一种半透半反液晶显示面板、显示装置及阵列基板的制作方法

文档序号:2803997阅读:168来源:国知局
专利名称:一种半透半反液晶显示面板、显示装置及阵列基板的制作方法
技术领域
本发明涉及液晶显示技术领域,特别是指一种半透半反液晶显示面板,显示装置(TransFlective Liquid Crystal Display, LCD)及阵列基板。
背景技术
随着技术的进步,半透半反式LCD在市场上日渐扮演重要角色,尤其在目前通讯业极其发达的时代,半透半反式IXD可应用于手机的显示屏中,平板电脑的显示屏中,以使得使用者在暗室中,或者极明亮的室外,均可清楚地辨识屏幕所显示的内容。根据结构不同,半透半反液晶显示装置可以分为两类:双液晶层盒厚(DoubleCell Gap)和单液晶层盒厚(Single Cell Gap)。其中,双液晶盒厚的半透半反式液晶显示器在于其穿透式部分(透射区)和反射式部分(反射区)的液晶层厚度不同,透射区的液晶层厚度通常是反射区的两倍;而单液晶层厚度的半透半反式液晶显示器的透射区和反射区具有相同的液晶层厚度。

发明内容
本发明要解决的技术问题是提供一种半透半反液晶显示面板、显示装置及阵列基板,兼具广视角和高对比度。为解决上述技术问题,本发明的实施例提供一种半透半反液晶显示面板,包括:第一基板;与所述第一基板相对设置的第二基板;设置于所述第一基板和所述第二基板之间的液晶层;所述第一基板和所述第二基板之间包括:透射区域和反射区域;所述透射区域和所述反射区域的液晶盒厚不相等;所述第一基板上对应于反射区域的部分靠近液晶层的侧面设有第一覆盖层;所述第二基板上对应于透射区域的部分和对应于反射区域的部分设有一整体结构的像素电极;所述第二基板上对应于透射区域的部分,且位于所述像素电极之上靠近液晶层的侧面设有狭缝结构的第二公共电极,所述像素电极与所述第二公共电极之间具有一绝缘层。其中,所述第二基板上对应于透射区域的部分的像素电极为平坦状。其中,所述第二基板上对应于反射区域的部分具有平坦状或者浮凸结构的反射层,所述反射层位于所述第二基板与所述反射区域的像素电极之间。其中,所述第二基板上对应于反射区域的部分的像素电极为平坦状或者与所述反射层一致的浮凸结构。其中,在所述第一覆盖层靠近所述液晶层的侧面还设有第一公共电极。其中,所述第一基板上所述第一覆盖层和所述第一公共电极的总厚度是透射区域液晶盒厚度的1/2。其中,所述 第一基板上对应于所述透射区域和反射区域之间的过渡区域设有遮光层。其中,所述第一基板上设有对应于整个透射区域和反射区域且覆盖所述遮光层的彩膜层。其中,所述第一基板上设有对应于整个透射区域和反射区域且覆盖所述彩膜层的第二覆盖层,所述第一覆盖层位于所述第二覆盖层面向所述液晶层的一侧面上。其中,所述第一覆盖层和所述第二覆盖层的材料为树脂材料。所述第一基板在背向所述液晶层的一面上还设有第一偏振片;所述第二基板背向所述液晶层的一面上还设有第二偏振片。其中,所述第一偏振片和所述第二偏振片的光透过轴方向相互垂直。其中,所述第一偏振片对应于反射区域的部分,面向所述液晶层的一面还设有λ/4相位延迟膜。其中,所述液晶层 的液晶为负性液晶。本发明的实施例还提供一种显示装置,包括如上所述的液晶显示面板。本发明的实施例还提供一种阵列基板,所述阵列基板为上述第二基板。本发明的上述技术方案的有益效果如下:上述方案中,通过第二基板上对应于透射区域的部分和对应于反射区域的部分设有一整体结构的像素电极;所述第二基板上对应于透射区域的部分,且位于所述像素电极之上靠近液晶层的侧面设有狭缝结构的第二公共电极,所述像素电极与所述第二公共电极之间具有一绝缘层;即透射区域用广视角ADS(FFS)模式,反射部用VA模式启动,具有广视角和高对比度的特点。


图1为本发明的半透半反液晶显示面板的第一实施例在暗态时的示意图;图2为本发明的半透半反液晶显示面板的第一实施例在亮态时的示意图;图3为本发明的半透半反液晶显示面板的第二实施例在暗态时的示意图;图4为本发明的半透半反液晶显示面板的第二实施例在亮态时的示意图;图5为本发明的半透半反液晶显示面板的透射部实现亮态显示的光线方向示意图;图6为本发明的半透半反液晶显示面板的透射部实现暗态显示的光线方向示意图;图7为本发明的半透半反液晶显示面板的反射部实现亮态显示的光线方向示意图;图8为本发明的半透半反液晶显示面板的反射部实现暗态显示的光线方向示意图。
具体实施例方式为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。如图1、图2所示,本发明的实施例提供一种半透半反液晶显示面板,包括:第一基板2 ;与所述第一基板2相对设置的第二基板10 ;设置于所述第一基板2和所述第二基板10之间的液晶层7 ;所述第一基板2和所述第二基板10之间包括:透射区域和反射区域;所述透射区域和所述反射区域的液晶盒厚不相等;所述第一基板2上对应于反射区域的部分靠近液晶层的侧面设有第一覆盖层(Over Coater, 0C)5 ;所述第二基板10上对应于透射区域的部分和对应于反射区域的部分设有一像素电极8 ;所述第二基板10上对应于透射区域的部分,且位于所述像素电极8之上靠近液晶层的侧面设有狭缝结构的第二公共电极12,所述像素电极8与所述第二公共电极12之间具有一绝缘层13。其中,所述第二基板10上对应于透射区域的部分的像素电极8为平坦状。其中,所述第二基板10上对应于反射区域的部分具有平坦状或者浮凸结构的反射层9 ;其中,平坦状的反射层9如图3和图4所示,浮凸结构的反射层9如图1和图2所
/Jn ο其中,反射层9之上的像素电极8可以是透明的,也可以是不透明的具有反射特性的金属材料形成,这样,反射层9可以是树脂制作的,为了使反射效果更好,可以将树脂层制备成波浪状的浮凸结构,将反射金属层直接形成于浮凸结构上,从而形成浮凸结构的反射层9。进一步的,所述第二基板10上对应于反射区域的部分的像素电极8为平坦状或者与所述反射层9 一致的浮凸结构。在本发明的一具体实施例中,以双盒厚的半透半反液晶显示面板为例,所述第一基板2上相对于反射区域的所述第一覆盖层5和所述第一公共电极6的总厚度是液晶盒厚度的1/2,如图1 一图4所示,液晶盒厚度为位于第二覆盖层4与绝缘层13之间的液晶层的厚度,这样反射区域的液晶层的 厚度就是透射区域的液晶层的厚度的1/2。在上述实施例中,在所述第一覆盖层5靠近所述液晶层的侧面还设有第一公共电极6,第一公共电极6位于第一基板2的对应于整个反射区域的最靠近液晶层的一侧,且第一覆盖层5位于所述第一公共电极6之上,且对应于整个反射区域;在上述实施例中,所述第一基板2上对应于所述透射区域和反射区域之间的过渡区域设有遮光层14(如黑矩阵)。这样,可以通过在透射区域和反射区域的过渡区域设置BM遮光层,来遮挡杂乱无章的光穿过第一基板2,从而避免漏光的发生,并提高对比度。其中,遮光层14的宽度范围7 21微米,优选为14微米。在上述实施例中,所述第一基板2上设有对应于整个透射区域和反射区域且覆盖所述遮光层的彩膜层3。另外,该彩膜层3还可以直接形成于第二基板10上,如形成于第二基板10的像素电极8之上或者形成于绝缘层13之上等。其中,所述第一基板2上设有对应于整个透射区域和反射区域且覆盖所述彩膜层3的第二覆盖层4。且进一步的,该第二覆盖层4的靠近液晶层的表面设置上述第一覆盖层
5,即第一覆盖层5位于该第二覆盖层4与第一公共电极6之间;且该第二覆盖层5和第一公共电极6仅在反射区域有,且厚度为上述液晶盒厚度的1/2,因此,可以使得光线在经过反射区域反射后,总光程和光线透过透射区域的总光程相等。上述实施例中,所述第一覆盖层5和所述第二覆盖层4的材料为树脂材料。所述第一基板2在背向所述液晶层的上表面还设有第一偏振片I ;所述第二基板10背向所述液晶层的一面或者靠近背光源的侧面还设有第二偏振片11,进一步的,所述第一偏振片I与第二偏振片11的透光轴方向相互垂直,如第一偏振片为O度偏振片,那第二偏振片为90度偏振片;反之,第一偏振片为90度偏振片,那第二偏振片为O度偏振片均可。另外,在本发明的上述实施例中,所述第一偏振片对应于反射区域的部分,面向所述液晶层的一面还设有λ/4相位延迟膜15。其中,该λ/4相位延迟膜15可以设置于液晶层7与第一偏振片I之间的任何一层,如可以设置于第一基板2与第一偏振片I之间,也可以设置于第一基板2与彩膜层3之间,也可以设置于彩膜层3与第二覆盖层4之间,也可以设置于第一覆盖层5与第二覆盖层4之间,也可以设置于第一覆盖层5与第一公共电极6之间(如图1 一 4中所示,本发明的实施例显然不限于图中所示的情况),当然也可以设置于第一公共电极6面向液晶层7的一面上。其中,所述液晶层的液晶为负性液晶,负性液晶的初始取向为竖直取向。为了使负性液晶的初始取向为竖直取向,具体可以在第二基板10的第二公共电极12上,对应于整个透射区域和反射区域再覆盖一层取向层(PI层);当然,第一基板2上,在第二覆盖层4对应于透射区域的部分,靠近液晶层的侧面,再覆盖一层取向层(PI层),使液晶在不加电时,初始为竖直取向,从而实现暗态显示;采用使液晶在不加电时为竖直取向的取向层,还可以省略摩擦工艺。下面结合图1 一图8,对上述所示的半透半反的液晶显示面板实现透反显示的原理进行说明:没有对液晶层7施加电压时,如图1、图3、图6和图8所示,在透射区域(如图6所示),光线从背光源发出后,先通过第二偏振片11 (如O度偏振片)变成线偏光(这里需要说明的是:光线在经过偏振片时,只有与偏振片的透光轴平行的光才能通过,因此,类似于环境光的背光源发出的光线,经过O度偏振片时,会变成平行于偏振片的透光轴的线偏光);然后线偏光通过液晶层7,由于液 晶层7的液晶的初始取向为竖直取向,光学延迟为λ /2 ( λ为半波长),所以该线偏光的振动方向不会发生改变;经过液晶层的线偏光进入第一偏振片I,且由于第一偏振片I与第二偏振片11的透光轴一般是垂直的,所以该线偏光的振动方向与第一偏振片I的透光轴也垂直,则该线偏光不能透过第一偏振片1,此时透射区实现暗态;没有对液晶层7施加电压时,在反射区域(如图8所示),环境光通过第一偏振片(如90度偏振片),产生和所述第一偏振片光透过轴方向平行的线偏振光,经过λ /4相位延迟膜15后产生左旋圆或者右旋圆偏振光,左旋圆或者右旋圆偏振光经过液晶层,由于液晶层的液晶分子未有电场影响,对左旋圆或者右旋圆偏振光无延迟作用,所以左旋圆或者右旋圆偏振光进入反射层,经过反射层反射后发生λ /2延迟变成右旋圆或者左旋圆偏振光,该右旋圆或者左旋圆偏振光再次进入液晶层,无延迟并再次通过λ/4相位延迟膜15,变成和第一偏振片光透过轴方向垂直的线偏振光,因此无法从第一偏振片射出,从而形成反射区域的暗态;对液晶层7施加电压时,如图2、图4、图5、图7所示,在透射区域(如图5所示),液晶层7会因透射区域的第二公共电极12与像素电极8之间的平面内的多维电场的作用而发生偏转,也会使线偏光的振动方向发生偏转;此时,光线从背光源发出后,先通过第二偏振片11 (如O度偏振片)变成与第二偏振片11的透光轴平行的线偏光;然后线偏光通过液晶层7,线偏光转换成左旋圆或者右旋圆偏振光;经过液晶层的左旋圆或者右旋圆偏振光进入第一偏振片I,由于该左旋圆或者右旋圆偏振光的振动方向与第一偏振片I的透光轴不垂直,所以能够被第一偏振片I透过,从而显示出不同灰度的图像;该透射区域,实际上是通过ADS模式的像素结构,即通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场,使液晶盒内狭缝电极间、电极正上方所有取向液晶分子都能够产生旋转,从而提高了液晶工作效率并增大了透光效率;该实施例中所述的高级超维场转换可以提高TFT-1XD产品的画面品质,具有高分辨率、高透过率、低功耗、宽视角、高开口率、低色差、无挤压水波纹(push Mura)等优点。对液晶层7施加电压时,在反射区域(如图7所示),液晶层7会由于反射区域的位于第二基板10上像素电极8与位于第一基板2上的第一公共电极6之间的垂直电场的作用而发生偏转,线偏光的振动方向经过两次偏转后的偏转角度不会等于90度,所以线偏光的振动方向与第一偏振片I的透光轴不会相互垂直,也能够被第一偏振片I通过,从而显不出不同灰度的图像;具体的,在反射区域内,环境光通过第一偏振片1,产生偏振方向和第一偏振片I的光透过轴方向平行的线偏振光,并经过λ/4相位延迟膜,从而产生左旋圆或者右旋圆偏振光,该左旋圆或者右旋圆偏振光经过液晶层,由于液晶层导致的λ/4相位延迟,光线变成偏振方向和第一偏振片I的光透过轴垂直的线偏振光,再经过反射层,经过反射层的λ/4延迟后,依然为偏振方向和第一偏振片I的光透过轴垂直的线偏振光,光线再次进入液晶层7经过延迟后变成右旋圆或者左旋圆偏振光,由λ /4相位延迟膜,变成偏振方向和第一偏振片I的光透过轴平行的线偏振光,从而能够通过第一偏振片I出射,形成反射区域的亮态。本发明的上述方案通过在透射区采用ADS或者IPS模式的像素结构,在反射区采用VA模式或TN模式的像素结构,实现了半透半反液晶显示装置的透射区和反射区同时显示出暗态或者亮态,从而保证了半透半反液晶显示装置的透射部具有宽视角的优点,反射部具有高对比度的优点,且还提供了具有该宽视角和高对比度的多模式液晶显示装置。本发明的实施例还提供一种包括如上所述的液晶显示面板的显示装置。

再如图1 一图4所示,本发明的实施例还提供一种阵列基板,所述阵列基板为上述图1 一图4所示半透半反液晶显示装置的第二基板10 ;具体的,所述第二基板10上对应于透射区域的部分和对应于反射区域的部分设有一像素电极8 ;所述第二基板10上对应于透射区域的部分,且位于所述像素电极8之上靠近液晶层的侧面设有狭缝结构的第二公共电极12,所述像素电极8与所述第二公共电极13之间具有一绝缘层13。其中,所述第二基板10上对应于透射区域的部分的像素电极8为平坦状。其中,所述第二基板10上对应于反射区域的部分具有平坦状或者浮凸结构的反射层9 ;其中,平坦状的反射层9如图3和图4所示,浮凸结构的反射层9如图1和图2所
/Jn ο其中,所述第二基板10上对应于反射区域的部分的像素电极8为平坦状或者与所述反射层9一致的浮凸结构。其中,反射层9之上的像素电极8可以是透明的,也可以是不透明的具有反射特性的金属材料形成,这样,反射层9可以是树脂制作的,为了使反射效果更好,可以将树脂层制备成波浪状的浮凸结构,将反射金属层直接形成于浮凸结构上,从而形成浮凸结构的反射层9。进一步的,该第二基板10的像素电极8或者一绝缘层13上还可以形成彩膜层。此种情况下,第一基板2上就可以省去彩膜层。本发明的该阵列基板的实施例可以用于形成半透半反液晶显示装置,从而可以实现半透半反液晶显示装置的透射区和反射区同时显示出暗态或者亮态,从而保证了半透半反液晶显示装置的透射部具有宽视角的优点,反射部具有高对比度的优点。以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本 发明的保护范围。
权利要求
1.一种半透半反液晶显示面板,包括:第一基板;与所述第一基板相对设置的第二基板;设置于所述第一基板和所述第二基板之间的液晶层;所述第一基板和所述第二基板之间包括:透射区域和反射区域;所述透射区域和所述反射区域的液晶盒厚不相等;其特征在于, 所述第一基板上对应于反射区域的部分靠近液晶层的侧面设有第一覆盖层; 所述第二基板上对应于透射区域的部分和对应于反射区域的部分设有像素电极; 所述第二基板上对应于透射区域的部分,且位于所述像素电极之上靠近液晶层的侧面设有狭缝结构的第二公共电极,所述像素电极与所述第二公共电极之间具有一绝缘层。
2.根据权利要求1所述的半透半反液晶显示面板,其特征在于,所述第二基板上对应于透射区域的部分的像素电极为平坦状。
3.根据权利要求1所述的半透半反液晶显示面板,其特征在于,所述第二基板上对应于反射区域的部分具有平坦状或者浮凸结构的反射层,所述反射层位于所述第二基板与所述反射区域的像素电极之间。
4.根据权利要求3所述的半透半反液晶显示面板,其特征在于,所述第二基板上对应于反射区域的部分的像素电极为平坦状或者与所述反射层一致的浮凸结构。
5.根据权利要求1所述的半透半反液晶显示面板,其特征在于,在所述第一覆盖层靠近所述液晶层的侧面还设有第一公共电极。
6.根据权利要求5所述的半透半反液晶显示面板,其特征在于,所述第一基板上所述第一覆盖层和所述第一公共电极的总厚度是透射区域液晶盒厚度的1/2。
7.根据权利要求1所述的半透半反液晶显示面板,其特征在于,所述第一基板上对应于所述透射区域和反射区域之间的过渡区域设有遮光层。
8.根据权利要求7所述的半透半反液晶显示面板,其特征在于,所述第一基板上设有对应于整个透射区域和反射区域且覆盖所述遮光层的彩膜层。
9.根据权利要求8所述的半透半反液晶显示面板,其特征在于,所述第一基板上设有对应于整个透射区域和反射区域且覆盖所述彩膜层的第二覆盖层,所述第一覆盖层位于所述第二覆盖层面向所述液晶层的侧面上。
10.根据权利要求9所述的半透半反液晶显示面板,其特征在于,所述第一覆盖层和所述第二覆盖层的材料为树脂材料。
11.根据权利要求1所述的半透半反液晶显示面板,其特征在于,所述第一基板在背向所述液晶层的一面上还设有第一偏振片;所述第二基板背向所述液晶层的一面上还设有第二偏振片。
12.根据权利要求11所述的半透半反液晶显示面板,其特征在于,所述第一偏振片和所述第二偏振片的光透过轴方向相互垂直。
13.根据权利要求12所述的半透半反液晶显示面板,其特征在于,所述第一偏振片对应于反射区域的部分,面向所述液晶层的一面还设有λ /4相位延迟膜。
14.根据权利要求1所述的半透半反液晶显示面板,其特征在于,所述液晶层的液晶为负性液晶。
15.一种显示装置, 其特征在于,包括如权利要求1 一 14任一项所述的半透半反液晶显示面板。
16.一种阵列基板,其特征在于,所述阵列基板为如权利要求1 一 4任一项所述的第二基板 。
全文摘要
本发明提供一种半透半反液晶显示面板、显示装置及阵列基板,其中显示面板包括第一基板;与第一基板相对设置的第二基板;设置于第一基板和第二基板之间的液晶层;第一基板和第二基板之间包括透射区域和反射区域;透射区域和反射区域的液晶盒厚不相等;第一基板上对应于反射区域的部分靠近液晶层的侧面设有第一覆盖层;第二基板上对应于透射区域的部分和对应于反射区域的部分设有一整体结构的像素电极;第二基板上对应于透射区域的部分,且位于像素电极之上靠近液晶层的侧面设有狭缝结构的第二公共电极,像素电极与第二公共电极之间具有一绝缘层。本发明可以提高半透半反液晶显示装置的视角和对比度。
文档编号G02F1/1335GK103226270SQ201310160858
公开日2013年7月31日 申请日期2013年5月3日 优先权日2013年5月3日
发明者朴求铉 申请人:合肥京东方光电科技有限公司, 京东方科技集团股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1