一种提高Bi-S二元体系热电材料性能的方法

文档序号:3419635阅读:399来源:国知局

专利名称::一种提高Bi-S二元体系热电材料性能的方法
技术领域
:本发明属于能源材料
技术领域
,特别是提供一种提高Bi-S二元体系热电性能的制备方法,涉及到机械合金化(MechanicalAlloying,MA)和放电等离子烧结(SparkPlasmaSintering,SPS)工艺。
背景技术
:V-VI族二元化合物Bi2M3(M=S,Se,Te)合金体系是目前室温下性能最好的热电材料,也是研究最早最成熟的热电材料之一,具有较大的赛贝克系数和较低的热导率。衡量热电材料的一个重要性能指标就是热电优值。发电功率和制冷效率与热电优值成正比关系。对某一材料,其热电性能优值由下式给出zr=Vr/k,其中"是材料的温差电动势(赛贝克系数),a是材料的电导率,k是热导率,r是绝对温度。Bi2M3晶系具有层片形结构,此种晶体结构使得材料在宏观性能上表现为各向异性。到目前为止,有关以Bi2S3为主要体系的热电材料的报道很少。最早是美国密西根大学的B.X.Chen等采用真空熔炼的方法制备了N型Bi2S3及K掺杂的K-Bi-S三元化合物[B.X.Chen,C.Uher,CAe肌Mate/:9(1997)1655.],与Bi2Te3室温下的性能相比,Bi2S3的热导率和Seebeck系数二者相当,但Bi2S3的电阻率较Bi2Te3高了近一个数量级,研究结果表明BbS3在300K温度下最大的Zr值为0.058。美国新奥尔良大学的研究小组通过调节元素配置比制备的Bi2S3块体具有较高的载流子浓度[J.Fang,F.Chen,K丄.Stokes,J.He,J.Tang,C丄O'Connor,M/W^m/J.jP/w.730(2002)119.],最近埃及南河谷大学的H.T.Shaban等采用Bridgeman-Stackbarger技术制备了Bi2S3单晶材料[H.T.Shaban,M.M.Nassary,MS.El-Sadek,尸岭"'ca5,403(2007)1655.],文中报到了Bi2S3材料具有与Bi2Te3类似的各向异性,在室温下Bi2S3单晶的电导率和Seebeck系数与Bi2Te3接近,但文中没有给出材料的热导率。如果用文献[B.X.Chen,C.Uher,CAewt3/flte/:9(1997)1655.]中的数值进行计算,室温下材料的W值约为0.2。中科院上海硅酸盐研究所的L.D.Chen课题组[S.C.Liufix,L.D.Chen,etal,4pp/.丄e汰,90(2007)112106]采用化学法制备完全沿c轴生长的Bi2S3薄膜,电学性能测试表明,在c平面上具有最大的载流子迁移率,使得电导率保持在块体材料的数量级,同时较低的载流子浓度使得赛贝克系数达到最大。计算得到Bi2S3薄膜的功率因子与Bi2Te3块体材^^目当。放电等离子烧结技术由于具有烧结时间短、烧结温度低等优点,可以制备致密度很高的细晶块体材料。由于细小晶粒可以降低材料的热导率,放电等离子烧结方法在热电材料的制备上得到了广泛的应用[W.S.Liu,etal./D.40(2007)566.]。在我们以前的研究中,鉴于Bi2Te3材料具有各向异性,采用机械合金化和放电等离子烧结相结合制备了细小晶粒且具有择优取向的Bi2Te3材料[L.D.Zhao,etal.5tet(2007),availableonline]。细晶织构取向结构的特点是,择优取向提高了材料的电导率,小晶粒保证了材料的热导率,材料的热电优值提高了20%,同时材料的抗弯强度提高了2倍。但是,有关Bi-S二元体系块体热电材料的织构化研究还未见报道。
发明内容本发明的目的在于提供一种提高Bi-S二元体系热电性能的制备方法,通过调节化学元素配比和显微结构设计来提高材料的热电性能。本发明以高纯(99.999%)Bi粉、S粉为原料,通过机械合金化合成Bi-S二元化合物微细粉末,利用放电等离子烧结首先将Bi-S二元体系前驱微细粉末烧结成致密的块体,然后二次放电等离子热锻成具有择优取向的块体材料。鉴于Bi-S二元体系与Bi2Te3体系具有相同的晶体结构,在性能上也表现为各向异性,本发明采用的方法在提高材料晶格取向的同时,也提高了Bi-S二元体系的热电性能。具体工艺流程1、采用高纯的Bi、S单质作为初始原料,按Bi:S=2:x,(其中x二2.53.5,单位摩尔)原子比配料。2、将原料放入球磨罐,为了防止在MA过程中粉末氧化,通入惰性气体进行干磨,转速为100500ipm,时间为15min96h。3、干磨后加入无水乙醇作为介质湿磨,在进气口通入氩气的同时,在出气口用针管注入乙醇,注射完乙醇后先关闭出气口再关闭进气口。湿磨转速为50300rpm,时间为15min12h,主要是防止粉末结块,使其球磨更加均匀。4、将已经合金化的粉末烘干得到干粉。烘干温度为2020(TC,时间为420h。5、将合成后的Bi-S二元化合物料粉装入直径为1020mm的石墨模具中,放进SPS炉中烧结,烧结环境为真空,真空度为47Pa。在一定的温度、压力、保温时间下进行烧结,烧结温度为200500°C,保温时间为28min,烧结压力为2060MPa,升温速度为4018(TC/min。最后得到直径为1020mm,高度为46mm的Bi-S二元化合物块体材料。6、将上一歩烧结得到的块体材料进行表面打磨处理后,装入直径(02O3Omm)比第一次烧结用模具大的石墨模具中,在SPS炉中进行热锻处理,环境为真空,真空度为47Pa。在一定的温度、压力、保温时间下进行热锻处理,温度为200500'C,保温时间为28min,压力为3060MPa,升温速度为40180'C/min。最后得到直径为2030mm,高度为24mm的Bi-S二元化合物块体材料。图1表示为Bi-S二元块体材料的X射线衍射图,从图1可以看出块体材料的所有特征峰均为Bi2S3特征谱线(PDF#17-0320),经过热锻处理后使得材料呈现一定的织构取向(实施例ll)。7、将Bi-S二元块体材料用砂纸进行表面打磨后,再进行热电性能测试,热电性能主要包括电阻率0)和赛贝克系数(c0。根据以上测得数据,通过功率因子(aV/j)来评价材料的电学性能。图2为Bi-S二元块体材料的功率因子比较,经过调节化学元素配比,功率因子得到提高(实施例15),进一步热锻处理后功率因子进一步得到提高(实施例ll)。本发明的优点在于(1)合成化合物时间短,可获得微细前驱粉末;(2)采用放电等离子烧结,烧结温度低、时间短,通过控制烧结工艺,可获得细小、具有择优取向、均匀的显微组织,并能保持原始材料的自然状态;(3)通过控制化学成分配比和晶粒取向来提高材料的热电性能,具有工艺简便,合成和成型的时间短等优点。图l表示Bi-S二元块体材料的X射线衍射图2表示Bi-S二元块体材料的功率因子。具体实施例方式首先应用机械合金化方法(MA)制备Bi-S二元化合物前驱微细粉末。该方法是将高纯Bi和S单质粉末按照2:x,(其中x二03)原子比例配比,一起放入行星式高能球磨机中在惰性气体保护下进行机械合金化,干磨合成化合物,再进行湿磨,最后烘干得到Bi-S二元化合物的微细粉末,再将粉末烧结成块体。主要经过两步放电等离子烧结制备块体材料第一步烧结获得致密的Bi-S二元化合物块体,烧结温度为200500'C,保温时间为28min,压力为2060MPa。第二步采用放电等离子技术进行热锻处理获得织构,温度为200500°C,保温时间为28min,压力为3060MPa。表1给出了本发明的几个优选实施例:<table>tableseeoriginaldocumentpage6</column></row><table>综上所述,本发明通过调节Bi和S元素的化学剂量比和织构处理显著提高了Bi-S二元体系的电传输性能。权利要求1、一种提高Bi-S二元体系热电材料性能的方法,其特征在于工艺为(1)采用99.999%的Bi、S单质作为初始原料,按Bi∶S=2∶x,原子比配料,其中x=2.5~3.5,单位摩尔;(2)采用机械合金化方法合成Bi-S二元化合物体系;(3)将机械合金化合成的Bi-S二元化合物粉料装入直径为10~20mm的石墨模具中,放进SPS炉中烧结,烧结环境为真空,真空度为4~7Pa;在一定的温度、压力、保温时间下进行烧结,烧结温度为200~500℃,保温时间为2~8min,烧结压力为20~60MPa,升温速度为40~180℃/min;最后得到直径为10~20mm,高度为4~6mm的Bi-S二元化合物块体材料;(4)将第(3)步烧结得到的块体材料进行表面打磨处理后,装入直径Φ20~30mm石墨模具中,在SPS炉中进行热锻处理,环境为真空,真空度为4~7Pa;在一定的温度、压力、保温时间下进行热锻处理,温度为200~500℃,保温时间为2~8min,压力为30~60MPa,升温速度为40~180℃/min;最后得到直径为20~30mm,高度为2~4mm的Bi-S二元化合物块体材料;将烧结后的样品,用砂纸进行表面打磨后,进行X射线衍射分析鉴定物相组成、扫描电镜分析显微组织形貌、电阻率、赛贝克系数、热导率测试。全文摘要一种提高Bi-S二元体系热电材料性能的方法,属于能源材料
技术领域
。该方法分为化合物的合成与成型两部分。将高纯Bi和S单质按照化学成分进行称量配比后,在惰性气体保护和一定转速下进行高能球磨,干磨合成化合物后再进行湿磨,烘干得到Bi-S二元化合物微细粉末。成型过程通过放电等离子烧结来获得块体材料,主要经过两步完成第一步放电等离子烧结获得高致密的晶粒细小的Bi-S二元化合物块体,第二步采用放电等离子烧结技术进行热锻处理获得织构组织。由于放电等离子烧结具有时间短、相对烧结温度低等优点,通过控制烧结工艺可获得均匀细小、具有择优取向的显微组织。该方法通过控制元素化学成分配比和晶粒取向来提高材料的热电性能,具有工艺简便,合成和成型的时间短等优点。文档编号C22C29/00GK101358313SQ200810211660公开日2009年2月4日申请日期2008年9月22日优先权日2008年5月9日发明者刘玮书,张波萍,李敬锋,赵立东申请人:北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1