粉末冶金用的低氧难熔金属粉末的制作方法

文档序号:3353791阅读:267来源:国知局
专利名称:粉末冶金用的低氧难熔金属粉末的制作方法
技术领域
和背景本发明涉及低氧量的钽粉,铌粉及其合金粉与制品,以及制造它们的方法。
制备钽,铌或这些金属彼此间的合金以及其中任一种或两者同时与其它金属的合金的粉末金属制品的一个常规方法首先是将粉末冷等静压为预型件,例如条或棒。为制备钽,铌或其合金的成型制品,在相对较高的温度电阻烧结预型件。对于电阻烧结,一般地在高真空室中预型件两端夹在水冷的铜电极间,然后通过流过预型件的电流加热预型件。电阻烧结同时降低氧含量和致密化预型件。
然而,利用电阻烧结进行致密化和氧去除有许多缺点。首先电阻烧结仅能用作制备特定形状的制品,一般地为棒状或条状。对于电阻烧结为防止局部过热和热脆,沿着电路方向预型件的横截面必须是均匀的。另外,横截面必须足够小以便于在通气孔消失前降低预型件心部的氧。为了有效的去除氧,最小尺寸大于大约1.5英寸的预型件是不能电阻烧结的。还有更进一步,在没有支撑的电阻烧结过程中预型件必须足够小以阻止与蠕变和热压有关的下垂。因此,预型件一般不超过大约35磅。
本发明涉及钽粉和/或铌粉,尤其涉及制造粉末冶金部件用的钽粉,这些部件可以进一步加工成棒,丝,板,箔和加工部件的其它轧制制品,或简单地通过在常规粉末压实方法后经表面精加工和/或少量的尺寸修整的制成净成型制品。这些制品还可以用作完全致密的涂层以改善其它轧制制品或加工部件的表面化学性质。
众所周知,制备用作电解电容器烧结阳极的钽粉,可通过对钽锭的切片或钽锭进行氢化,粉碎(利用整体氢化导致的脆性)为粉末形式,然后脱氢而得到钽粉。这些粉末可以用于生产漏电低的电容器。这种方法原则上还可以用于铌只是不很实用。
已知对一次颗粒或二次颗粒(团聚的)形式的钽或铌电容器粉(无论如何制备的)进行脱氧,包括与碱土金属的蒸气相接触来有效地吸收粉末表面的氧,并通过酸沥滤和/或蒸馏以碱土金属氧化物形式去除氧。
发明概述本人发明了新的氧含量低于大约300ppm的钽粉,铌粉或钽或铌的合金粉。本人还发明了制备这些粉末的方法,其中在氧活性金属例如镁存在的条件下加热钽,铌或合金粉的氢化物。
本人还发明了由钽,铌及其合金制成的氧含量低于大约300ppm的成型粉末金属制品。本人还发明了不经电阻烧结而制备氧含量小于大约300ppm的钽,铌及其合金的成型粉末金属制品的新方法。
本发明利用了前面总结的非常陈旧的现有技术发展而来的两种工艺路线的组合及变体,且进一步认识到这是一种获得用于轧制制品/制造加工部件的低氧超细粉末的方法。粉末细小(和与其相关的高表面积)通常与对后续工艺和使用有害的高的氧摄取有关。
本发明的主要目标是提供一种获得低氧的细小钽和/或铌粉末的方法,优选地平均尺寸小于150微米且氧含量低于300ppm。
这通过采用-150微米的细小氢化钽粉并使其与小于氢化物重量1/2%的少量镁或钙混合来实现。也可使用碱土金属的前驱体,例如其氢化物。以呈斜坡式(ramping up)升温的加热制度加热混合物使碱土金属蒸发并通过蒸气开始脱氧,一直保持到氧反应完全,然后冷却并经酸和水的清洗以沥出残留的碱土金属,干燥得到氧小于300ppm(典型地小于150ppm)且颗粒尺寸平均小于150微米FAPD(Fisher平均颗粒尺寸)的钽粉。
本发明粉末的一个优点是它包括适合于单方向机械压制的相对非球形颗粒。
本发明粉末的另外一个优点是它包括非常适合于冷等静压的相对较小的颗粒。
依据本发明的钽、铌或其合金的氧含量小于大约300ppm的成型制品的一个优点是该制品可以具有任意形状、横截面或尺寸。
本发明用于制备成型制品的方法的优点在于该方法可提供具有任意截面或尺寸的氧含量低于约300ppm的钽、铌或合金制品。
本发明还可应用于其它难熔金属,如Mo、W、Ti、Zr、Hf、Re。
发明优选实施方案详述通过以下工序制备本发明的氧含量低于大约300ppm(百万分之一)的钽粉、铌粉或钽或铌的合金粉。
将第一金属(钽、铌或合金)的氢化物粉放置在真空室中,真空室中还包含与氧亲和力比第一金属高的金属,例如钙或镁,优选地是后者。优选地,初始氢化物粉末的氧含量小于大约1000ppm。然后加热真空室到脱氧温度以制备氧含量小于大约300ppm的钽粉、铌粉或钽或铌的合金粉。通过蒸发和随后选择性的化学沥滤或粉末溶解作用从金属粉末中去除含所述氧的镁。
本发明的钽或铌的合金包括钽和/或铌的合金、其中任一种或两种与其它金属的合金,且还包括生成自由能高于Ta和/或Nb的氧化物的非Ta、Nb的氧化物,例如氧化钇,氧化钍或氧化铝。该氧化物与氧含量小于大约300ppm钽和/或铌粉进行混合。只要混合物的氧含量小于大约300ppm,本发明的合金还包括钽和/或铌与混入钽或铌粉中的低氧含量合金化元素的合金。本发明的合金还包括钽和/或铌的氢化物与合金化元素的合金,其中将该合金化元素与钽和/或铌粉在脱氧前进行混合以形成氧含量小于大约300ppm的合金。本发明的合金另外还包括钽和/或铌与合金化元素的合金,其中与该合金化元素相关的额外加入的氧不会使合金的氧含量升至超过300ppm。
如上所述,在制备钽、铌及其合金的成型粉末金属制品的工艺中,对金属氢化物粉末进行脱氧到氧含量小于大约300ppm。压实该粉末以形成钽、铌或合金制品,其氧含量小于大约300ppm或200ppm或甚至小于100ppm,但对于大多数粉末冶金目的,优选地在大约100ppm到150ppm之间。
依据本发明可以利用金属氢化物经任何已知的粉末冶金技术制备氧含量小于大约300ppm的成型钽、铌或合金制品。以下是用于成型制品的这些粉末冶金技术的例子,其中的工序按操作顺序排列。本发明可以采用以下任意单个技术或技术序列。
●冷等静压,烧结,包套(encapsulating),热等静压和热机械加工●冷等静压,烧结,热等静压和热机械加工●冷等静压,包套,热等静压和热机械加工●冷等静压,包套和热等静压●包套和热等静压●冷等静压,烧结,包套,挤压和热机械加工●冷等静压,烧结,挤压和热机械加工●冷等静压,烧结和挤压●冷等静压,包套,挤压和热机械加工●冷等静压,包套和挤压●包套和挤压●机械压制,烧结和挤压●冷等静压,烧结,包套,锻造和热机械加工●冷等静压,包套,锻造和热机械加工●冷等静压,包套和锻造●冷等静压,烧结和锻造●冷等静压,烧结和轧制●包套和锻造●包套和轧制●冷等静压,烧结和热机械加工●喷涂沉积●机械压制和烧结●机械压制,烧结,再压制和再烧结●等离子辅助热压●等离子辅助热压和挤压
●等离子辅助热压和热机械加工●等离子辅助热压,挤压和热机械加工也可采用压实、加热和变形的其它组合。
通过以下非限制性实施例进一步阐述本发明产品及方法的有效性和优点。
实施例1本实施例阐述了在氩分压下通过氢化钽的脱氧制备氧含量小于300ppm的钽粉。通过上述常规方法获得的氢化钽粉与0.3%重量百分比的Mg粉混合,并置于抽真空后再充氩气的真空炉室中。在通氩气和真空泵开启条件下炉中的压力设置为100微米。炉温按50℃增加量斜线上升至650℃,保温直到温度均匀后,按50℃增加量斜线上升至950℃。温度在950℃均匀后,保温两小时。经950℃2小时后关炉并降至室温。一旦炉子冷却,从炉室中取出粉末。通过酸沥滤去除金属粉中含所述氧的镁。基本上排除了金属氢化物中所有的氢(除了钽正常杂质水平的氢以外)并通过抽真空系统从炉室中排掉。
以下是获得的钽粉的性能颗粒尺寸-100目(小于150微米)氧240ppm表面积462cm2/gm比氧量0.52微克/cm2实施例2本实施例阐述了在氩分压下通过氢化钽的脱氧进行氧小于200ppm的钽粉的还原。通过常规方法获得的氢化钽粉与0.3%重量百分比的Mg粉混合,并置于抽真空后再充氩气的真空炉室中。在通氩气和真空泵开启条件下炉中的压力设置为100微米。炉温按50℃增加量斜线上升至850℃,保温直到温度均匀,然后保温3小时。然后按50℃增加量斜线上升至950℃。温度在950℃均匀后,保温两小时。经950℃2小时后关炉并降至室温。一旦炉子冷却,从炉室中取出粉末。通过酸沥滤去除金属粉中含所述氧的镁。
以下是获得的钽粉的性能颗粒尺寸-100目(小于150微米)氧199ppm表面积465cm2/gm比氧量0.43微克/cm2实施例3本实施例阐述了在正氩气压力下通过氢化钽的脱氧制备氧含量小于100ppm的钽粉。通过常规方法获得的氢化钽粉与0.3%重量百分比的Mg粉混合,并置于抽真空后再充氩气的制备真空炉室中。在通氩气条件下炉中的压力设置为860乇。炉温按50℃增加量斜线上升至650℃,保温直到温度均匀,然后保温4小时。然后按50℃增加量斜线上升至1000℃。温度在1000℃均匀后,保温6小时。经1000℃6小时后关炉并降至室温。一旦炉子冷却,从炉室中取出粉末。通过酸沥滤去除金属粉中含所述氧的镁。
以下是获得的钽粉的性能颗粒尺寸-100目(小于150微米)氧77表面积255cm2/gm比氧量0.30微克/cm2实施例4以下实验显示本发明的钽粉、铌粉或合金粉是可压缩的,同时显示本发明粉末的强度。将与实施例1相似工序制备的氧含量小于大约300ppm的钽粉作为初始粉末。将初始粉末放置于模具中并通过不同的压力制成小片。作为加载压力的函数,小片的密度如下压强(磅/平方英寸)密度(理论密度的百分数)4000082600008880000929000093
结果显示本发明粉末是可压缩的。
为显示经机械加压后本发明粉末的强度,将与实施例1相似的工序制备的氧含量小于300ppm的钽粉放置于模具中并通过不同的压力压成大约1/2英寸×大约1/2英寸×大约2英寸的条。该条的横向断裂强度如下压强(磅/平方英寸)横向断裂强度(磅/平方英寸)400002680600005385800006400900008360一般对于正常处理压坯需要大约2000磅/平方英寸的最小强度。可压缩性实验和断裂强度实验的数据表明在大约40000PSI压力下成型本发明粉末可以达到这一强度水平。
其它实施方案除了如上所述的实施方案,可以实施下面的其它实施方案。
A.氧含量小于300ppm成型钽制品的制备包括,通过冷等静压已知的不同种类的Ta/Nb粉得到压坯,接着经热等静压(HIP)工序使压坯致密,然后粉末压坯经热机械加工以进一步致密化和完全粘结。优选地可以将与实施例1相似的工序制备的氧含量小于300ppm的钽粉作为初始粉。在室温60000磅/平方英寸压力下冷等静压该粉末成矩形截面的压坯,然后密封包套,并在1300℃40000磅/平方英寸压力下进行4小时的热等静压(HIP)。拆封热等静压后的压坯并经热机械加工工序转化为板或箔。
B.利用与实施例1相似的工序制备的氧含量小于300ppm的钽粉,采用仅冷等静压、烧结和热机械加工的一个类似工艺,在60000磅/平方英寸的冷等静压下获得棒状的预型件。在1500℃(53%理论密度,Th)小于大约0.001乇的真空中烧结预型件2小时获得密度为95%理论密度和氧小于300ppm的预型件。通过热机械加工工序将烧结后的预型件转变为板或箔。
C.采用与实施例1相似的工序制备的氧含量小于300ppm的钽粉作为初始粉,通过热挤压和热机械加工制备氧含量小于300ppm的成型钽棒和钽丝。所述粉末密封包套后在1000℃经圆型模具挤出。挤出制品的氧含量小于300ppm。通过热机械加工工序将挤出的预型件转变为棒或丝。
D.采用与实施例1相似的工序制备的氧含量小于300ppm的钽粉作为初始粉,采用的另一个此类工艺序列是冷等静压,热挤压和热机械加工。所述粉末经冷等静压,密封包套后在1000℃挤制。挤制后的制品具有大约300ppm的氧。通过热机械加工工序可将其转变成棒或丝。
E.采用与实施例1相似的工序制备的氧含量小于300ppm的钽粉作为初始粉,通过热挤压和热机械加工可以制备氧含量小于300ppm的成型钽板或钽箔。该粉末密封包套后在1000℃经矩形模具挤出而制备氧含量小于300ppm的挤制品。通过热机械加工将挤制品转变成板或箔。
F.采用实施例1的粉末,通过冷等静压,热挤压和热机械加工可以制备氧含量小于300ppm的钽板或钽箔。通过冷等静压制备的压坯经密封包套后在1000℃挤压而制备氧含量小于300ppm的挤制品,然后通过热机械加工工序将挤制品转变成板或箔。
G.可以通过机械压制,烧结,再压制和再烧结制备氧含量小于300ppm的钽制品。与实施例1相似的工序制备的氧含量小于300ppm的钽粉可以用作初始粉。将其放入模具中用单轴压力进行机械加压。在抽至小于大约0.001乇真空中于1500℃烧结压片2小时。烧结后的压片再加压后在抽至小于大约0.001乇真空中于1500℃再烧结2小时。再烧结后的压片其氧含量小于300ppm而且适合于经热机械加工制备成型的钽制品。
H.采用与实施例1相似工序制备的氧含量小于300ppm的初始粉通过喷涂沉积可以制备氧含量小于300ppm的钽制品。在不锈钢制成的合金基体上可以喷涂沉积该粉末最高达0.01英寸厚。该粉末的颗粒尺寸,流动性能和氧含量适合于喷涂沉积的密实化。
I.等离子辅助烧结可以用作制备氧含量小于300ppm的成型钽制品。与实施例1相似的工序制备的氧含量小于300ppm的钽粉可以用作初始粉。将粉末注入衬有钽箔的石墨模具中然后从两端插入石墨压头。石墨压头组件置于水冷的钢块上。另一个水冷的钢块与上压头相接触。水冷的钢块在上部连于液压活塞上而在下部连于基座上以散发压实期间积累的热量。上下水冷钢块还与直流电源的正负端相连。
将充有粉末的石墨压头组件放置于炉室中。炉室应抽真空到500毫乇。分两阶段进行密实化。在第一阶段,主要目的是通过对颗粒表面的等离子溅射而纯化粉末。大约4300psi的压力通过压头作用于粉末上,且对粉末通以1000A的脉冲直流电。保持这些条件2分钟。
在第二阶段,将压力升至6500psi,且对粉末通以4500A的非脉冲直流电。保持这些条件2分钟。在周期结束时,关闭压头上的电源,关闭真空泵且对真空室填充氮气。冷却模具压头组件到室温,将压实后的钽制品从模具中取出。一个密实化循环大约是8分钟。烧结后的预型件具有超过95%的理论密度且氧含量小于300ppm。
J.在氩分压下通过氢化铌的脱氧可以制备氧小于300ppm的铌粉。氢化铌与0.3%重量百分比的Mg混合并放置在抽真空后再填充氩气的真空炉室中。在通氩气和开启真空泵条件下炉内压强设定为100微米。炉温按50℃增加量斜线上升至650℃,保温直到温度均匀后,按50℃增加量斜线上升至950℃。温度在950℃均匀后,保温两小时。经950℃2小时后关炉。一旦炉子冷却,从炉室中取出粉末。通过酸沥滤去除金属粉中含所述氧的镁以制备氧含量小于300ppm的铌粉。
K.通过机械加压和烧结制备成型的钽制品。与实施例1相似的工序制备的氧含量小于300ppm的钽粉作为初始粉。钽粉置于模具中并单向加压成压坯密度是理论密度的约80%的片。在抽真空到小于大约0.001乇的真空中于1500℃烧结该片两小时。最终烧结片具有小于300ppm的氧含量。
很显然不脱离本发明可以得到许多变体和改型。因此应该清楚此处描述的关于本发明的形式仅仅是作为说明性的而不是打算限制本发明的范围。
权利要求
1.制备金属粉末的方法,包括以下工序提供第一金属的氢化物粉末,所述第一金属选自钽,铌和所述的金属彼此间的合金或其中一种或两者与其它金属的合金,所述氢化物的氧含量小于300ppm,在具有更高与氧亲和力的金属存在的条件下加热所述金属氢化物,由所述金属中去除与氧亲和力更高的金属,以形成氧含量低于300ppm的第一金属的粉末。
2.权利要求1的方法,其中金属粉末最终的氧含量低于200ppm。
3.权利要求1的方法,其中金属粉末最终的氧含量低于100ppm。
4.权利要求1的方法,其中所述的加热在真空中进行。
5.权利要求1的方法,其中所述的加热在正氩气压力下进行。
6.权利要求1的方法,其中所述的具有更高亲和力的金属选自镁和钙。
7.权利要求1,2,或3中的任意一种方法,其中在40000~大约100000psi压力压制时所述的金属粉末具有大约1100~约7700psi的横向断裂强度。
8.制备成型粉末冶金制品的方法,包括以下工序提供第一金属的氢化物粉末,该金属基本上是氧含量高于目标水平的难熔金属,在具有比所述氢化物更高的与氧亲和力的金属存在的条件下加热所述的氢化物,从第一金属中去除所述具有更高与氧亲和力的金属,以制成氧含量低于目标水平的金属粉末,用所述的氧含量低于目标水平的金属粉末制成冶金制品。
9.权利要求8的方法,其中通过压制所述的金属粉末至大约75~92%的理论密度形成所述冶金制品。
10.权利要求8的方法,其中所述成型工序是选自以下序列的工序序列(a)冷等静压,热等静压和热机械加工,(b)冷等静压,真空烧结和热机械加工,(c)密封包套,热挤压和热机械加工,(d)冷等静压,密封包套,热挤压和热机械加工以及(e)单轴冷压,真空烧结,再压制和再烧结。
11.权利要求8的方法,其中成型工序包括单独的或与其它工序结合的喷涂成型。
12.权利要求8的方法,其中成型工序包括单独的或与其它工序结合的辅助等离子烧结。
13.权利要求8~12中的任意一种方法,其中从钽,铌以及所述金属彼此间的合金和/或所述金属与其它金属的合金中选择所述第一金属。
14.通过权利要求13的方法制备的成型制品。
15.通过权利要求8的方法制备的成型制品。
全文摘要
制备成型的Ta/Nb粉末冶金制品的方法,包括采用氧含量大于目标水平如300ppm的Ta和/或Nb的氢化物粉末,在具有更高与氧亲和力的其它金属存在的情况下加热金属氢化物,去除该其它金属和任何反应副产物以生成氧含量低于目标水平的金属粉末且通过所述的氧含量低于目标水平的所述低氧的Ta/Nb粉末制成冶金制品。
文档编号C22B34/24GK1322157SQ00801994
公开日2001年11月14日 申请日期2000年8月18日 优先权日1999年8月19日
发明者P·库玛 申请人:H·C·斯塔克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1