TestDiet)喂养。
[0114] 病理检测:
[0115] ①常规HE染色:取16周造模小鼠处死,分离主动脉,新鲜组织固定于4%多聚甲醛 24h以上,脱水、石蜡包埋、切片;石蜡切片脱蜡至水:依次将切片放入二甲苯I20min-二甲苯 112〇111丨11-无水乙醇11〇111丨11-无水乙醇111〇111丨11-95%酒精5111丨11-90%酒精5111丨11-80%酒精 5min-70%酒精5min-蒸馏水洗;苏木素染细胞核:切片入Harris苏木素染3-8min,自来水 洗,1 %的盐酸酒精分化数秒,自来水冲洗,0.6%氨水返蓝,流水冲洗;伊红染细胞质:切片 入伊红染液中染色l-3min;脱水封片:将切片依次放入95%酒精I 5min-95%酒精II 5min-无水乙醇I5min_无水乙醇Π 5min_二甲苯I5min_二甲苯Π 5min中脱水透明,将切片从二甲 苯拿出来稍晾干,中性树胶封片。
[0116] ②冰冻切片油红0染色:取16周造模小鼠处死,分离主动脉,新鲜组织固定于4%多 聚甲醛24h以上,脱水、OCT包埋、切片-20°保存;固定:将冰冻切片复温干燥IOmin;细胞爬片 4%多聚甲醛固定15min,PBS漂洗3次,5min/次;染色:入油红O工作液孵育10-15min;细胞爬 片破膜l〇_15min,PBS漂洗3次,5min/次,入油红O工作液37°染色1-2h;分化:75 %酒精分化 2s,水洗Imin;复染细胞核:Harr is苏木素复染l-2min左右,自来水洗,1 %的盐酸酒精分化 数秒,自来水冲洗,氨水返蓝,流水冲洗;封片:用纸巾吸去周边水分,甘油明胶封片。
[0117] ③冰冻切片免疫组化检测斑块部位TF表达:冰冻切片置于4 %多聚甲醛固定 15min,于PBS(PH7.4)中在脱色摇床上晃动洗涤3次,每次5min;组织切片置于盛满EDTA抗原 修复缓冲液(PH9.0)的修复盒中于微波炉内进行抗原修复,自然冷却后将玻片置于PBS (PH7.4)中在脱色摇床上晃动洗涤3次,每次5min;阻断内源性过氧化物酶:切片放入3%过 氧化氢溶液,室温避光孵育25min,将玻片置于PBS (PH7.4)中在脱色摇床上晃动洗涤3次,每 次5min;切片稍甩干后用组化笔在组织周围画圈(防止抗体流走),在圈内滴加用3%BSA或 者10 %正常兔血清均匀覆盖组织,室温封闭30min;轻轻甩掉封闭液,在切片上滴加PBS按一 定比例配好的一抗,切片平放于湿盒内4°C孵育过夜;玻片置于PBS(PH7.4)中在脱色摇床上 晃动洗涤3次,每次5min,切片稍甩干后在圈内滴加组化试剂盒内与一抗相应种属的二抗 (HRP标记)覆盖组织,室温孵育50min;玻片置于I 3BS (PH7.4)中在脱色摇床上晃动洗涤3次, 每次5min,切片稍甩干后在圈内滴加新鲜配制的DAB显色液,自来水冲洗切片终止显色;复 染细胞核:Harri s苏木素复染3min左右,自来水洗,1 %的盐酸酒精分化数秒,自来水冲洗, 氨水返蓝,流水冲洗;脱水封片:将切片依次放入75 %酒精6min-85 %酒精6min-无水乙醇I 6min_无水乙醇Π 6min_二甲苯I5min中脱水透明,将切片从二甲苯拿出来稍瞭干,中性树胶 封片。
[0118] 结果如图9~图11所示,造模小鼠主动脉窦部血管切片HE染色(如图9所示,图中箭 头所示造模小鼠主动脉斑块部位)和油红〇染色(如图10所示,图中箭头所示造模小鼠主动 脉斑块部位)清楚显示主动脉窦部已有斑块形成,表明已成功构建了 ApoE-/-小鼠动脉粥样 硬化模型;主动脉窦部免疫组化SP法(如图11所示,图中箭头所示造模小鼠主动脉斑块部位 TF表达)可清楚显示斑块处TF高表达。
[0119] 然后,小鼠动脉粥样硬化模型的MRI成像
[0120]材料:Bruker Biospec 7.OT小动物磁共振成像仪,小动物心电监护仪,小动物吸 入式气体麻醉机,异氟烷,PEG-SPIONs和EGFl-PEG-SPIONs纳米粒,16周动脉粥样硬化造模 小鼠,移液器,注射器。
[0121 ]动物麻醉:小鼠连接心电监护仪,监测呼吸心率,通过小动物吸入式气体麻醉机调 整异氟烷的浓度进行麻醉,维持呼吸心率在正常范围内。
[0122] MRI扫描:由于偶联EGFl的超顺磁性氧化铁纳米颗粒主要影响组织的T2弛豫时间, 因此采用T2序列扫描,扫描参数如下:FOV = 3.00cm,TR = 3000 .Oms,TE = 36ms,FA = 180 · Odeg,层厚 0 · 80/0 · 80mm。
[0123] 以动脉粥样硬化模型小鼠分别尾静脉注射EGFl-PEG-SPIONs溶液的为实验组,以 动脉粥样硬化模型小鼠分别尾静脉注射PEG-SPIONs溶液的为对照组,两组的注射铁量为 12mgFe/kg,在2分钟内注射完毕。分别在注射前、刚注射完、注射后30min、注射后Ih、注射后 2h、注射后4h和注射后24h重复进行T2WI扫描,观察腹主动脉斑块部位的信号变化。扫描完 毕分别测量实验组与对照组感兴趣区(ROI)的T2WI图像信号强度(Signal Intensity,SI) 值,ROI放在腹主动脉上,相同面积测量3次,取其平均值,用如下公式计算信号值的变化率: (^1 = (51_-51[)。^)/51[^*100%(51[^和51 [)。^分别代表注射前后腹主动脉斑块部位的信号 值)。
[0124] 结果图12所示,实验组和对照组分别注射EGFl-PEG-SPIONs和PEG-SPIONs后重复 T2WI扫描,图像结果显示:注射前可清楚看到实验组和对照组斑块处高信号影,在注射 EGFl-TOG-SPIONs完后,实验组小鼠腹主动脉粥样斑块处随即出现信号减低区,扫描至 3〇 1^11、111、211、411图像仍可见信号减低区,且较前范围扩大,甚至整个血管壁信号均明显减 低;而对照组小鼠在注射和PEG-SPIONs后虽也有信号减低,但信号减低不如实验组明显;此 外,24h后实验组斑块处仍有信号减低影,而对照组斑块处已基本没有肉眼可见的信号减 低。由此说明EGFl-PEG-SPIONs对粥样斑块具有特异性的靶向作用,且能在斑块处停留较长 时间,有助于粥样斑块的特异性成像。
[0125] 接着,扫描后组织普鲁士蓝染色
[0126] 方法:取扫描后小鼠处死,分离主动脉,新鲜组织固定于4%多聚甲醛24h以上,脱 水、石蜡包埋、切片、脱蜡至水;取等量2 %亚铁氢化钾和2 %盐酸等比例混合,切片入染液中 染色10-20min;流水冲洗2min,蒸馏水洗;0.1 %核固红复染核5-10min,蒸馏水洗数分钟;将 切片依次放入95%酒精1511^11-95%酒精1151^11-无水乙醇151^11-无水乙醇1151^11-二甲 苯15min-二甲苯Π 5min中脱水透明,将切片从二甲苯拿出来稍瞭干,中性树胶封片。
[0127] 结果如图13和图14所示,实验组注射EGFI-PEG-SPI ONs扫描后,心脏瓣膜区可见大 量染色颗粒(如图13所示,图中箭头所示染色颗粒),即为EGF卜PEG-SPIONs所在区域,斑块 处均有纳米颗粒分布;而对照组注射PEG-SPIONs扫描后,心脏瓣膜区只有极少量染色颗粒 (如图14所示,图中箭头所示染色颗粒)。说明实验组斑块处的纳米颗粒的沉积明显高于对 照组,由此表明EGFl -PEG-SPIONs对粥样斑块具有特异性的靶向作用。
[0128] 实施例4
[0129] 将实施例1和2方法制备的靶向多肽纳米探针作为针对脉粥样斑块部位成像的造 影剂,直接应用注射到活体内,然后进行磁共振成像。该靶向多肽纳米探针可特异性靶向动 脉粥样斑块部位,通过磁共振检测细胞信号强度,进而准确反映动脉粥样斑块在活体内发 生以及发展的分子生物学过程,为早期预防、诊断和治疗动脉粥样硬化疾病提供了更为全 面的分子信息。
[0130]综上所述,本发明实施例提供靶向多肽纳米探针的制备方法能够成功将EGFl多肽 或El多肽偶联在PEG-SPIONs上,制得具有靶向动脉粥样斑块的靶向多肽纳米探针,即EGFl-PEG-SPIONs或El-PEG-SPIONs。该两种靶向多肽纳米探针能够适用于靶向动脉粥样斑块的 磁共振成像,通过其特异性的靶向能力,能够准确反映动脉粥样斑块在活体内发生以及发 展的分子生物学过程,实现了动脉粥样斑块的精确可视化监测,为早期预防、诊断和治疗动 脉粥样硬化疾病提供了更为全面的分子信息。此外,当然任何组织发生病理改变时如某些 肿瘤的血管新生、浸润转移中只要其高表达TF,该探针就可适用于该病变组织的磁共振成 像,为采用有效地治疗方案提供可靠的分子信息。
[0131]以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技 术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修 改、等同替换、改进等,均应包含在本发明的保护范围之内。
【主权项】
1. 一种靶向多肽纳米探针,其特征在于,其由超顺磁性氧化铁纳米颗粒经偶联剂进行 表面修饰后,再与多肽偶联得到,所述多肽的氨基酸序列如SEQ ID NO.1所示或如SEQ ID NO.2所示或如SEQ ID NO.3所示或如SEQ ID NO.4所示。2. 根据权利要求1所述的靶向多肽纳米探针,其特征在于,所述偶联剂为羧基化的聚乙 二醇。3. -种靶向多肽纳米探针的制备方法,其特征在于,其包括: 制备超顺磁性氧化铁纳米颗粒的胶体溶液,其中,超顺磁性氧化铁纳米颗粒经偶联剂 表面修饰; 制备多肽,所述多肽的氨基酸序列如SEQ ID NO. 1所示或如SEQ ID NO.2所示或如SEQ ID NO. 3所示或如SEQ ID NO.4所示;以及 将所述多肽与所述胶体溶液混合,进行偶联反应。4. 根据权利要求3所述的制备方法,其特征在于,在所述偶联反应之前,还包括:将所述 胶体溶液分散于MES缓冲液中,得到分散液,所述MES缓冲液的pH为5.8~6.2。5. 根据权利要求4所述的制备方法,其特征在于,所述胶体溶液与所述MES缓冲液的质 量体积比为0.8~1.2:1。6. 根据权利要求4所述的制备方法,其特征在于,还包括:往所述分散液中加入1-(3-二 甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基硫代琥珀酰亚胺,进行活化反应,所述活化 反应在转速80~100rpm/min、4°C条件下反应30~45min。7. 根据权利要求3所述的制备方法,其特征在于,所述偶联剂为羧基化的聚乙二醇。8. 根据权利要求3所述的制备方法,其特征在于,所述多肽与所述胶体溶液的质量比为 0 · 5~0 · 6:1 〇9. 根据权利要求3所述的制备方法,其特征在于,所述偶联反应在转速80~lOOrpm/ min、4°C条件下反应12~16小时。10. -种如权利要求1或2所述的靶向多肽纳米探针在制备用于动脉粥样斑块成像造影 剂中的应用。
【文档编号】A61K49/14GK105963719SQ201610268526
【公开日】2016年9月28日
【申请日】2016年4月27日
【发明人】胡豫, 梅恒, 魏求哲
【申请人】华中科技大学同济医学院附属协和医院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1