衬底处理装置和半导体器件的制造方法

文档序号:3402717阅读:153来源:国知局
专利名称:衬底处理装置和半导体器件的制造方法
技术领域
本发明涉及衬底处理装置和半导体器件的制造方法,尤其涉及使用气体处理半导体衬底的衬底处理装置和半导体器件的制造方法。
背景技术
一般的CVD装置,通过在某段时间持续流入反应气体而在衬底上成膜。此时,为了消除由距气体提供口的距离远近带来的影响、且提高衬底面内的膜厚均匀性,而使衬底旋转。在这种情况下,一般地,与旋转周期相比,成膜时间足够长,且连续提供气体,因此在成膜时要旋转多次,因此,不需要对旋转周期加以严密的考虑。

发明内容
另一方面,在周期性地提供气体的情况下,就需要考虑气体提供周期与旋转周期的关系。例如,称为ALD(Atomic Layer Deposition)的成膜方法,是在某种成膜条件(温度、时间等)下,将用于成膜的2种(或者2种以上)成为原料的气体,一种一种地交替提供到衬底上,以1个原子层为单位吸附,利用表面反应进行成膜的方法。在该ALD方法中,例如,当交替流入2种气体A、B时,通过反复提供气体A→净化(purge)(除去剩余气体)→提供气体B→净化(除去剩余气体)这样的循环来进行成膜。
设该1个循环所耗的时间为气体提供周期T(秒),设衬底的旋转周期为P(秒/转)。使气体的提供循环与衬底的旋转同步、即T的整数倍与P的整数倍的数值一致,当设其一致的数字为L(秒)时,以时间L为周期向衬底的同一点提供气体(参照图1),就会与想要通过旋转来消除由距气体提供口的距离远近带来的影响的意图相反,产生无法谋求提高均匀性的状况。
因此,本发明的主要目的在于提供衬底处理装置和半导体器件的制造方法,能够防止或者抑制反应气体提供周期与衬底的旋转周期同步,防止成膜后的膜的膜厚的衬底面内均匀性变差。
根据本发明的一个实施方式,能提供一种衬底处理装置,包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期或者气体提供周期,使得气体提供周期与衬底的旋转周期,至少在执行预定次数的气体交替提供的期间不同步,其中,上述气体提供周期由从流入气体A到下次流入气体A的时间规定。
根据本发明的其它实施方式,能提供一种衬底处理装置,包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期或者气体提供时间,使得在从向上述衬底的任意部位提供气体A起到下次向该任意部位提供气体A为止的期间,执行预定次数的气体A、B的交替提供次数。
根据本发明的另外的其它实施方式,能提供一种衬底处理装置,包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,其中,该控制部控制衬底的旋转周期P或者气体提供周期T,使得上述气体提供周期T与上述旋转周期P,满足以下的式(1)|mP-nT|>≠0(n、m为自然数)(1)(>≠0表示真比0大,||表示绝对值。)其中,上述气体提供周期T由从流入气体A到下次流入气体A的时间规定。
根据本发明的另外的其它实施方式,能提供一种衬底处理装置,包括处理衬底的反应室;在上述反应室内保持上述衬底且使上述衬底旋转的旋转装置;向上述反应室内提供反应气体的气体提供系统;以及控制部,控制上述旋转装置和上述气体提供系统,使得在周期性地向上述反应室内提供上述反应气体时,上述反应气体的提供周期与上述衬底的旋转周期,在一定时间以上不同步。
根据本发明的另外的其它实施方式,能提供一种包括使用衬底处理装置处理衬底的步骤的半导体器件的制造方法,上述衬底处理装置包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期或者气体提供周期,使得气体提供周期与衬底的旋转周期,至少在执行预定次数的气体交替提供的期间不同步,其中,上述气体提供周期由从流入气体A到下次流入气体A的时间规定。
根据本发明的另外的其它实施方式,能提供一种包括使用衬底处理装置处理上述衬底的步骤的半导体器件的制造方法,上述衬底处理装置包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期或者气体提供时间,使得在从向上述衬底的任意部位提供气体A开始到下次向该任意部位提供气体A为止的期间,执行预定次数的气体A、B的交替提供次数。
根据本发明的另外的其它实施方式,能提供一种包括使用衬底处理装置处理上述衬底的步骤的半导体器件的制造方法,上述衬底处理装置包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期P或者气体提供周期T,使得上述气体提供周期T与上述旋转周期P,满足以下的式(1)|mP-nT|>≠0(n、m为自然数)(1)(>≠0表示真比0大,||表示绝对值。)其中,上述气体提供周期T由从流入气体A到下次流入气体A的时间规定。


图1是用于说明被处理衬底的旋转周期与气体的提供周期同步时的气体提供状态的图。
图2是用于说明被处理衬底的旋转周期与气体的提供周期不同步时的气体提供状态的图。
图3A是表示不旋转被处理衬底时的膜厚分布的图。
图3B是表示在旋转被处理衬底时,被处理衬底的旋转周期与气体的提供周期同步时的膜厚分布的图。
图3C是表示在旋转被处理衬底时,被处理衬底的旋转周期与气体的提供周期不同步时的膜厚分布的图。
图4是用于说明本发明的一个实施例的衬底处理装置的立式衬底处理炉的示意纵截面图。
图5是用于说明本发明的一个实施例的衬底处理装置的立式衬底处理炉的示意横截面图。
图6是用于说明本发明的一个实施例的衬底处理装置主体的示意立体图。
具体实施例方式
在本发明的优选实施例中,对旋转周期P和气体提供周期T进行细微调整,使得满足以下的数学式(1)。
|mP-nT|>≠0(n、m为自然数)(1)(>≠0表示真比0大,||表示绝对值。)只要满足该式(1),就能防止例如在气体提供循环中的气体A的提供开始定时(Timing),与衬底的旋转位置同步(参照图2),从而能改善均匀性。
另外,当考虑应满足该式(1)的时间时,显然,只要在成膜时间内都能满足该式(1)就足够了,但可以认为,稍微放宽条件也是可以的,例如,只要相当于10个循环的时间(如果使用以上的符号,为到10T(sec)为止)不同步,吹出气体的定时就足够分散,从而在均匀性上不存在问题。
实施例1以多次交替提供DCS(SiH2CI2、二氯甲硅烷)和NH3(氨),用ALD法在硅片(silicon wafer)上形成SiN(氮化硅)膜的情况为例。
在晶片的旋转周期P=6.6666sec,气体提供周期T=20sec的情况下,因为3×6.6666=20,所以,进行3次旋转所需的时间20sec与气体提供周期T相等,当晶片旋转3次时,晶片的旋转部位与气体提供喷嘴的相对位置变为与以前相同,再次向同一部位提供气体,造成该部位每次都处于气体上游而变厚。图3B表示此时的膜厚分布。面对附图观察,呈左侧的膜厚厚、从右侧向右下方变薄的分布。由此可知,原本应该是使晶片旋转时呈同心圆状分布而提高均匀性,但当晶片的旋转周期与气体提供周期同步时,无法取得该效果。在不旋转时面内均匀性为12%(参照图3A),在同步时的面内均匀性约为7%(参照图3B)。
另外,在图3A与图3B中,厚的部分不一致,这是因为由于使图3B的晶片进行了旋转,因此变厚的部分在到了DCS喷嘴附近时被提供了DCS的缘故。
另一方面,在设定为晶片的旋转周期P=6.6666sec,气体提供周期T=21sec的情况下,直到经过1260sec,DCS的吹出定时才与第1次的吹出同步。在此之前,即使经过了多达60个循环,DCS的吹出也足够分散,如图3C那样呈没有偏倚的同心圆状的膜厚分布。这样,在晶片的旋转周期与气体提供周期在相当多的循环内都不同步的情况下,膜的面内均匀性被改善,为3.7%(参照图3C)。
图4是本实施例的立式衬底处理炉的示意结构图,用纵截面表示处理炉部分,图5是本实施例的立式衬底处理炉的示意结构图,用横截面表示处理炉部分。在作为加热装置的加热器207的内侧,作为反应容器设置有反应管203,其中,该反应容器处理作为衬底的晶片200,该反应管203的下端开口,由作为盖体的密封盖219隔着作为气密部件的O型环220气密封闭,至少由该加热器207、反应管203、以及密封盖219形成处理炉202,由反应管203和密封盖219形成反应室201。在密封盖219上,隔着石英帽218竖立设置有作为衬底保持装置的舟(boat)217,石英帽218成为保持舟的保持体。而且,舟217插入在处理炉202中。在舟217中在管轴方向上以水平姿式多层装载有成批处理的多个晶片200。加热器207将插入到处理炉202中的晶片200加热到预定的温度。
另外,设置有作为向处理炉202提供多种、此处为2种气体的提供管的2根气体提供管232a、232b。在此,从第1气体提供管232a,经由作为流量控制装置的第1质量流量控制器241a和作为开关阀的第1阀243a,再经由后述的形成于处理炉202内的缓冲室237,向处理炉202提供反应气体,从第2气体提供管232b,经由作为流量控制装置的第2质量流量控制器241b和作为开关阀的第2阀243b、贮气罐247、以及作为开关阀的第3阀243c,再经由后述的气体提供部249向处理炉202内提供反应气体。
处理炉202通过作为排出气体的排气管的气体排气管231,经由第4阀243d与作为排气装置的真空泵246连接,进行真空排气。另外,该第4阀243d是能够开、关阀来实现处理炉202的真空排气/停止真空排气,并能够调节阀开度来调整压力的开关阀。
在构成处理炉202的反应管203的内壁与晶片200之间的圆弧状的空间内,在反应管203的从下部到上部的内壁,沿着晶片200的装载方向,设置有作为气体分散空间的缓冲室237,在该缓冲室237的与晶片200相邻的壁的端部,设置有作为提供气体的提供孔的第1气体提供孔248a。该第1气体提供孔248a朝反应管203的中心开口。该第1气体提供孔248a,从下部到上部分别具有相同的开口面积,并以相同的开口节距设置。
另外,在缓冲室237的与设置了第1气体提供孔248a的端部相反一侧的端部,还是从反应管203的下部到上部,沿着晶片200的装载方向配置有喷嘴233。在喷嘴233上设置有多个作为提供气体的提供孔的第2气体提供孔248b。在缓冲室237与处理炉202的压差小的情况下,该第2气体提供孔248b的开口面积,从上游侧到下游侧可以是相同的开口面积、相同的开口节距,而在压差大的情况下,可以从上游侧向下游侧增大开口面积,或者减小开口节距。
在本发明中,通过从上游侧到下游侧调节第2气体提供孔248b的开口面积、开口节距,首先,从各第2气体提供孔248b喷出的气体的流速存在差异,但流量大致等量。然后,将从该各第2气体提供孔248b喷出的气体喷出到缓冲室237,暂时导入,使气体的流速差均匀化。
即,在缓冲室237中,由各第2气体提供孔248b喷出的气体,在缓冲室237中缓和了各气体的粒子速度后,由第1气体提供孔248a喷出到处理炉202。在此期间,由各第2气体提供孔248b喷出的气体,能够在从各第1气体提供孔248a喷出时成为具有均匀的流量和流速的气体。
另外,在缓冲室237中,具有细长结构的、作为第1电极的第1棒状电极269和作为第2电极的第2棒状电极270,从上部到下部被作为保护电极的保护管的电极保护管275所保护,该第1棒状电极269或者第2棒状电极270中的任意一个,通过匹配器272与高频电源273连接,另一个与作为基准电位的地线连接。结果,在第1棒状电极269与第2棒状电极270间的等离子体生成区域224生成等离子体。
该电极保护管275的结构如下能够使第1棒状电极269和第2棒状电极270分别以与缓冲室237的气体介质隔离的状态插入缓冲室237。此处,当电极保护管275的内部与外部空气(大气)为相同的气体介质时,分别插入电极保护管275中的第1棒状电极269和第2棒状电极270会由于加热器207的加热而被氧化。因此,电极保护管275的内部设置惰性气体净化装置,其中,该惰性气体净化装置用于填充或者净化氮气等惰性气体,以将氧气浓度抑制在足够低的水平,防止第1棒状电极269或者第2棒状电极270的氧化。
另外,在从第1气体提供孔248a的位置起,绕反应管203的内周120°左右的内壁,设置有气体提供部249。在用ALD法的成膜过程中向晶片200一种一种地交替提供多种气体时,该气体提供部249是与缓冲室237分担气体提供种类的提供部。
该气体提供部249也与缓冲室237同样,在与晶片相邻的位置,具有作为以相同节距提供气体的提供孔的第3气体提供孔248c,在下部连接有第2气体提供管232b。
第3气体提供孔248c的开口面积,在缓冲室237与处理炉202的压差小的情况下,可以是从上游侧到下游侧相同的开口面积、相同的开口节距;而在压差大的情况下,可以从上游侧向下游侧增大开口面积,或者减小开口节距。
在反应管203内的中央部,设置有分多层以同一间隔放置多枚晶片200的舟217,该舟217能够通过图中省略的舟升降机装置进出反应管203。而且,为了提高处理的均匀性,设置有作为旋转装置的舟旋转装置267,用于使舟217旋转,通过旋转舟旋转装置267,来旋转由石英帽218所保持的舟217。
作为控制装置的控制器121,与第1、第2质量流量控制器241a、241b,第1~第4阀243a、243b、243c、243d,加热器207,真空泵246,舟旋转装置267,图中省略的舟升降机装置,高频电源273,以及匹配器272连接,进行第1、第2质量流量控制器241a、241b的流量调整;第1~第3阀243a、243b、243c的开、关动作;第4阀243d的开、关和压力调整动作;加热器207的温度调节;真空泵246的起动/停止;舟旋转装置267的旋转速度调节;舟升降机装置的升降动作控制;高频电源273的功率提供控制;以及匹配器272的阻抗控制。
接下来,以使用DCS(SiH2Cl2、二氯甲硅烷)和NH3气体形成氮化膜(SiN膜)的例子,来说明用ALD法的成膜的例子。
首先,将要成膜的晶片200装填进舟217中,送入处理炉202。送入后,依次执行以下3个步骤。
另外,虽然在以下的例子中,是先使DCS流入炉内,但先使NH3流入的方法也大致相同。
(1)在243b开、243c关的状态下,在贮气罐247中预先贮存所希望的量的DCS(优选在第1个循环预先贮存,而从第2个循环以后,只要是在从贮气罐247排出原料的动作(event)以外的时间将原料贮存到贮气罐247,就不会浪费时间。)(2)优选在排出贮存在贮气罐247中的DCS之前,预先从缓冲室237流入N2等惰性气体。这是为了防止在下一个动作中贮存在贮气罐247中的DCS由于贮气罐247与发应管203之间的压差,而一股脑流入到反应管203内,进而再从缓冲室237的气体提供孔248a回流到缓冲室237内。
(3)通过打开位于贮气罐247的下游的阀243c,使贮存在贮气罐247中的DCS,经过缓冲室(气体提供部)249,从在缓冲室(气体提供部)249上按每一衬底间隔设置的气体提供孔248c提供到作为被处理衬底的晶片200上。为了促进原料的吸附,用炉内压力的调整装置(在排气配管中途设置的蝶阀等阀243d等)进行设定使压力变高,使得DCS的分压变高。此时也优选从缓冲室237持续流入N2等惰性气体。此时的晶片温度为300~600℃。
(4)关闭阀243c,停止从贮气罐247提供DCS。在关闭阀243c后,可以将下一次提供开始之前的时间用作DCS的贮存时间(即,能够在实施其它动作时在贮气罐247中贮存DCS气体,因此,作为只是贮存时间的动作不需要额外耗费时间)。
(5)接着,在反应管203内,进行来自缓冲室(气体提供部)249内的DCS的除去,由真空排气装置243进行排气。此时,在缓冲室(气体提供部)249与阀243c之间增加惰性气体管线(line),组合惰性气体的挤压排放和抽真空,对于气体置换也是有效的。
(6)接着,从气体提供管232a,通过连接到缓冲室237内的喷嘴233向缓冲室237内提供NH3。此时,也基于与上述同样的理由,优选从缓冲室(气体提供部)249预先流入惰性气体。
(7)从喷嘴233向缓冲室237提供的NH3,使缓冲室237内的压力变得均匀,从缓冲室237内按衬底间隔设置的气体提供孔248b,被提供到作为被处理衬底的晶片200上。如果使用本实施例,能够同样地将NH3提供到多枚作为被处理衬底的晶片200上。
此时的加热器207的温度设定为使晶片200变成300~600℃。NH3由于反应温度高而在上述晶片温度下不反应,因此要通过等离子体激发而成为活性种类之后再流入,为此,能在晶片温度处于所设定的低的温度范围内的情况下进行。
(8)停止向反应管203内流入NH3。
(9)接着,从反应管203内和缓冲管237内除去NH3,由真空排气装置243进行排气。此时也与上述同样,组合惰性气体的挤压排放和抽真空也是有效的。
以上构成1个循环(cycle),通过重复上述(1)~(9),进行成膜。
在ALD装置中,气体被吸附在基底膜的表面。该气体的吸附量,与气体的压力、和气体的暴露时间成正比。因此,为了在短时间吸附所希望的一定量的气体,需要在短时间内增大气体的压力。在这一点上,在本实施例中,是在关闭阀243d后,瞬间提供贮存在贮气罐247内的DCS,因此,能使反应管203内的DCS的压力急剧地上升,能够瞬间吸附所希望的一定量的气体。
而且,在本实施例中,在将DCS贮存到贮气罐247的期间,进行作为ALD法中所需要的步骤的、使NH3气体通过等离子体激发来作为活性种类提供,以及处理炉202内的排气,因此,不需要专门的用于贮存DCS的步骤。此外,因为是在对处理炉202内进行排气除去NH3气体之后再流入DCS,所以,两者在流向晶片200的途中不发生反应。所提供的DCS,能够仅与被吸附在晶片200上的NH3有效地进行反应。
接着,参照图6说明作为应用了本发明的衬底处理装置的一个例子的半导体制造装置的概略结构。
在壳体101内部的前面侧,在与未图示的外部搬送装置之间,设置有作为保持器授受部件的料盒台(casket stage)105,其中,该保持器授受部件进行作为衬底收纳容器的料盒(casket)100的授受,在料盒台105的后侧设置有作为升降装置的料盒升降机115,在料盒升降机115上安装有作为搬送装置的料盒移放机114。此外,在料盒升降机115的后侧,设置有作为料盒100的放置装置的料盒架109,并且在料盒台105的上方还设置有预备料盒架110。在预备料盒架110的上方,设置有清洁部件(clean unit)118,使清洁空气在壳体101的内部流通。
在壳体101的后部上方,设置有处理炉202,在处理炉202的下方,设置有作为使舟217在处理炉202中升降的升降装置的舟升降机121,其中,该舟217将作为衬底的晶片200以水平姿势多层保持,在安装于舟升降机121上的升降部件122的顶端部,安装有作为盖体的密封盖219,支撑舟217使之垂直。在舟升降机121与料盒架109之间,设置有作为升降装置的移放升降机113,在移放升降机113上,安装有作为搬送装置的晶片移放机112。此外,在舟升降机121的旁边,设置有作为具有开、关装置来挡住处理炉202的下面的遮蔽部件的炉口挡板116。
装填了晶片200的料盒100,以晶片200垂直的姿势从未图示的外部搬送装置搬入料盒台105,由料盒台105使晶片200旋转90°,使得晶片200变成水平姿势。进而,通过料盒升降机115的升降动作、横移动作、以及料盒移放机114的进退动作、旋转动作的协同动作,料盒100被从料盒台105搬送至料盒架109或者预备料盒架110。
在料盒架109上有移放架123,其中,该移放架123收纳成为晶片移放机112的搬送对象的料盒100,用于移放晶片200的料盒100由料盒升降机115、料盒移放机114移放到移放架123上。
在料盒100被移放到移放架123上时,通过晶片移放机112的进退动作、旋转动作、以及移放升降机113的升降动作的协同动作,将晶片200从移放架123移放到处于降下状态的舟217中。
当预定枚数的晶片200被移放到舟217中时,由舟升降机121将舟217插入处理炉202,处理炉202被密封盖219气密封闭。在被气密封闭的处理炉202内,加热晶片200,并且向处理炉202内提供处理气体,对晶片200进行处理。
对晶片200的处理完成后,按照与上述动作相反的步骤,将晶片200从舟217移放到移放架123的料盒100中,由料盒移放机114将料盒100从移放架123移放到料盒台105,由未图示的外部搬送装置搬送到壳体101的外部。另外,炉口挡板116,在舟217为降下状态时挡住处理炉202的下面,防止外部空气被卷进处理炉202内。
料盒移放机114等的搬送动作,由搬送控制装置124控制。
包括说明书、权利要求书、附图、以及摘要的2004年3月12日提交的日本专利申请2004-70136号的所有公开内容,被直接加以引用编入本说明书。
虽然示出了各种典型的实施方式并且进行了说明,但本发明不限于这些实施方式。因此,本发明的范围,仅由以下的权利要求书限定。
(工业可利用性)如以上说明的那样,根据本发明的优选实施例,可以提供一种衬底处理装置和半导体器件的制造方法,能够防止或者抑制反应气体提供周期与衬底的旋转周期同步,防止成膜后的膜的膜厚的衬底面内均匀性变差。
结果,本发明尤其适用于使用气体处理半导体Si晶片等半导体衬底的衬底处理装置和半导体器件的制造方法。
权利要求
1.一种衬底处理装置,包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,还具有控制部,控制衬底的旋转周期或者气体提供周期,使得气体提供周期与衬底的旋转周期,至少在执行预定次数的气体交替提供的期间不同步,其中,上述气体提供周期由从流入气体A到下次流入气体A的时间规定。
2.根据权利要求1所述的衬底处理装置,其特征在于上述控制部控制上述衬底的旋转周期,使得上述气体提供周期与上述衬底的旋转周期,至少在执行预定次数的气体交替提供的期间不同步。
3.根据权利要求1所述的衬底处理装置,其特征在于上述控制部控制上述衬底的旋转周期或者上述气体提供周期,使得上述气体提供周期与上述衬底的旋转周期,至少在执行10个循环的气体交替提供的期间不同步。
4.根据权利要求1所述的衬底处理装置,其特征在于上述控制部控制上述衬底的旋转周期或者上述气体提供周期,使得上述气体提供周期与上述衬底的旋转周期,至少在执行60个循环的气体交替提供的期间不同步。
5.根据权利要求1所述的衬底处理装置,其特征在于上述气体提供部,使上述气体从上述衬底的周边方向向衬底中心方向提供地将上述气体提供到上述衬底上。
6.一种衬底处理装置,包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,还具有控制部,控制衬底的旋转周期或者气体提供时间,使得在从向上述衬底的任意部位提供气体A起到下次向该任意部位提供气体A为止的期间,执行预定次数的气体A、B的交替提供次数。
7.根据权利要求6所述的衬底处理装置,其特征在于上述控制部控制上述衬底的旋转周期,使得在从向上述衬底的任意部位提供气体A起到下次向该任意部位提供气体A为止的期间,执行预定次数的气体A、B的交替提供次数。
8.根据权利要求6所述的衬底处理装置,其特征在于上述控制部控制上述衬底的旋转周期或者气体提供时间,使得在从向上述衬底的任意部位提供气体A起到下次向该任意部位提供气体A为止的期间,至少执行10个循环的上述气体A、B的交替提供。
9.根据权利要求6所述的衬底处理装置,其特征在于上述控制部控制上述衬底的旋转周期或者气体提供时间,使得在从向上述衬底的任意部位提供气体A起到下次向该任意部位提供气体A为止的期间,至少执行60个循环的上述气体A、B的交替提供。
10.一种衬底处理装置,包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,还具有控制部,控制衬底的旋转周期P或者气体提供周期T,使得上述气体提供周期T与上述旋转周期P,满足以下的式(1)|mP-nT|>≠0(n、m为自然数)(1)(>≠0表示真比0大,||表示绝对值。)其中,上述气体提供周期T由从流入气体A到下次流入气体A的时间规定。
11.根据权利要求10所述的衬底处理装置,其特征在于上述控制部控制上述旋转周期P或者上述气体提供周期T,使得至少在n≤10时,满足上述式(1)。
12.根据权利要求10所述的衬底处理装置,其特征在于上述控制部控制上述旋转周期P或者上述气体提供周期T,使得在为了在上述衬底上成膜而提供上述气体的所有时间内,满足上述式(1)。
13.一种衬底处理装置,包括处理衬底的反应室;在上述反应室内保持上述衬底,且使上述衬底旋转的旋转装置;向上述反应室内提供反应气体的气体提供系统;以及控制部,控制上述旋转装置和上述气体提供系统,使得在周期性地向上述反应室内提供上述反应气体时,上述反应气体的提供周期与上述衬底的旋转周期在一定时间以上不同步。
14.一种包括使用衬底处理装置处理衬底的步骤的半导体器件的制造方法,该衬底处理装置包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期或者气体提供周期,使得气体提供周期与衬底的旋转周期,至少在执行预定次数的气体交替提供的期间不同步,其中,上述气体提供周期由从流入气体A到下次流入气体A的时间规定。
15.一种包括使用衬底处理装置处理衬底的步骤的半导体器件的制造方法,该衬底处理装置包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期或者气体提供周期,使得在从向上述衬底的任意部位提供气体A起到下次向该任意部位提供气体A为止的期间,执行预定次数的气体A、B的交替提供次数。
16.一种包括使用衬底处理装置处理衬底的步骤的半导体器件的制造方法,该衬底处理装置包括处理衬底的处理室、使上述衬底旋转的衬底旋转装置、以及向上述衬底提供气体的气体提供部,多次交替提供至少2种气体A、B,在上述衬底上形成所要的膜,该衬底处理装置还具有控制部,控制衬底的旋转周期P或者气体提供周期T,使得上述气体提供周期T与上述旋转周期P,满足以下的式(1)|mP-nT|>≠0(n、m为自然数)(1)(>≠0表示真比0大,||表示绝对值。)其中,上述气体提供周期T由从流入气体A到下次流入气体A的时间规定。
全文摘要
本发明提供一种衬底处理装置,包括反应室(201)、使晶片(200)旋转的衬底旋转装置(267)、以及向晶片(200)提供气体的气体提供部,多次交替提供至少2种气体A、B,在晶片(200)上形成所要的膜。具有控制部(321),控制晶片(200)的旋转周期,使得由从流入气体A到下次流入气体A的时间规定的气体提供周期与晶片(200)的旋转周期,至少在执行预定次数的气体交替提供的期间不同步。能够防止用ALD法成膜后的膜的膜厚的衬底面内均匀性变差。
文档编号C23C16/455GK1842899SQ20058000090
公开日2006年10月4日 申请日期2005年3月11日 优先权日2004年3月12日
发明者境正宪, 吉村智浩 申请人:株式会社日立国际电气
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1