气体组分自动控制的等离子体化学气相沉积设备的制作方法

文档序号:12168715阅读:151来源:国知局
气体组分自动控制的等离子体化学气相沉积设备的制作方法与工艺

本发明属于等离子体处理技术领域,具体涉及一种气体组分自动控制的等离子体化学气相沉积设备。



背景技术:

化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。沉积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。

等离子体增强化学气相沉积(PECVD)是将低压气体放电形成的等离子体应用于化学气相沉积的一项具有发展前途的新技术。是利用等离子激发的化学气相沉积,借助于气体辉光放电产生的低温等离子体,增强了反应物质的化学活性,促进了气体间的化学反应,从而在低温下也能在基片上形成新的固体膜。因为其沉积温度低,沉积速率快,膜厚均匀性好等优点,正得到越来越多的应用。PECVD是依靠等离子体中电子的动能去激活气相的化学反应,反应中气相的成分是在时刻变化着的,而这个变化过程却一直是个未知数,因为目前为止没有设备可以做到在PECVD工作的时候实时监控其内部成分的变化,更没有一种有效的方法做到实时精确控制PECVD气相组份,以达到更好的沉积效果。



技术实现要素:

虽然PECVD的成膜性能好,沉积效率高,但是市面上的PECVD设备都不能做到精确控制反应气体的组份。对于PECVD过程中的活性因子的控制更是束手无策。

本发明可以解决如上问题。为了达到更好的沉积效果,更快的沉积速率,通过完全自动化的控制反应的中间过程的参数,包括反应气体成分和比例、等离子体密度和电子能量。

为实现上述目的,本发明采用下述技术方案:

一种气体组分自动控制的等离子体化学气相沉积设备,包括真空腔室,所述真空腔室上开设有快接接口,所述快接接口通过取样气路与用于检测真空腔室内气体组分的气相检测系统连接,气相检测系统的输出端与控制及反馈系统连接并将检测结果输出至控制及反馈系统,控制及反馈系统的输出端与质量流量计连接,控制及反馈系统输出控制信号来控制质量流量计给气量的大小。

进一步地,所述等离子体化学气相沉积设备还包括工作气体源,所述工作气体源依次与气压表、第一控制阀、第一压力传感器、质量流量计、第二控制阀和第二压力传感器连接,第一压力传感器和第二压力传感器实时检测气路的压力并将检测结果反馈至控制及反馈系统。

进一步地,所述气相检测系统为气相色谱仪。

进一步地,所述等离子体化学气相沉积设备还包括等离子体发生系统,所述等离子体发生系统为射频等离子体系统、微波等离子体系统或直流高压等离子体系统。

进一步地,所述控制及反馈系统采用中央处理器。

进一步地,所述控制及反馈系统还包括用于显示气体组分的显示部件。

本发明与现有技术相比具有如下优点:

本发明通过在等离子体化学气相沉积设备中添加气相检测系统和控制及反馈系统来实时检测并调控真空腔室内的气体组分,以达到提高成膜质量和提高成膜速率的效果。首次在工业化的等离子体化学气相沉积设备上添加气体组分并通过控制及反馈系统集成,将实时监测与参数控制联动,获得精确控制的终端产品。

附图说明

图1为本发明中等离子体化学气相沉积设备的结构示意图;

图2为本发明中添加气相检测系统和控制及反馈系统的等离子体化学气相沉积设备的结构示意图;

图3为本发明中气相色谱仪的结构示意图。

具体实施方式

下述实施例是对于本发明内容的进一步说明以作为对本发明技术内容的阐释,但本发明的实质内容并不仅限于下述实施例所述,本领域的普通技术人员可以且应当知晓任何基于本发明实质精神的简单变化或替换均应属于本发明所要求的保护范围。

参见图1-2,等离子体化学气相沉积设备即为现有技术中常用的设备,包括真空腔室10、工作气体源20、等离子体发生系统30、上电极60、下电极70、支撑80、支撑耳90、上盖板100及基材110等,所述等离子体发生系统30为射频等离子体系统、微波等离子体系统或直流高压等离子体系统。真空腔室10的一侧开设有快接接口11,所述快接接口11通过取样气路41与用于检测真空腔室10内气体组分的气相检测系统40连接,气相检测系统40的输出端与控制及反馈系统50连接并将检测结果输出至控制及反馈系统50,控制及反馈系统50的输出端与质量流量计21连接,控制及反馈系统50输出控制信号来控制质量流量计21给气量的大小。气相检测系统40检测气体组分后输出检测结果,控制及反馈系统50对上述检测结果进行分析,若检测结果大于预定设定值,控制及反馈系统50输出控制信号来控制质量流量计21减小气量,若检测结果小于预定设定值,控制及反馈系统50输出控制信号来控制质量流量计21增大气量。所述工作气体源20依次与气压表22、第一控制阀23、第一压力传感器24、质量流量计21、第二控制阀25和第二压力传感器26连接,第一压力传感器24和第二压力传感器26实时检测气路的压力并将检测结果反馈至控制及反馈系统50。

气相检测系统优选为气相色谱仪,气相色谱仪的结构如图3所示。

所述控制及反馈系统50采用中央处理器。

所述控制及反馈系统50还包括用于显示气体组分的显示部件。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1