电介质陶瓷及叠层陶瓷电容器的制作方法

文档序号:1957642阅读:150来源:国知局

专利名称::电介质陶瓷及叠层陶瓷电容器的制作方法
技术领域
:本发明涉及一种电介质陶瓷及叠层陶瓷电容器,更详细而言,本发明涉及一种适合作为小型/大容量的叠层陶瓷电容器的电介质材料的电介质陶瓷、以及使用该电介质陶瓷而制造成的叠层陶瓷电容器。
背景技术
:叠层陶瓷电容器是用于多种多样电子装置的电路的电子部件,随着电子装置的小型化而要求小型化叠层陶瓷电容器。叠层陶瓷电容器是在电介质层与电介质层之间插入内部电极,并将其叠层,使叠层体烧结而形成,但为了不降低叠层陶瓷电容器的电容而实现小型化,必须使电介质层薄层化。另一方面,若使电介质层薄层化,则会因为对该电介质层施加高电场强度的电压而引起电介常数降低或温度特性恶化、或者高温负荷寿命降低的情况,从而可能导致可靠性降低。由此,必须借由电介质层的薄层化而实现一种电介质陶瓷,即便对其施加高电场强度的电压,亦会具有较大的电介常数、良好的温度特性,且可靠性优异。因此,以往提出一种电介质陶瓷,其具有一个组合,该组合包含主成分及添加成分,且具备结晶粒子及占据结晶粒子间的结晶界面,所述主成分是由AB03(A为Ba及Ca、或者Ba、Ca及Sr,B为Ti或者Ti及Zr、Hf中的至少1种)所表示的钙钛矿型化合物而构成,所述添加成分包含Si、规定的稀土类元素R、以及规定的金属元素M,对于所述结晶粒子个数中的85%以上的结晶粒子而言,于其剖面90%以上的区域中,所述添加成分不固溶,且存在所述主成分,于所述结晶界面的分析点数中的85%以上的分析点中,至少包含所述Ba、所述Ca、所述Ti、所述Si、所述R及所述M(专利文献l)。专利文献1中,以(Ba、Ca)Ti03为主成分,含有Si、规定的稀土类元素R、以及规定的金属元素M作为副成分,且使所述副成分几乎不固溶于主成分中,而是存在于结晶界面中,藉此能确保高温负荷寿命,从而能设法提高可靠性。专利文献1:日本专利特开2004-224653号公报然而,在将专利文献1的电介质陶瓷用于薄层的叠层陶瓷电容器时,存在与施加电场对应的静电电容变动大的问题。艮P,通常,叠层陶瓷电容器中施加有0.1-0.5V左右的交流电压,但交流电压的振幅会随着最近的使用状况而变动。从而静电电容亦有较大变化,即存在交流电压特性(以下,称作"AC(AlternatingCurrent)电压特性")恶化的问题。
发明内容本发明是鉴于所述问题而研制,其目的在于提供一种电介质陶瓷以及使用该电介质陶瓷的叠层陶瓷电容器,该电介质陶瓷的AC电压特性良好,能维持所需的较大电介常数及良好的温度特性,电介损失亦较小,且能确保可靠性。本发明者等以实质上不含Ca的BaTi03为主成分,并添加与专利文献1相同的副成分而制作电介质陶瓷,且对陶瓷组织的构造与AC电压特性的关系进行了调查后获知,主相粒子中的副成分的固溶区域的剖面积比平均为10%以下时,能提高AC电压特性。本发明是根据所述见解而研制,本发明的电介质陶瓷的特征在于,由以钛酸钡为主成分,且副成分含有第1添加元素R、第2添加元素M及烧结助剂成分X的组合构成,所述第1添加元素R是由选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及Y的群组中的至少1种元素所构成,所述第2添加元素M是由选自Mn、Fe、Co、V、W、Cr、Mo、Cu、Al及Mg的群组中的至少1种元素所构成,所述烧结助剂成分X至少包含Si,且主相粒子中的所述副成分的固溶区域的剖面积比平均为10%以下(包括0%在内)。另外,本发明者等经过进一步积极研究后亦了解到,对添加于4BaTi03主成分中的副成分的各添加量进行调整,以此能维持所需的较大电介常数及良好的温度特性,且能确保良好的可靠性。艮p,本发明的电介质陶瓷的特征在于,所述组合是由以下通式来表示100BamTiO3+aROn+bMOv+cXOw(其中,n、v及w分别为根据所述第1添加元素R、所述第2添加元素M以及所述烧结助剂成分X的价数所唯一决定的正数),所述m、a、b及c分别为0.995Sm^1.030,0.1^a^2.0,0.01^b〇3.0,0.1笙c^5.0。另外,本发明的叠层陶瓷电容器具有由电介质层与内部电极交替叠层而形成的陶瓷烧结体,并且在该陶瓷烧结体的两端部形成外部电极,且该外部电极与所述内部电极电连接,该叠层陶瓷电容器的特征在于,所述电介质层是由所述电介质陶瓷形成。(发明的效果)根据本发明的电介质陶瓷,其包含一个组合,该组合是以钛酸钡为主成分,且副成分中含有La、Ce等第l添加元素R;Mn、Fe等第2添加元素M;及至少包含Si的烧结助剂,且主相粒子中所述副成分的固溶区域的剖面积比平均为10%以下(包含0%),因此能获得一种在所施加的AC电压的振幅产生变动时,亦具有稳定的静电电容的AC电压特性良好的电介质陶瓷。另外,所述组合由通式100BawTi03+aR0。+bM0v+cX0w表示,所述m、a、b及c分别为0.995^m^1.030,0.1^a〇2.0,0.1^b^3.0,0.1Sc^5.0,因此能获得一种AC电压特性良好的电介质陶瓷,其能维持所需的较大电介常数及良好的温度特性,电介损失亦较小,且能确保可靠性。另外,本发明的叠层陶瓷电容器中,具有由电介质层与内部电极交替叠层而成的陶瓷烧结体,并且于该陶瓷烧结体的两端部形成有外部电极,且该外部电极与所述内部电极电连接,所述电介质层由所述电介质陶瓷所形成,因此能获得具有如下特性的叠层陶瓷电容器,即,于AC电压变动时具有稳定的静电电容,并且能维持所需的较大电介常数及良好的温度特性,且电介损失亦较小,能确保良好的可靠性。具体而言,能获得如下叠层陶瓷电容器静电电容的电压变化率为5±10%以内,电介常数e为2500以上,电介损失tanS不足5%,从而具有良好的电介特性,且静电电容的温度特性为,在以25t:的静电电容为基准时,于-55°。~+85匸之间的静电电容的变化率满足±10%以内,且并无高温负荷寿命降低的现象,从而可靠性优异。图1是表示使用本发明的电介质陶瓷而制造出的叠层陶瓷电容器的一实施方式的剖面图。图中lalg—电介质层,2a2f—内部电极,3a、3b—外部电极,IO—陶瓷烧结体。具体实施例方式其次,对本发明的实施方式加以详细说明。本发明的电介质陶瓷具有由以下通式(A)而构成的组合。100BamTi03+aR0n+bM0v+cX0w...(A)艮口,该电介质陶瓷包含一个组合,该组合是以实质上不含有钙成分的钛酸钡为主成分,且副成分中包含含有第1添加元素R的R氧化物RO。;含有第2添加元素M的M氧化物MOv;以及烧结助剂XOw。此处,第1添加元素R是由选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及Y的群组中的至少1种元素所构成,第2添加元素M是由选自Mn、Fe、Co、V、W、Cr、Mo、Cu、Al及Mg的群组中的至少1种元素所构成。另外,通式(A)中,v为根据第2添加元素M的价数所唯一决定的正数,例如当第2添加元素M为2价Mn时,v为l,当第2添加元素M为5价V时,v为5/2。同样地,w为根据烧结助剂成分X的价数而唯一规定的正数,当X为4价Si时,w为2。另外,烧结助剂成分X至少含有Si,除该Si之外,还能视需要而适当地选用Ti、Li、Na、B、Al、Ga、K、Zr、Ba、Sr等。而且,本实施方式中,于制造过程中对BamTi03的粒径加以调整,以使主成分与副成分不产生强烈反应,从而能使主相粒子中的副成分的固溶区域的剖面积比平均为10%以下(包含0%)。藉此,能获得在所施加的AC电压的振幅产生变动时亦能抑制静电电容的电压变化率、且具有良好的AC电压特性的电介质陶瓷。另外,如上所述,从使AC电压特性良好、且电介特性及温度特性良好、还能确保可靠性的观点而言,优选,将主成分与副成分的调配量调整为,使通式(A)中的m、a、b、c满足以下数学式(1)(4)。0.995^m^l扁…(1)0.1^a当2.0…(2)0.1当b^3.0…(3)0.1^c当5,0…(4)其次,对数学式(l)(4)中限定m、a、b、c的原因进行说明。(1)mm是用来规定作为主成分的钛酸钡中的Ba部位(site)与Ti部位的比,其理想配比为1.000,但亦可视需要,将Ba化合物与Ti化合物的调配比率调整为,使Ba部位过剩或Ti部位过剩。然而,若调配摩尔比m不足0.995,则主成分构成中Ti部位会过度过剩,由此引起电介损失tanS增大,进而导致高温负荷寿命降低,从而可能损及可靠性。另一方面,若调配摩尔比m超过1.030,则主成分构成中Ba部位会过度过剩,其结果可能导致电介常数e降低。因此,从确保电介特性及可靠性等的观点而言,优选,调配摩尔比m为0.995^m^1.030。(2)a将第1添加元素R添加于主成分中,由此能抑制电介损失tanS,且亦有助于提高可靠性。然而,当第1添加元素R的含有摩尔量相对于主成分100摩尔部不足0.1摩尔部时,无法获得所期望的添加效果。另一方面,当第l添加元素R的含有摩尔量相对主成分100摩尔部超过2.0摩尔部时,则可能导致电介常数e降低,或者静电电容的温度特性恶化。因此,相对于主成分IOO摩尔部,第l添加元素R的摩尔部a优选0,l^a^2.0。(3)b将第2添加元素M添加于主成分中,由此能与第1添加元素R同样地抑制电介损失tan5,且亦有助于提高可靠性。然而,若第2添加元素M的含有摩尔量相对主成分100摩尔部不足0.1摩尔部,则无法获得所期望的添加效果。另一方面,若第2添加元素M的含有摩尔量相对主成分100摩尔部超过3.0摩尔部,则可能会导致电介常数e降低,或者静电电容的温度特性恶化。因此,相对于主成分100摩尔部,第2添加元素M的摩尔部b优选0.1^a^3.0。(4)c于主成分中添加适量的烧结助剂,由此能提高烧结性,且能有助于进行低温烧成,并且能设法提高电介质陶瓷的各种特性。然而,若烧结助剂成分X的含有摩尔量相对于主成分100摩尔部不足0.1摩尔部,则无法获得所期望的添加效果,电介常数e降低,静电电容的温度特性亦恶化,高温负荷寿命降低,从而可能损及可靠性。另一方面,若烧结助剂成分X的含有摩尔量相对于主成分100摩尔部超过5.0,则亦可能导致可靠性降低,且电介损失tanS亦增大。因此,相对于主成分100摩尔部,烧结助剂成分X的摩尔部c优选如上所述,使以上通式(A)所表示的电介质陶瓷满足以上数学式(1)(4),从而能获得AC电压特性良好的电介质陶瓷,其维持所需的较大电介常数及良好的温度特性,电介损失亦较小,且能确保可靠性。接着,对使用该电介质陶瓷而制造的叠层陶瓷电容器进行详细说明。图1是示意性表示所述叠层陶瓷电容器的一实施方式的剖面图。该叠层陶瓷电容器中,于陶瓷烧结体10内埋设有内部电极2a2f,并且于该陶瓷烧结体10的两端部形成有外部电极3a、3b,进而于该外部电极3a、3b的表面上形成有第1电镀膜4a、4b及第2电镀膜5a、5b。艮口,陶瓷烧结体10是将由本发明的电介质陶瓷所形成的电介质层lalg与内部电极层2a2f交替叠层并进行烧成而形成,内部电极层2a、2c、2e电连接于外部电极3a,内部电极层2b、2d、2f电连接于外部电极3b。而且,在内部电极层2a、2c、2e与内部电极层2b、2d、2f的对置面之间形成静电电容。其次,对所述叠层陶瓷电容器的制造方法加以详细说明。首先,准备BaC03等Ba化合物,丁102等Ti化合物作为陶瓷原材料,并秤量所述陶瓷原材料,以使Ba部位与Ti部位的调配摩尔比m在0.995~1.030的范围内。其次,将该秤量物与PSZ(PartiallyStabilizedZirconia:部分稳定氧化锆)球等磨球及纯水一并投入至球磨机中,进行充分地湿式混合粉碎后,以100(TC以上的温度实施煅烧处理,制作出作为微粒的由BamTi03构成的煅烧粉末,其结晶性高。接着,准备粒径为该煅烧粉末平均粒径的1000倍以下的小径磨球(以下,称作"小磨球")。继而,将所述烧成粉末与所述小磨球及纯水一并投入至球磨机中,将所述烧成粉末湿式粉碎而获得浆料。再者,于该粉碎处理中使用小磨球的原因在于,该处理的目的是将所述煅烧粉末粉碎,故需尽量避免对所述煅烧粉末造成损害。其次,使用不织布过滤器等过滤器对所述浆料进行分级处理,去除该浆料中平均粒径为1/10以下的极微粒子BamTi03粒子,之后进行干燥。藉此而获得微粒的主成分粉末,其具有高结晶性,且极微粒子BamTi03粒子已被尽量去除。如上所述,之所以将极微粒子BaTi03粒子自主成分中尽量去除,是根据以下原因。为了使电介质层薄层化,优选主成分为微粒。然而,当大量的极微粒子BaTi03粒子存在于主成分中时,下述的副成分与所述极微粒子BaTi03粒子会发生反应,其结果可能导致副成分于主成分中的固溶区域增加,从而主相粒子中的副成分的固溶区域的剖面积比平均超过10%。因此,本实施方式中,预先实施分级处理,以尽可能地去除主成分中存在的极微粒子BaTi03粒子。9其次,准备含有第1添加元素R的ROn、含有第2添加元素M的MOv、及至少含有Si的烧结助剂XOw作为副成分,于球磨机内将该等副成分材料与所述主成分粉末加以混合,之后使其蒸发干燥,获得陶瓷原料粉末。随后,将所述陶瓷原料粉末与有机粘合剂及有机溶剂一并投入至球磨机中,进行湿式混合,以此制作陶瓷浆料,其后,以脂浆混合法等方法对陶瓷桨料实施成形加工,制作陶瓷生片。其次,使用内部电极用导电膏于陶瓷生片上进行网版印刷,以于所述陶瓷生片的表面上形成规定图案的导电膜。再者,.作为内部电极用导电膏中含有的导电性材料,从低成本化的观点而言,优选使用Ni、Cu或以该等合金为主成分的卑金属材料。然后,将多片形成有导电膜的陶瓷生片于规定方向上叠层,且以未形成有导电膜的陶瓷生片来夹持、压接,并切断成规定尺寸而制作陶瓷叠层体。之后,在30050(TC的温度下进行脱粘合剂处理,进而,在将氧分压控制为1(T910—12Mpa的由HrN2-H20气体构成的还原性气体环境下,以1000120(TC的温度进行约2小时的烧成处理。藉此将导电膜与陶瓷生片进行共烧结,从而获得内部电极2a2f与电介质层lalg交替叠层的陶瓷烧结体10。再者,作为主成分的BaTi03为微粒,但因所述极微粒子BaTi03被尽量去除,故于该烧成过程中,主成分与副成分的反应受到抑制,从而主相粒子中的副成分的固溶区域的剖面积比被抑制于平均10%以下。其次,对陶瓷烧结体10的两端面涂布外部电极用导电膏,并进行烧接处理,藉此形成外部电极3a、3b。再者,从低成本化的观点而言,对于外部电极用导电膏中含有的导电性材料,优选使用Ni、Cu或以该等合金为主成分的卑金属材料。另外,外部电极3a、3b的形成方法亦可为,在对陶瓷叠层体的两端面涂布外部电极用导电膏之后,与陶瓷叠层体同时实施烧成处理。最后,实施电解电镀处理,于外部电极3a、3b的表面上形成由Ni、Cu、Ni-Cu合金等构成的第1电镀膜4a、4b,进而于该第1电镀膜4a、4b的表面上形成由焊锡或锡等构成的第2电镀膜5a、5b,藉此制造叠10层陶瓷电容器。如上所述,本发明的叠层陶瓷电容器中,由于电介质层lalg是使用所述电介质陶瓷制造而成,故能获得具有如下特性的叠层陶瓷电容器在使电介质层lalg更加薄层化时,亦能确保良好的AC电压特性,且不会损及电介特性与温度特性,高温负荷寿命良好,可靠性优异。具体而言,能获得如下叠层陶瓷电容器静电电容的AC电压特性为,在以实效电压0.5Vrms为基准时,于实效电压0.1Vrms时的静电电容的变化率为±10%以内,具有电介常数e为2500以上的高电介常数,电介损失tanS不足5%,静电电容的温度特性为,在以25。C的静电电容为基准时,于-55~85°。之间的静电电容的变化率为±10%以内,另外,于85。C的高温下具有2000小时以上的耐久性,从而可靠性优异。再者,本发明并非限定于所述实施方式。例如,于所述叠层陶瓷电容器的制造过程中,Zr、Ni、Ag、Na、Pd、Zn、Hf或Sr等作为杂质而混入,故可能存在于结晶粒子内或结晶界面中,但并不会对叠层陶瓷电容器的电气特性造成影响。另外,叠层陶瓷电容器的烧成处理可能会使内部电极成分向结晶粒子内或结晶界面中扩散,但此情况亦不会对叠层陶瓷电容器的电气特性造成任何影响。另外,在所述实施方式中,作为主成分的B^Ti03是以Ba化合物、Ti化合物作为起始原料的固相合成法而制作,但亦能藉由水解法、水热合成法、共沉法等方法而制作。进而,对于Ba化合物、Ti化合物,除碳酸盐、氧化物以外,亦能根据合成反应的形态而适当选择硝酸盐、氢氧化物、有机酸盐、烷醇盐,螯合化合物等。其次,对本发明的实施例进行具体说明。(实施例1)实施例1中,制作主相粒子中的副成分的固溶区域的剖面积比不同的样品编号18的叠层陶瓷电容器,并对电介特性、AC电压特性、温度特性及可靠性进行评价。(样品的制作)(样品编号1~4)首先,准备BaC03及Ti02作为陶瓷原材料,并秤量该等陶瓷原材料,以使Ba与Ti的调配摩尔比m为1.008。其次,将该秤量物与PSZ球及纯水一并投入至球磨机中,进行充分地湿式混合粉碎后,以100(TC以上的温度实施煅烧处理,制作出平均粒径为0.2ym的Ba,細Ti03所构成的煅烧粉末。其次,准备直径为0.1mm的小径PSZ球。然后将所述烧成粉末与小径PSZ球及纯水一并投入至球磨机中,进行818小时的湿式粉碎处理,获得浆料。随后,使用不织布过滤器对该浆料进行分级处理,并对分级后的浆料的粒径分布进行测量,能确认0.02um以下的极微粒子Ba,細Ti03粒子已被去除。然后,使所述分级后的浆料干燥,获得由BaL,Ti03构成的主成分粉末。继而,准备Dy203、MgO、MnO、Si02作为副成分材料。然后,秤量该等副成分材料,以使电介质陶瓷满足以下通式(B)。100Ba,008TiO3+0.7DyO3/2+1.4MgO+0.2MnO十1.0SiO2..(B)其次,于球磨机内,将该等副成分材料与所述主成分粉末加以混合,之后使其蒸发干燥,获得陶瓷原料粉末。之后,于该陶瓷原料粉末中添加作为有机粘合剂的聚乙烯丁醛系粘合剂、以及作为有机溶剂的乙醇,并投入至球磨机中湿式混合规定时间,从而制作出陶瓷浆料。其次,使用脂浆混合法使该陶瓷浆料成形为片材,制作出陶瓷生片。接着,准备以Ni为主成分的内部电极用导电膏。继而,将该内部电极用导电膏涂布于所述陶瓷生片上并实施网版印刷,以于所述陶瓷生片的表面上形成规定图案的导电膜。然后,将多片形成有导电膜的陶瓷生片于规定方向上叠层,且以未形成有导电膜的陶瓷生片来夹持、压接,并切断成规定尺寸而制作成陶瓷叠层体。之后,于300'C的温度下进行脱粘合剂处理,进而,在将氧分压控制为l(r1QMpa的由H2-N2-H20气体构成的还原性气体环境下,以120(TC的温度进行约2小时的烧成处理,藉此获得电介质层与内部电极交替叠层而成的陶瓷烧结体。其次,准备含有B2OrLi20-SiOrBaO是玻璃成分的以Cu为主成分的外部电极用导电膏。然后对所述陶瓷烧结体的两端面涂布所述外部电极用导电膏,并于N2气体环境中,以800。C的温度进行烧接处理,形成与内部电极电连接的外部电极,以此制作出样品编号1~4的叠层陶瓷电容器。所获得的叠层陶瓷电容器的外形尺寸为,长度2.0mm,宽度1.2mm,厚度1.0mm,电介质层的每1层的厚度为1.0Um。另外,有效电介质陶瓷层的总数为100,每1层的对置电极面积为1.4mm2。(样品编号5)除不进行分级处理以外,以与(样品编号l)相同的制作方法制作出样品编号5的叠层陶瓷电容器。(样品编号6)除不进行分级处理以外,以与(样品编号3)相同的制作方法制作出样品编号6的叠层陶瓷电容器。(样品编号7)除BaC03及Ti02以外,还准备CaC03以作为陶瓷原材料,并秤量该等陶瓷原材料,以使主成分构成为(Bao.95Cao.o5)LoosTiC^,除此之外,以与(样品编号2)相同的制作方法制作出样品编号7的叠层陶瓷电容叫翁o(样品编号8).除BaC03及Ti02以外,还准备CaC03以作为陶瓷原材料,并秤量该等陶瓷原材料,以使主成分构成为(Bao.95Cao.o5)roosTiC^之后,不进行粉碎处理后的分级处理,除此之外,以与(样品编号2)相同的制作方法制作出样品编号8的叠层陶瓷电容器。(陶瓷组织的构造分析)禾lj用TEM(TransmissionElectronMicroscope:穿透式电子显微镜)来观察样品编号1~8的叠层陶瓷电容器的剖面,并利用EDX(EnergyDispersionX-raySpectroscopy:能量色散X射线分析法)对副成分进行测绘(mapping)分析,求出主相粒子中的副成分的固溶区域的剖面积比。13具体而言,将主成分100摩尔部中检测出总计0.2摩尔部以上的副成分的主相粒子判断为副成分固溶于主成分中,并将主成分100摩尔部中副成分不足0.2摩尔部的主相粒子判断为副成分未固溶于主成分中。而且,以此方式辨别主相粒子中的副成分的固溶区域及非固溶区域,以求出副成分的固溶区域的剖面积比(固溶面积比率)。再者,将电子束的探针直径设定为2nm。以相同的方法求出20个主相粒子中各自的副成分的固溶面积比率,并计算出其平均值。表1中显示样品编号18的组合、制作条件以及副成分的固溶面积比率(平均值)。(表l)<table>tableseeoriginaldocumentpage14</column></row><table>*表示在本发明范围之外样品编号1~4于粉碎后进行分级处理,故主成分中极微粒子BaL,Ti03粒子被尽量去除。由此可知,副成分的固溶面积比率被抑制于10%以下。样品编号5~6于粉碎后不进行分级处理,大量的极微粒子Ba,.oo8Ti03粒子存在于主成分中,由此可知,副成分的固溶面积比率超过10%。即,由于粉碎后不进行分级处理,故极微粒子的Bai.(K)8Ti03粒子与副成分会发生反应,其结果导致副成分的固溶面积比率上升。样品编号7的主成分中含有Ca,与样品编号1~4相同,主成分中的极微粒子(Bao.95。Ca。.(K)5)1.008TiO3粒子被去除,故其结果为,副成分的固溶面积比率被抑制为4%。样品编号8于粉碎后不进行分级处理,大量的极微粒子(Bao.95oCa,5),細Ti03粒子存在于主成分中,因此根据与样品编号5~6相同的理由可知,副成分的固溶面积比率达到22%,即超过10%。(特性评价)对电介常数e、电介损失tanS、静电电容的AC电压特性、温度特性、可靠性进行评价。艮口,使用自动桥式测量仪,在频率lkHz、实效电压0.5Vrms、温度25°C的条件下测量静电电容C及电介损失tanS,并根据静电电容C计算出电介常数e。然后将电介常数e为2500以上、且电介损失tanS不足5%者评价为合格品。关于AC电压特性,在频率1kHz、温度25'C的条件下测量实效电压为0.5Vrms、0.1Vrms时的静电电容Co.5V、C。.1V。然后以0.5Vrms时的静电电容Q.5v为基准,求出O.lVrms时的静电电容的电压变化率AQ).,v/Co.5v,并将该电压变化率AQ).,v/Co.5v为土10Q/。以内者作为合格品,以此对静电电容的AC龟压特性进行评价。关于温度特性,以+25X:时的静电电容为基准,来测量-55'C至+85'C的范围内的静电电容的温度变化率(AC/C25)。然后将温度变化率(AC/C25)为±10%以内者作为合格品,以此对静电电容的温度特性进行评价。关于可靠性,进行高温负荷测试,并根据高温负荷寿命来进行评价。即,于85。C的高温下,对各样品100个施加6.3V的直流电压,测量绝缘电阻的经时变化。然后,将测试开始后经过1000小时及2000小时的时间时,绝缘电阻降低至200kQ以下的测试片判断为不合格品,并统计该不合格品的个数,以对高温负荷寿命即可靠性进行评价。表2中显示样品编号1~8的各测量结果。(表2)<table>tableseeoriginaldocumentpage16</column></row><table>*表示在本发明范围之外根据表1及表2可知,样品编号5的副成分的固溶面积比率为21%,即超过10%,因此无法将静电电容的电压变化率ACmv/0).5v抑制于±10%以内,从而静电电容相对电压变动不稳定。样品编号6的副成分的固溶面积比率为43%,即超过10%,故与样品编号5相同,无法将静电电容的电压变化率AQhv/Co.5v抑制于±10%以内,由此可知静电电容相对电压变动不稳定。样品编号7的副成分的固溶面积比率为4%,即为10%以下,但因主成分中含有Ca,故无法将静电电容的电压变化率AQnv/Q).5v抑制为±10%以内,由此可知静电电容相对电压变动不稳定。亦即能确认,即便副成分的固溶面积比率为10%以下,当主成分中含有Ca时,亦无法改善AC电压特性。样品编号8的副成分的固溶面积比率为22%,即超过10%,且主成分中含有Ca,故无法将静电电容的电压变化率ACq.1v/0).5v抑制于±10%以内,由此可知静电电容相对电压变动不稳定。根据以上所述能确认,为了获得良好的AC电压特性,必须将主相粒子中的副成分的固溶区域、即固溶面积比率抑制于10%以下,且重要的是主成分中不含有Ca。(实施例2)实施例2中,制作构成电介质陶瓷的各成分组合的调配量不同的样品编号1140的叠层陶瓷电容器,并对电介特性、AC电压特性、温度特性以及可靠性进行评价。艮P,准备BaC03及Ti02作为陶瓷原材料,并秤量该等陶瓷原材料,以使Ba与Ti的调配摩尔比m为0.9951.032。其次,以与(实施例O相同的方法、顺序制作平均粒径为0.2IIm的煅烧粉末,之后,将煅烧粉末与直径为0.1mm的小径PSZ球及纯水一并投入至球磨机中,进行12分钟的湿式粉碎处理,获得浆料。接着,使用不织布过滤器对该浆料进行分级处理,获得极微粒子的钛酸钡粒子被尽量去除的浆料,再使其干燥而获得主成分粉末。其次,准备含有第1添加元素R的R氧化物(La203、Ce02、Pr6011、Nd203、Sm203、Eu203、Gd203、Tb203、Dy203、Ho203、Er203、Tm203、Yb203,Lu203、Y203)、含有第2添加元素M的M氧化物(MnO、Fe203、CoO、V205、W03、Cr203、Mo02、CuO、A1203、MgO)、以及Si02,将其作为副成分材料。继而,秤量该等副成分材料,以使电介质陶瓷满足以下通式(C)。100BamTiO3+aROn+bMOv+cSiO2…(C)其次,于球磨机内,将该等副成分材料与所述主成分粉末加以混合,之后使其蒸发干燥,获得陶瓷原料粉末。其后,以与(实施例l)相同的制作方法制作出样品编号11~40的叠层陶瓷电容器。随后,与(实施例l)相同,使用TEM-EDX进行陶瓷组织的构造分析,并对副成分的固溶面积比率进行测量后确认,任一样品的固溶面积比率均为10%以下。即,本实施例2中,粉碎处理后实施分级处理,以将极微粒子的钛酸钡粒子自主成分粉末中尽量去除,故不会促进主成分与副成分的反应,藉此将固溶面积比率抑制为10%以下。由此可知,借由将极微粒子的钛酸钡粒子自主成分粉末中尽量去除,能将固溶面积比率抑制为10%以下,而不会受到副成分的添加量的影响。其次,对样品编号11~40的各样品,以与(实施例l)相同的方法/顺序来进行电介常数e、电介损失tanS、静电电容的电压变化率AQ).,v/Co.5v、温度变化率AC/C25以及高温负荷测试,并对各特性进行评价。表3中显示样品编号11~40的成分组合,表4中显示各特性的测量结果。(表3)<table>tableseeoriginaldocumentpage19</column></row><table><table>tableseeoriginaldocumentpage20</column></row><table>*表示为发明范围之外<table>tableseeoriginaldocumentpage21</column></row><table>*表示为本发明范围之外样品编号33的Ba部位与Ti部位的调配摩尔比m为0.950,即不足0.995,故Ti部位会过度过剩,因此电介损失tan5为7.2%,即超过5%。另外可知,于高温负荷测试时,经过IOOO小时的时间时,不合格数为10/100,经过2000小时的时间时,不合格数为15/100,从而亦导致可靠性降低。样品编号34中,Ba部位与Ti部位的调配摩尔比m为1.032,即超过1.030,故Ba部位过度过剩,由此可知电介常数e降低至2200。样品编号35的电介质陶瓷中完全不含有第1添加元素R,故电介损失tanS为5.4%,即超过5%。另外可知,于高温负荷测试时,经过IOOO小时的时间时,不合格数为4/100,经过2000小时的时间时,不合格数为12/100,从而亦导致可靠性降低。样品编号36中,第1添加元素R的总含量相对于主成分100摩尔部为2.3摩尔部,即超过2.0摩尔部,故电介常数e较低,为2040。另外可知,静电电容的温度变化率AC/C25为-11.4。/。,无法抑制于±10%以内,故静电电容相对于温度变化不稳定,从而温度特性恶化。样品编号37的电介质陶瓷中完全不含有第2添加元素M,故电介损失tanS为5.2%,即超过5%。另外可知,于高温负荷测试时,经过IOOO小时的时间时,不合格数为6/100,经过2000小时的时间时,不合格数为11/100,从而亦导致可靠性降低。样品编号38中,第2添加元素M的总含量相对于主成分100摩尔部为3.2摩尔部,即超过3.0摩尔部,故电介常数e较低,为2180,另外可知,静电电容的温度变化率AC/C25为-10.3Q/。,无法抑制于±10%以内,从而温度特性恶化。样品编号39中,作为烧结助剂而发挥作用的Si完全不包含于电介质陶瓷中,故于1200'C、2小时的烧成条件下无法获得充分的电介特性、温度特性,因此电介常数e较低,为1930,静电电容的温度变化率AC/C25为-12.00/。。另外可知,于高温负荷测试时,经过1000小时的时间时,不合格数为1/100,经过2000小时的时间时,不合格数为5/100,从而亦导致可靠性降低。格数为2/100,经过2000小时的时间时,不合格数为6/100,从而亦导致可靠性降低。相对于此,样品编号1132中,调配摩尔比m及各添加元素的含有量相对于主成分100摩尔部的摩尔部a、b、c分别为0.9951.030、0.1^a〇2.0、0.1〇b〇3.0、0.1^c^5.0,处于本发明的较佳范围内,且副成分的固溶面积比率为10%以下,故电介常数e为2500以上,电介损失tanS不足5%,静电电容的电压变化率AQuv/C。.sv及温度变化率AC/C25均为土10。/。以内,另夕卜,于高温负荷测试时,经过2000小时的时间时,不合格数为O。即,可知,使调配摩尔比m、添加元素的各摩尔部a、b、c为本发明的较佳范围,则不仅AC电压特性良好,而且能实现电介特性、温度特性、可靠性亦优异的叠层陶瓷电容器。(实施例3)以与(实施例l)的样品编号2相同的制作方法,制作出极微粒子的Ba,.()。8Ti03粒子被尽量去除的主成分粉末。其次,除D》03、MgO及MnO以外,还准备含有烧结助剂成分X的X氧化物Si02、Li20、B203、NaO、A1203、MgO、BaO、K20、SrO、GaO、Ti02、Zr02,将其等作为副成分材料。然后,秤量该等副成分材料,以使电介质陶瓷满足以下通式(D)。100Ba,.oo8Ti03+0.7Dy03/2+l,4MgOH).2MnO+cXOw…(D)其次,于球磨机内,将该等副成分材料与所述主成分粉末加以混合,之后使其蒸发干燥,获得陶瓷原料粉末。其后,以与(实施例l)相同的制作方法,制作出样品编号5163的叠层陶瓷电容器。随后,与(实施例l)相同,使用TEM-EDX进行陶瓷组织的构造分析,并对副成分的固溶面积比率进行测量后确认,与(实施例l)及(实施例2)相同,任一样品的固溶面积比率均为10%以下。接着,对样品编号5163的各样品,以与(实施例1)相同的方法、顺序来进行电介常数e、电介损失tan5、静电电容的电压变化率AQ)」V/Q).5V、温度变化率AC/C25以及高温负荷测试,并对各特性进行评价。表5中显示样品编号51~63中的烧结助剂成分X的成分物质以及相对于主成分100摩尔部的含有摩尔量(摩尔部),表6中显示各特性(表5)<table>tableseeoriginaldocumentpage24</column></row><table>样品编号电介常数s(-)电介损失tan5(%)静电电容的电压变化率ACo.iv/Co.5v(%)静电电容的温度变化率△C/C25(%)高<table>tableseeoriginaldocumentpage25</column></row><table>根据该表5及表6能明确了解,在除Si成分以外还使用样品编号5263的组合的烧结助剂时,仍为电介常数e为2500以上,电介损失tanS不足5%,静电电容的电压变化率AQuv/CQ.5V以及温度变化率AC/C25均为土10。/。以内,另外,于高温负荷测试时,经过2000小时的时间时,不合格数为O。即,可知,若副成分的固溶面积比率为10%以内,调配摩尔比m、添加元素的各摩尔部a、b、c为本发明的较佳范围,且烧结助剂成分X至少含有Si,则即便含有其它烧结助剂成分,亦能实现不仅AC电压特性良好,而且电介特性、温度特性、可靠性亦优异的叠层陶瓷电容器。(实施例4)使主成分100摩尔部中含有规定摩尔部的表7所示的规定杂质成分,除此之外,以与(实施例l)的样品编号2相同的制作方法,制作出实施例7177的叠层陶瓷电容器。(表7)<table>tableseeoriginaldocumentpage26</column></row><table>该实施例4亦与实施例1相同,使用TEM-EDX进行陶瓷组织的构造分析,并对副成分的固溶面积比率进行测量后确认,与所述各(实施例13)相同,任一样品的副成分的固溶面积比率均为10%以下。其次,对样品编号7177的各样品,以与(实施例O相同的方法、顺序来进行电介常数e、电介损失tanS、静电电容的电压变化率ACo.,v/Co.5V、温度变化率AC/C25以及高温负荷测试,并对各特性进行评价。表8为所述测量结果。(表8)<table>tableseeoriginaldocumentpage26</column></row><table>根据该表7及表8能明确了解,即便于电介质陶瓷中含有微量杂质,仍为电介常数e为2500以上,电介损失tanS不足5%,静电电容的电压变化率AQuv/Q).5v以及温度变化率AC/C25均为士10。/。以内,另外,于高温负荷测试时,经过2000小时的时间时,不合格数为0。即,能确认,若使副成分的固溶面积比率为10%以内,调配摩尔比m、添加元素的各摩尔部a、b、c为本发明的较佳范围,且烧结助剂成分X至少含有Si,则即便于电介质陶瓷中含有微量杂质,亦不会影响到各种特性,从而能获得AC电压特性、电介特性、温度特性、可靠性优异的叠层陶瓷电容器。权利要求1.一种电介质陶瓷,其特征在于,由以钛酸钡为主成分,且副成分含有第1添加元素R、第2添加元素M及烧结助剂成分X的组合构成,所述第1添加元素R由选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及Y的群组中的至少1种元素所构成,所述第2添加元素M是由选自Mn、Fe、Co、V、W、Cr、Mo、Cu、Al及Mg的群组中的至少1种元素所构成,所述烧结助剂X至少包含Si,主相粒子中所述副成分的固溶区域的剖面积比平均为10%以下(包括0%在内)。2.根据权利要求l所述的电介质陶瓷,其特征在于,所述组合由以下通式来表示100BamTiO3+aROn+bMOv+cXOw(其中,n、v及w分别为根据所述第1添加元素R、所述第2添加元素M以及所述烧结助剂成分X的价数所唯一决定的正数),所述m、a、b及c分别为0.995当mSl扁,0.1^a〇2.0,0.1^bi3.0,3.—种叠层陶瓷电容器,具有由电介质层与内部电极交替叠层而形成的陶瓷烧结体,并且在该陶瓷烧结体的两端部形成外部电极,且该外部电极与所述内部电极电连接,该叠层陶瓷电容器的特征在于,所述电介质层由权利要求1或2所述的电介质陶瓷形成。全文摘要本发明提供一种电介质陶瓷以及使用该电介质陶瓷的叠层陶瓷电容器,该电介质陶瓷的AC电压特性良好,能维持所需的较大电介常数及良好的温度特性,电介损失亦较小,且能确保可靠性。本发明的电介质陶瓷由通式100Ba<sub>m</sub>TiO<sub>3</sub>+aRO<sub>n</sub>+bMO<sub>v</sub>+cXO<sub>w</sub>(R为Dy、La等规定的稀土类元素,M为Mn、Mg等规定的金属元素,n、v及w为根据元素R、M以及烧结助剂成分X的价数所唯一决定的正数)表示,主相粒子中所述副成分的固溶区域的剖面积比平均为10%以下(包含0%),烧结助剂成分X至少含有Si。m、a、b、c为0.995≤m≤1.030、0.1≤a≤2.0、0.1≤b≤3.0、0.1≤c≤5.0。叠层陶瓷电容器的电介质层1a~1g是藉由所述电介质陶瓷所形成。文档编号C04B35/46GK101675013SQ200880005940公开日2010年3月17日申请日期2008年2月14日优先权日2007年2月26日发明者中村友幸,矢尾刚之,石原雅之,笹林武久申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1