陶瓷浆料组合物、挤压生产薄生片的方法以及使用所述生片制造的电子设备的制作方法

文档序号:1855541阅读:334来源:国知局
专利名称:陶瓷浆料组合物、挤压生产薄生片的方法以及使用所述生片制造的电子设备的制作方法
技术领域
本发明涉及陶瓷浆料组合物,所述陶瓷浆料组合物用于使用挤压-拉伸方法生产的薄生片(thin green sheet)。更具体地说,本发明涉及用于生产厚度为10μm或者更小的薄生片的陶瓷浆料组合物,所述薄生片可被层压形成40层或者更多层的叠堆,通过挤压生产所述生片的方法以及使用该生片制造的电子设备。
背景技术
片式元器件如MLCCs(多层陶瓷电容器)、片式导体等一般是通过交替层压陶瓷生片和外电极,按压层压结构并进行烧结来制造的。
陶瓷生片通常通过带流延法(tape-casting process)生产。根据带流延法,通过使用口模式涂布机、刮刀等,将均匀分散有陶瓷粉末的陶瓷浆液(slurry solution)涂布到载膜上,然后干燥涂布的浆料。
为使用带流延法生产几十微米或者更小厚度的薄生片,陶瓷浆液应具有低粘性。然而,当浆液粘度太低时,涂布到载膜上的膜形状保持变得困难,引起最终片厚度不均匀。另外,由于生片强度弱,当生片从衬底上取下时,可能发生生片损害,如裂开。而且薄生片的层压变得困难。
为了防止对生片的损害,作为粘合剂而使用的聚合物必须具有高分子量。然而,当聚合物分子量太高时,难以生产薄膜形式的生片。另外,因为聚合物在溶剂中的溶解性低,聚合物颗粒以非均匀胶凝状态沉淀,导致使用高分子量聚合物作为粘合剂所制造的片式元器件存在缺陷。
PCT公报WO 91/01346推荐使用挤压-拉伸方法生产生片。根据该现有技术,通过挤压-拉伸浆料生产厚度为25μm或者更小的生片,所述浆料包含陶瓷粉末、分子量为400,000或者更高的聚合物以及用于胶凝聚合物的溶剂。因为挤压-拉伸方法生产生片时无需任何衬底,因此与使用带流延法所生产的生片相比较,上述生片具有均匀厚度。
在该现有技术中,因为使用超高分子量聚合物生产生片,其存在问题是,由于聚合物的高弹性模量和非极性,当层叠和按压时层间的粘合强度低。因此,当生片被层压和烧结时,层压的生片之间发生开裂和层离,因此难以使用该生片制造片式元器件。
由于小型及高性能电子设备领域内近期技术开发已有的进展,需要小的片式元器件(电子设备)。为满足这种需要,需要生片的厚度为10μm或者更小,且该生片可被层压形成40层或者更多层的叠堆(stack)。然而,因为现有技术中生片存在的问题是,由于生片的层间粘合强度低,在层之间发生开裂,因此不能被用于制造40层或者更多层的片式元器件。为制造高性能电子设备将生片层压成40层或者更多层引起“枕状(pillowing)”问题。该枕状是指这样一种现象当生片与内电极彼此进行层叠和按压时,未提供内电极或者未提供足够内电极的边缘区(margin zone)高度的低于提供了足够内电极的活性区(active zone)(图3a)。这种枕状现象导致片外观变形。

发明内容
因此,本发明是鉴于现有技术的上述问题进行的,本发明的目的是提供用于生产薄生片的陶瓷浆料组合物,所述薄生片可通过提高层间粘合强度而层压形成几十层厚度的叠堆。
本发明的另一目的是提供用于生产生片的陶瓷浆料组合物,所述生片可解决形成了内电极的区域膨胀的枕状现象,并且防止在烧结过程中开裂和层离的发生。
本发明另一目的是提供使用挤压-拉伸方法生产生片的方法。
本发明另一目的是提供使用生片制造的电子设备。为完成本发明的上述目的,提供含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有可形成氢键的官能团的聚合物以及40-75wt%溶剂的陶瓷浆料组合物。
根据本发明的一个方面,提供含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有形成氢键的官能团的聚合物,40-75wt%溶剂以及1-5wt%平均分子量为400,000或者更低的聚合物的陶瓷浆料组合物。
在本发明中,平均分子量为400,000或者更高的聚合物被称作“高分子量聚合物”,而平均分子量为400,000或者更低的聚合物被称作“低分子量聚合物”。这些聚合物的一个代表实例是聚烯烃。
可形成氢键的官能团选自-OH,-COOH,-COOCH3,-NH2和-NHCO。带有可形成氢键的官能团的聚合物实例包括聚乙酸乙烯酯,乙烯-丙烯酸共聚物,乙烯-丙烯酸乙酯(ethylacryl)共聚物,乙烯-丙烯酸甲酯(methylacryl)共聚物,聚丙烯酸,聚甲基丙烯酸,聚乳酸,聚乙烯醇缩丁醛(polyvinylbutyral),聚乙烯醇,聚乙烯基胺,胺衍生的聚合物,聚氨酯,聚脲和聚酰胺。
根据本发明的一个方面,提供用于生产薄生片的方法,所述方法包括挤压陶瓷浆料组合物制备挤出片(extruded sheet),并拉伸挤出片,其中陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有形成氢键的官能团的聚合物以及40-75wt%溶剂。
根据本发明的另一个方面,提供用于生产薄生片的方法,所述方法包括挤压陶瓷浆料组合物制备挤出片,并拉伸挤出片,其中陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有形成氢键的官能团的聚合物,40-75wt%溶剂以及1-5wt%平均分子量为400,000或者更小的聚合物。
根据本发明的再一个方面,提供电子设备,所述设备包括介电陶瓷层,插入各介电陶瓷层之间的内电极以及与各内电极电连接的外电极,其中介电陶瓷层是通过层压生片而形成的40层或者更多层的叠堆,所述生片的生产是通过挤压本发明的陶瓷浆料组合物形成片,然后拉伸挤出片而完成的,内电极含有导电成分。
导电成分的实例是镍(Ni)。


本发明的上述及其它目的,特点以及其它优点从以下详细说明结合附图将被更清楚地理解,其中附图1是示意说明在压生片和内电极时产生的排斥力的截面图。
附图2是示意说明带有可形成氢键的官能团的聚合物对生片与内电极之间粘合强度影响的截面图。
附图3a是示意说明常规电子设备(枕状现象发生)的截面图;而附图3b是示意说明根据本发明制造的电子设备(无枕状现象发生)的截面图。
具体实施例方式
下文将更详细描述本发明。
因为高分子量聚合物如聚烯烃具有高非极性,因此在聚烯烃和其它材料如金属或者陶瓷之间以及在聚烯烃物质之间的粘合强度非常低。当含有聚烯烃的生片被层压和烧结时,由于其粘性强度低,在层之间可能发生开裂和层离。为提高层之间的粘合强度本发明人进行了深入的研究。结果发现当混合有带有可形成氢键的官能团的聚合物时,生片之间粘合强度增加,并且在挤出片的拉伸过程中挤出片的拉伸比达到最大。
使用挤压-拉伸过程,可以从平均分子量为400,000或者更高的聚合物生产出生片。然而,由此生产的生片具有几十到几百GPa的高杨氏模量。这样高的杨氏模量有助于无支撑膜或者自支撑膜的形成以及膜的层压。然而,当生片和内电极彼此层叠和按压时,排斥力作用于电极层上,因此难以将电极层压入到生片内。另外,排斥力减少层之间的粘合强度(参见图1)。而且排斥力使得不能制造均匀厚度的膜。本发明人努力解决上述问题,结果发现,组合使用超高分子量聚合物和相对低分子量的聚合物,由于超高分子量聚合物的高弹性模数可减小电极层和生片之间的排斥力,并有助于层的层压,因此易于制造电子设备。
下文将说明本发明的陶瓷浆料组合物[陶瓷粉末]本发明使用的陶瓷粉末包括介电陶瓷粉末,铁氧体陶瓷粉末,磁性陶瓷粉末,压电陶瓷粉末,绝缘陶瓷粉末等。作为介电陶瓷粉末,可使用钛酸钡,钛酸锶和钛酸铅。作为绝缘陶瓷粉末,可使用二氧化硅。使用细粉形式的陶瓷粉末以获得最佳光滑表面。优选陶瓷粉末的粒度为0.01-1μm。优选陶瓷粉末含量为陶瓷浆料组合物总重量的20-50wt%。当陶瓷粉末含量小于20wt%时,最终产品的填充密度变低并可能形成空穴,这将引起最终产品的缺陷。当陶瓷粉末含量超过50wt%时,聚合物的相对含量变小,因此,生片强度变差并由此难于形成生片。
聚合物的代表例是聚烯烃。聚烯烃的实例包括聚乙烯,聚丙烯,聚苯乙烯,聚异丁烯等。作为聚合物,可以单独使用平均分子量为400,000或者更高的聚合物(简称“高分子量聚合物”),或者与平均分子量为400,000或者更低的聚合物(简称“低分子量聚合物”)组合使用。高分子量聚合物与低分子量聚合物的组合减小电极层与生片之间由高分子量聚合物的高弹性模量所引起的排斥力,并有助于层的层压,因此易于制造电子设备。
优选高分子量聚合物含量为陶瓷浆料组合物总重量的2-10wt%。当含量小于2wt%时,难以形成片。当含量超过10wt%时,难以形成片并且当烧结时陶瓷填充密度减小。
当低分子量聚合物与高分子量聚合物组合使用时,优选低分子量聚合物含量为1-5wt%。当含量小于1wt%时,当多层进行层压时由于高分子量聚合物的排斥力有发生层间开裂和枕状现象的危险。当低分子量聚合物含量超过5wt%时,生片强度降低。
参考图2,带有可形成氢键的官能团的聚合物提高生片之间的粘合强度。另外,聚合物使挤出片的拉伸过程中拉伸比达到最大。
可形成氢键的官能团选自-OH,-COOH,-COOCH3,-NH2,-NHCO等。带有可形成氢键的官能团的聚合物实例包括聚乙酸乙烯酯,乙烯-丙烯酸共聚物,乙烯-丙烯酸乙酯共聚物,乙烯-丙烯酸甲酯共聚物,聚丙烯酸,聚甲基丙烯酸,聚乙烯醇缩丁醛,聚乙烯醇,聚乙烯基胺,胺衍生的聚合物,聚氨酯,聚脲,聚酰胺等。
优选带有可形成氢键的官能团的聚合物含量为陶瓷浆料组合物总重量的0.1-2wt%。当含量小于0.1wt%时,由于氢键数较少,生片层之间可能发生开裂。当含量超过2wt%时,由于片粘合性增加难以处理片。
高分子量聚合物在其熔化状态时几乎没有或者没有流动性。因此,在高温下将聚合物与溶剂混合而形成凝胶。凝胶的形成增加聚合物的熔体流动性。随后对凝胶进行挤压,然后进行蒸发和提取以除去溶剂。
在本发明中,作为高分子量聚合物胶凝用的溶剂,可以使用石蜡,十氢化萘,四氢化萘,石脑油,矿油精,甲苯,二甲苯,己烷,氯仿或者其混合物。
优选溶剂含量为陶瓷浆料组合物总重量的40-75wt%。当溶剂含量小于40wt%时,需要增加挤压温度。当挤压温度过高时,聚合物易于分解,难于形成片。当溶剂含量超过75wt%时,不能保持挤出片的均匀形状,片也难以形成。
本发明的陶瓷浆料组合物可进一步含有作为添加物的分散剂、湿润剂等。优选添加物含量为陶瓷浆料组合物总重量的0.01-1wt%。
以下将说明用于生产本发明生片的方法以及使用生片制造的电子设备。
通过挤压本发明的陶瓷浆料组合物生产生片,然后拉伸。将分步骤说明该方法。
首先制备陶瓷分散体。
将陶瓷粉末分散在溶剂与合适分散剂的混合物中,溶剂实例包括芳香烃,如十氢化萘或者石蜡油;或者脂肪烃。为了分散陶瓷粉末,可以使用球磨机(bead mill),球磨机或者超细磨碎机,涂料振动器(paint shaker),砂磨机等。在分散陶瓷粉末过程中,过多研磨粉末对陶瓷粉末产生过多损害。也就是说,过多研磨粉末导致陶瓷粉末结晶性变差并增加比表面积,从而不能获得所需的电性质。为防止这样的问题,可以进行高压分散方法。使用碰撞能分散陶瓷粉末,并在高压下迅速通过锥形通道进行所述高压分散方法。
接下来,制备陶瓷浆料。
通过混合陶瓷分散体,高分子量聚合物(如果需要,还有低分子量聚合物),带有可形成氢键的官能团的聚合物以及溶剂,制备陶瓷浆料。如果需要可进一步向混合物中加入添加物。
将由此制备的陶瓷浆料挤压成形得到生片。首先将本发明的陶瓷浆料组合物装料到挤压机内并在其中胶凝。将胶凝混合物挤压成形为片状,迅速冷去获得凝胶结晶,并干燥。
优选挤压机温度为150-200℃,挤压机的模头(T形模或者衣架形模头)的温度优选设置为160-180℃。
然后拉伸干燥片。可双轴拉伸或者单轴拉伸干燥片。在双轴拉伸时,以相同拉伸比在纵向和横向拉伸干燥片,或者纵向拉伸比高于横向拉伸比。纵向拉伸和横向拉伸可以交替进行,但优选同时进行。优选在70-200℃进行双轴拉伸。
提取除去剩余溶剂,然后经干燥生产生片。由此生产的生片的厚度为几个微米,并在其中含有微孔。
当使用由此生产的生片形成电极层后,使用热压法将生片层压所需数目的层。层压之后,烧尽粘合剂并进行烧结过程,制造电子设备。
因为使用挤压-拉伸法生产的生片中含有一些孔,故该生片具有低密度。低密度生片和低分子量聚合物的组合有助于防止枕状现象。
下文将参考实施例详细描述本发明。
将Hypermer KD-S(ICI)分散剂和OLOA1200(Shevron ornite)湿润剂溶解在十氢化萘溶剂1中(溶剂1的首次使用)。
向得到的溶液中加入直径为0.4μm的钛酸钡。使用篮式磨(basketmill)分散混合物3小时之后,将十氢化萘(二次使用)或者石蜡油作为溶剂加入到分散体中,然后边缓慢搅拌边向其中加入聚合物。得到的混合物搅拌1小时得到浆液。浆液中的混合比在下面表1中表示。
表1

缓慢搅拌的同时将浆液加料到装备有熔体泵及衣架形模头的双螺杆挤压机中,然后胶凝,生产挤出片。此时,挤压机和模头的温度分别设定为100-220℃和170℃。挤出片通过冷水浴获得凝胶结晶并部分干燥之后,在110℃以10×10拉伸比双轴拉伸干燥片。拉伸片通过正己烷溶液以除去保留在片中的溶剂,最后得到厚度为10μm的生片。
切割所生产的生片以制备单层生片。在130℃,5Mpa下将单层生片彼此压在一起5秒钟并层压成20层叠堆而制备覆盖片。固定覆盖片之后,在130℃,5Mpa下将一片单层生片压5秒钟。使用丝网印刷方法形成电极层,在70℃干燥5分钟。重复该方法40次形成40层活性层之后,将覆盖片压到活性层上,并进行分割和修整加工。最后,在氮气中将粘合剂烧尽,并在弱还原氛中烧结,制造电子设备。
测定由此制造的电子设备的片之间的粘合强度。结果如下表2所示。目测观察枕状现象。
表2

如表2所示,通过将陶瓷浆料和带有可形成氢键的官能团的聚合物混合而制造的电子设备(实施例3)显示的粘合强度比不含带有可形成氢键的官能团的聚合物的电子设备(比较例1)的粘合强度高2倍。另外,通过混合低分子量聚合物制造的电子设备(实施例1和2)的片之间的粘合强度大大提高。
如图3(a)所示,目测观察到比较例1的电子设备出现边缘区塌陷以及活性区膨胀的枕状现象。相比之下,目测未观察到实施例的1-3电子设备有枕状现象。
由以上说明可清楚地知道,因为使用挤压-拉伸方法生产本发明的生片,不同于带流延法,不需要衬底(载膜)。另外,因为在除去溶剂之前胶凝本发明的陶瓷浆料组合物,可形成低密度生片。因此,生片可以被压下,防止枕状现象发生。而且组合带有可形成氢键的官能团的聚合物可增加层之间的粘合强度,高分子量聚合物与低分子量聚合物的组合可减小电极层之间的排斥力并提高生片的成型性。低分子量聚合物与带有可形成氢键的官能团的聚合物作为粘合剂提高高分子量聚合物的拉伸性。
尽管为说明本发明而公开了本发明的优选实施例,但本领域的那些技术人员将理解,在不脱离权利要求书所公开的本发明的范围和精神的情况下,可作各种修改,增加及替换。
权利要求
1.陶瓷浆料组合物,该陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有可形成氢键的官能团的聚合物和40-75wt%溶剂。
2.陶瓷浆料组合物,该陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有可形成氢键的官能团的聚合物,40-75wt%溶剂和1-5wt%平均分子量为400,000或者更低的聚合物。
3.如权利要求1或2所述的陶瓷浆料组合物,其中聚合物是聚烯烃。
4.如权利要求1或2所述的陶瓷浆料组合物,其中可形成氢键的官能团选自-OH,-COOH,-COOCH3,-NH2和-NHCO。
5.如权利要求4所述的陶瓷浆料组合物,其中带有可形成氢键的官能团的聚合物选自聚乙酸乙烯酯,乙烯-丙烯酸共聚物,乙烯-丙烯酸乙酯共聚物,乙烯-丙烯酸甲酯共聚物,聚丙烯酸,聚甲基丙烯酸,聚乳酸,聚乙烯醇缩丁醛,聚乙烯醇,聚乙烯基胺,胺衍生的聚合物,聚氨酯,聚脲和聚酰胺。
6.生产薄生片的方法,该方法包括挤压陶瓷浆料组合物制备挤出片;拉伸所述挤出片;其中所述陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有可形成氢键的官能团的聚合物和40-75wt%溶剂。
7.生产薄生片的方法,该方法包括挤压陶瓷浆料组合物制备挤出片;拉伸所述挤出片;其中所述陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有可形成氢键的官能团的聚合物,40-75wt%溶剂和1-5wt%平均分子量为400,000或者更低的聚合物。
8.电子设备,该电子设备含有;介电陶瓷层;插入各介电陶瓷层之间的内电极;以及与各内电极电连接的外电极;其中介电陶瓷层是通过层压生片所形成的40层或者更多层的叠堆,所述生片是根据权利要求6或7的方法生产的,厚度为10μm或者更小,以及内电极含有导电成分。
全文摘要
本发明公开陶瓷浆料组合物。所述陶瓷浆料组合物含有20-50wt%陶瓷粉末,2-10wt%平均分子量为400,000或者更高的聚合物,0.1-2wt%带有可形成氢键的官能团的聚合物和40-75wt%溶剂。如果需要,所述陶瓷浆料组合物进一步含有1-5wt%平均分子量为400,000或者更低的聚合物。本发明进一步公开了使用挤压-拉伸方法生产薄生片的方法以及使用生片制造的电子元件。由此生产的生片厚度为10μm或者更小,可被层压成40层或者更多层的叠堆。即使当生片被高度层压时,没有层间开裂和枕状现象发生。
文档编号C04B35/63GK1572750SQ0316011
公开日2005年2月2日 申请日期2003年9月26日 优先权日2003年6月19日
发明者吴圣日 申请人:三星电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1