Cu-Fe复合材料及其制备方法

文档序号:3340841阅读:533来源:国知局
专利名称:Cu-Fe复合材料及其制备方法
技术领域
本发明涉及复合材料技术领域,具体涉及一种Cu-Fe复合材料及其制备方法。
背景技术
铜是应用最广泛的金属之一,尤其作为导电材料的应用最广泛,由于铜的强度很低,在使用过程中需要以合金的形式出现。导电材料的强度在提高的同时,往往导电性会降低。为了使铜在导电性不受到影响的同时增加强度,通过在铜基中加入合金金属,经过一定工艺制备复合纤维强化铜合金,可以达到新型的高强高导材料。目前已经研制出的优良性能的高导材料有Cu-Ag等,但是由于贵金属的价格昂贵,且资源 紧缺,使这些材料的应用受到了限制。通过在铜基中添加价格低廉的铁可以有效提高铜的强度,但是在铁的添加量达到一定量才能得到优异的强度,与此同时,铜的导电性已经受到了影响,如何在不损害铜的导电性的同时制备高强高导的Cu-Fe材料成为当前的难题。公开号为CN 1687479A,
公开日为2005年10月26日,名称为“高强高导Cu-Fe-Ag纳米原为复合材料的制备方法”的专利,公开了一种高强高导Cu-Fe-Ag的复合材料及制备方法,该材料虽然能达到有效的高导高强性能,但是由于受到Ag价格昂贵、资源短缺的影响,其应用必然会受到限制。

发明内容
本发明的目的是提供一种成本低廉的高强高导的Cu-Fe合金材料,以解决目前铜导电材料由于受到贵金属的限制而影响其发展的问题。本发明的Cu-Fe复合材料具有强度高、导电性好以及成本相对低廉的优势,从而能够更好的扩大铜的应用,发挥铜的优良性倉泛。本发明通过以下方案实行
一种Cu-Fe复合材料,由以下重量百分数计的各组分制备而成6 15%铁,O. Γθ. 4%锆,
O.5 5%碳化铬,O. 05、. 3%二氧化铈,O. Γ1. 5%铝,余量为铜和杂质。铁加入铜中后,能有效增加铜的强度,但是铜铁合金的导电率会降低。锆的加入可以使锆在铜铁合金中生成氧化锆,氧化锆在界面处弥散分布,达到弥散强化的效果。碳化铬的加入在一定程度上提高了合金的耐磨性能。二氧化铈的加入能提高合金的耐腐蚀性,同时也可以提高合金的硬度和强度。铝能够提高铜的高温抗氧化能力,铝生成的氧化铝也起到了弥散强化的效果。作为优选方案,铁的重量百分数为7 10%。这个范围的铁含量,能够平衡强度与电导率,从而达到合金的最有效果。作为优选方案,二氧化铈的平均粒径为2(T50nm。二氧化铈粒径在纳米级后,能增大比表面积,使其充分分散在铜基内,从而更好的发挥作用。作为优选方案,碳化铬的平均粒径为2(T50nm。碳化铬粒径在纳米级后,能增大比表面积,使其充分分散在铜基内,从而更好的发挥作用。一种制备Cu-Fe复合材料的方法,包括以下步骤(1)熔炼将铜、铁在氮气压力O.005 O.OlMPa、温度为140(Tl600°C下熔化,并搅拌均匀,得铜铁熔体;将锆、碳化铬、二氧化铈和铝在氩气压力为O. 005 0. OlMPa、温度为150(Tl700°C下熔化,并与铜铁熔体混合,搅拌均匀,采用水冷浇注成铸锭;
(2)热轧退火将铸锭在氢气气氛加热炉中加热到90(Tl000°C保温l 2h后退火;
(3)拉拔、热处理将步骤(2)热轧退火处理后的铸锭在室温下多次拉拔,每次拉拔后在35(T400°C的氢气气氛中保温2 4h,最后铸锭总的变形量η彡10。对铸锭的热轧退火处理可以起到抑制加工硬化、增加材料的变形能力、促进固溶在Cu中的Fe的析出,减少Fe在Cu中的过饱和固溶度,从而提高整体导电性能。拉拔可以提高屈服强度等力学性能。作为优选方案,拉拔过程中每次拉拔的变形的减小量为2(Γ30%。
作为优选方案,热轧退火和拉拔、热处理的加热速率为15 40°C /分钟。作为优选方案,热轧退火和拉拔、热处理的降温速率为2(T50°C /分钟。由于采用上述技术方案,本发明的有益效果是该Cu-Fe复合材料具有强度高、导电性好且成本相对低廉的效果,在一定程度上能够摆脱目前高强高导铜基合金受到的贵金属的限制的局限性。
具体实施例方式实施例I
一种Cu-Fe复合材料,
首先按照以下重量百分数计的各组分进行原材料准备,共计500kg :6%铁,O. 3%锆,5%碳化铬,O. 05%二氧化铈,O. 8%铝,余量为铜和杂质。其中二氧化铈的平均粒径为20nm,碳化铬的平均粒径为50nm。然后按照以下步骤进行制备
(1)熔炼将铜、铁在氮气压力O.005MPa、温度为1500°C下熔化,并搅拌均匀,得铜铁熔体;将锆、碳化铬、二氧化铈和铝在氩气压力为O. OlMPa、温度为1500°C下熔化,并与铜铁熔体混合,搅拌均匀,采用水冷浇注成铸锭;
(2)热轧退火将铸锭在氢气气氛加热炉中加热到950°C保温2h后退火,加热速率为15°C /分钟,降温速率为30°C /分钟;
(3)拉拔、热处理将步骤(2)热轧退火处理后的铸锭在室温下5次拉拔,每次拉拔后在350°C的氢气气氛中保温3h,最后铸锭总的变形量η > 10,拉拔过程中每次拉拔的变形的减小量为230%,加热速率为15°C /分钟,降温速率为40°C /分钟。最后得到Cu-Fe复合材料。实施例2
一种Cu-Fe复合材料,
首先按照以下重量百分数计的各组分进行原材料准备,共计500kg :10%铁,O. 4%锆,
O.5%碳化铬,O. 1% 二氧化铈,I. 5%铝,余量为铜和杂质。其中二氧化铈的平均粒径为30nm,碳化铬的平均粒径为20nm。然后按照以下步骤进行制备
(I)熔炼将铜、铁在氮气压力O. 008MPa、温度为1600°C下熔化,并搅拌均匀,得铜铁熔体;将锆、碳化铬、ニ氧化铈和铝在氩气压カ为0. 005MPa、温度为1600°C下熔化,并与铜铁熔体混合,搅拌均匀,采用水冷浇注成铸锭;
(2)热轧退火将铸锭在氢气气氛加热炉中加热到1000°C保温Ih后退火,加热速率为300C /分钟,降温速率为50°C /分钟;
(3)拉拔、热处理将步骤(2)热轧退火处理后的铸锭在室温下3次拉拔,毎次拉拔后在380°C的氢气气氛中保温4h,最后铸锭总的变形量n ^ 10,拉拔过程中每次拉拔的变形的减小量为20%,加热速率为20°C /分钟,降温速率为50°C /分钟。最后得到Cu-Fe复合材料。实施例3 ー种Cu-Fe复合材料,
首先按照以下重量百分数计的各组分进行原材料准备,共计500kg :15%鉄,0. 1%锆,2%碳化铬,0. 3% ニ氧化铈,0. 1%铝,余量为铜和杂质。其中二氧化铈的平均粒径为50nm,碳化铬的平均粒径为50nm。然后按照以下步骤进行制备
(1)熔炼将铜、铁在氮气压力0.OlMPa、温度为1400°C下熔化,并搅拌均匀,得铜铁熔体;将锆、碳化铬、ニ氧化铈和铝在氩气压カ为0. 007MPa、温度为1700°C下熔化,并与铜铁熔体混合,搅拌均匀,采用水冷浇注成铸锭;
(2)热轧退火将铸锭在氢气气氛加热炉中加热到900°C保温I.5h后退火,加热速率为400C /分钟,降温速率为20°C /分钟;
(3)拉拔、热处理将步骤(2)热轧退火处理后的铸锭在室温下4次拉拔,毎次拉拔后在400°C的氢气气氛中保温2h,最后铸锭总的变形量n > 10,拉拔过程中每次拉拔的变形的减小量为25%,加热速率为40°C /分钟,降温速率为20°C /分钟。最后得到Cu-Fe复合材料。实施例4
ー种Cu-Fe复合材料,
首先按照以下重量百分数计的各组分进行原材料准备,共计500kg :7%鉄,0. 2%锆,1%碳化铬,0. 2% ニ氧化铈,0. 5%铝,余量为铜和杂质。其中二氧化铈的平均粒径为20nm,碳化铬的平均粒径为20nm。然后按照以下步骤进行制备
(1)熔炼将铜、铁在氮气压力0.OlMPa、温度为1400°C下熔化,并搅拌均匀,得铜铁熔体;将锆、碳化铬、ニ氧化铈和铝在氩气压カ为0. OlMPa、温度为1600°C下熔化,并与铜铁熔体混合,搅拌均匀,采用水冷浇注成铸锭;
(2)热轧退火将铸锭在氢气气氛加热炉中加热到900°C保温2h后退火,加热速率为
250C /分钟,降温速率为35 °C /分钟;
(3)拉拔、热处理将步骤(2)热轧退火处理后的铸锭在室温下5次拉拔,毎次拉拔后在400°C的氢气气氛中保温3h,最后铸锭总的变形量n > 10,拉拔过程中每次拉拔的变形的减小量为25%,加热速率为20°C /分钟,降温速率为50°C /分钟。最后得到Cu-Fe复合材料。对以上实施例得到的Cu-Fe复合材料的抗拉强度和电导率进行测试,测试结果见
权利要求
1.一种Cu-Fe复合材料,其特征在于,所述Cu-Fe复合材料由以下重量百分数计的各组分制备而成:6 15%铁,O. I O. 4%锆,O. 5 5%碳化铬,O. 05 O. 3% 二氧化铈,O. I I. 5%铝,余量为铜和杂质。
2.根据权利要求I所述的Cu-Fe复合材料,其特征在于,铁的重量百分数为7 10%。
3.根据权利要求I或2所述的Cu-Fe复合材料,其特征在于,二氧化铈的平均粒径为20 50nm。
4.根据权利要求I或2所述的Cu-Fe复合材料,其特征在于,碳化铬的平均粒径为20 50nm。
5.一种制备权利要求I所述的Cu-Fe复合材料的方法,其特征在于,该方法包括以下步骤 Cl)熔炼将铜、铁在氮气压力O. 005 O.OlMPa、温度为140(Tl600°C下熔化,并搅拌均匀,得铜铁熔体;将锆、碳化铬、二氧化铈和铝在氩气压力为O. 005 0. OlMPa、温度为150(Tl700°C下熔化,并与铜铁熔体混合,搅拌均匀,采用水冷浇注成铸锭; (2)热轧退火将步骤(I)得到的铸锭在氢气气氛加热炉中加热到90(Tl000°C保温I 2h后退火; (3)拉拔、热处理将步骤(2)热轧退火处理后的铸锭在室温下进行多次拉拔,每次拉拔后在35(T400°C的氢气气氛中保温2 4h,最后铸锭总的变形量η >10。
6.根据权利要求5所述的Cu-Fe复合材料的制备方法,其特征在于,拉拔过程中每次拉拔的变形的减小量为20 30%。
7.根据权利要求5或6所述的Cu-Fe复合材料的制备方法,其特征在于,热轧退火和拉拔、热处理的加热速率为15 40°C /min。
8.根据权利要求5或6所述的Cu-Fe复合材料的制备方法,其特征在于,热轧退火和拉拔、热处理的降温速率为2(T50°C /min。
全文摘要
一种Cu-Fe复合材料及其制备方法,该复合材料按质量百分数计包括以下组分6%~15%铁,0.1%~0.4%锆,0.5%~5%碳化铬,0.5%~3%二氧化铈,0.1%~1.5%铝,余量为铜和杂质。该复合材料是通过将各种组分熔炼后并经过铸锭、拉拔等机械处理以及相应的热处理而成。本发明在铜基中加入铁进行增强的同时加入锆,形成的弥散强化相使得复合材料的整体强度和导电性得到保证的同时,降低了成本。本发明可作为高强高导材料应用于各种导电领域。
文档编号C22C9/00GK102952962SQ20121036680
公开日2013年3月6日 申请日期2012年9月28日 优先权日2012年2月10日
发明者姚再起, 李志华, 王春斌, 李莉, 刘强, 马芳武, 赵福全 申请人:浙江吉利汽车研究院有限公司, 浙江吉利控股集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1