一种掺杂无机纳米粒子制备复合磷化膜的方法与流程

文档序号:17397255发布日期:2019-04-13 00:55阅读:400来源:国知局
一种掺杂无机纳米粒子制备复合磷化膜的方法与流程

本发明涉及一种磷化膜,特别是涉及一种掺杂纳米氮化硼制备磷化膜的方法;属于材料科学和表面技术领域。



背景技术:

金属表面在除油、除锈后,为了防止重新生锈,通常要进行化学处理,使金属表面生成一层保护膜。而磷化是常用的表面处理技术,指的是在特定的酸式磷酸盐溶液中经过化学反应在金属表面形成难溶于水的磷酸盐覆盖膜的过程。按照磷化膜的种类,可把磷化分为锌系、锌钙系、锌锰系、锰系、铁系、非晶相铁系六大类。需要指出的是,磷化膜虽然薄,但由于它是一层非金属的不导电隔离层,能使金属工件从优良导体转变为不良导体,抑制金属工件表面微电池的形成,进而有效阻止涂膜的腐蚀。鉴于其优异的特性,磷化膜的应用领域十分广泛,如汽车制造、航空航天、海洋防腐、底漆涂装等。

目前,国内外磷化处理使用较多的是中、高温磷化,不仅能耗大、处理工艺时间长、沉渣多,而且磷化后需进行封闭处理,工艺较复杂,直接影响着涂装生产的质量、产量和成本。对于钢铁试件的磷化更是存在着不环保、磷化液不稳定、磷化膜质量差的问题。由此可见,传统磷化工艺十分耗时、耗能。

中国发明专利cn200610045653.7公开了一种使用纳米三氧化二铝来促进磷化的技术,虽然磷化过程只需9~12分钟且制备的磷化膜耐磨性较好,但是温度却要50~90℃,比较耗能。而且磷化膜晶粒并不致密,防腐性能有待提高。

申请号为cn201610397553.4的中国发明专利申请公开了一种碳钢管常温磷化液的配方,该配方虽然可以在接近常温下较快地进行工件的磷化处理,但是使用了有毒有害的亚硝酸钠和氟化钠作为促进剂,而且用量较高,产生的三废处理难度大,不满足环保的需求。

公开号为cn101029386a的中国发明专利申请公开了一种用于钢板及镀锌板处理的含钙锌锰三元阳离子磷化液,虽然该磷化液具有快速成膜、与电泳涂层配套性好的优点,但是该磷化液的浓度大,成本高,工作温度在40~60℃,较为耗能。

申请号为cn103469187a的中国发明专利申请公开了一种用于钢铁表面磷化黑化的处理液,虽然该处理液操作的温度为常温而且处理后的钢铁表面耐腐蚀性和膜层质量较好,但是该磷化过程速度慢,需要30~50分钟,较为耗时。



技术实现要素:

本发明要解决的技术问题在于提供一种常温并快速制备出耐蚀性强、质量高的磷化膜的方法。所使用的磷化液不含有害的亚硝酸钠等化学物质,对环境无害。

本发明在磷化液中加入少量纳米氮化硼,使之和磷酸盐晶体在钢铁的表面共沉积,形成纳米氮化硼复合磷化膜,该磷化膜的抗腐蚀能力、膜厚、膜的硬度等显著提升,同时缩短了磷化膜的制备时间,降低了磷化处理温度。

本发明利用了氮化硼的特性;氮化硼有白色石墨之称,具有类似石墨的层状结构,是热的良导体,又是典型的电绝缘体,常温电阻率可达1016~1018ω·cm,即使在1000℃,电阻率仍有104~106ω·cm,击穿强度是三氧化二铝的两倍,因此抗腐蚀性极佳;它有优良的抗氧化性和化学稳定性,对熔融金属、熔渣和玻璃等具有良好的耐湿性。本发明利用氮化硼作为磷化促进剂和改性剂,在磷化液中掺杂无机纳米粒子氮化硼,使其参与磷化结晶。本发明方法适应了快速发展的市场竞争需要,提高磷化膜的质量,实现常温绿色、快速节能地制备磷化膜的目标,本发明利用了纳米材料的表面效应、小尺寸效应等特性;本发明是一种新的提高磷化膜紧密性、抗蚀性的方法。

本发明目的通过如下技术方案实现:

一种掺杂无机纳米粒子制备复合磷化膜的方法,包括如下步骤:

1)磷化处理液的配制:以质量份数计,将5~8份磷酸盐、7~9份锌、锰或者钙盐、0.6~3份磷酸、0.04~0.4份氮化硼、0.1~1份稳定剂、6~10份ph缓冲剂和80~100份水投入反应釜中,用碱液调节ph为2~3,然后升温至20~40℃,控制搅拌速度在200~300转/分钟,机械搅拌30~60分钟后出釜;

2)磷化处理过程:将配制好的磷化处理液放入磷化池内,使磷化处理的温度升至20~40℃,然后将除锈、除油之后的钢铁试件浸入其中,处理时间5~20分钟,用水冲净晾干,得到复合磷化膜。

为进一步实现本发明目的,优选地,所述的磷酸盐为含有锌离子、锰离子、钙离子的酸式盐、正盐及其水合物的一种或多种。

优选地,所述的锌、锰或者钙盐为硝酸盐、氯化盐及其水合物的一种或多种。

优选地,所述的纳米氮化硼为六方氮化硼、菱方氮化硼和立方氮化硼一种或多种。

优选地,所述纳米氮化硼的平均粒径为50~100nm,且80wt%以上的颗粒包含在平均粒径±30%范围内。

优选地,所述纳米氮化硼粉末的形状为椭圆盘状或者圆盘状,并且短轴la、长轴lb以及厚度t满足下式:80nm≤la≤lb≤700nm,20nm≤t≤150nm,t≤la,0.5≤la/lb≤1.0。

优选地,所述的稳定剂为直链烷基苯磺酸钠(las)、脂肪醇聚氧乙烯醚硫酸钠(aes)、烷基醇醚羧酸盐(aec)、烷基酚聚氧乙烯醚(apeo)、脂肪酸聚氧乙烯酯(se-10)的一种或多种。

优选地,所述的ph缓冲剂为氯化钾-盐酸、氨基乙酸-盐酸、一氯乙酸-氢氧化钠、六亚甲基四胺-盐酸的一种或多种。

优选地,步骤2)中所述除锈过程是采用400~800目的砂纸对试件正反面打磨;步骤2)中所述除油过程是将10wt%氢氧化钠溶液升温至20~40℃,然后将试件浸泡5~10分钟后取出,并在丙酮溶液中超声3~5分钟。

优选地,所述的复合磷化膜为锌系磷化膜、锰系磷化膜和钙系磷化膜的一种或多种。

本发明的机理为:

当试件浸入磷化液中时,氮化硼首先吸附到试件表面,未被氮化硼覆盖的试件表层会慢慢溶解,溶出的亚铁离子和锌离子、磷酸根离子发生沉淀反应,生成微小晶体。此时,纳米氮化硼粒子作为晶体的成核位点,促进磷酸盐的结晶并间接控制晶粒尺寸,使得氮化硼和磷酸盐晶体在钢铁表面共沉积,形成复合磷化膜。然而过多的纳米氮化硼粒子沉积并覆盖在试件表面时,试件表面铁的溶解过程被抑制,磷化液中磷酸的解离平衡遭到破坏,磷酸根离子浓度减少,不利于磷酸盐晶体的形成,即不利于成膜。

相对于现有技术,本发明的优点和有益效果是:

1)本发明氮化硼作为磷化时晶体的成核吸附位点,有助于晶体附着并形成复合磷化膜,在扫描电子显微镜下可以看到一层密集、尺寸细小的磷化膜层;且氮化硼是疏水纳米材料,密集的复合磷化膜能有效防护空气中水分的渗透,防腐性能优异;与不添加氮化硼粒子的膜层相比,耐腐蚀性显著提升。

2)本发明以氮化硼作为磷化促进剂,能够低温快速制备磷化膜,20~40℃即可磷化且磷化,磷化不需要高温,时间仅需5~20分钟,既节约成本和能源,又节省时间。

3)氮化硼是绿色添加剂,磷化处理后的磷化池中磷化沉渣少,说明试件的磷化成功率高。

4)本发明磷化液中不含有害的亚硝酸钠等化学物质,使用过程及使用后均不危害人体健康和生态环境,使用方便,可满足工业化需求。

5)本发明制备的锌系磷化膜外观灰暗,膜层硬、膜层均匀细腻,实施例1中复合膜的硬度从改性前的162hv变成350hv。

6)本发明以少量绿色无污染的纳米氮化硼粒子作为磷化促进剂,采用常温快速制备磷化膜的方法对工件进行磷化处理,性价比高,磷化沉渣少,具有显著的规模生产优势。

附图说明

图1为实施例1获得的氮化硼改性前、后磷化膜在同一比例尺下的扫描电镜图片,放大倍数为100倍。

图2为实施例1获得的氮化硼复合磷化膜高倍扫描电镜图片,图中(a)放大了20000倍,图中(b)放大了2000倍。

图3为实施例1获得的氮化硼复合磷化膜在硫酸铜点滴液条件下的耐蚀性检测图片,图中(a)是刚滴加硫酸铜点滴液的磷化膜,图中(b)是点滴液出现红棕色的磷化膜。

图4为实施例1获得的氮化硼改性前、后磷化膜的x射线衍射谱图。

具体实施方式

为更好地理解本发明,下面结合具体实施例进一步阐述本发明,但实施例不构成对本发明权利要求保护范围的限定,基于实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的其它实施例,都属于本发明的保护范围。

本发明使用gb11376-89评价磷化膜的外观;使用gb4956规定测试磷化膜的膜厚;使用gb6458-86中性盐雾实验测试磷化膜的防腐蚀性能;使用gb6807-86硫酸铜点滴法测试磷化膜的抗蚀性能。

本发明实施例使用扫描电镜(fe-sem,su-8200,japan)表征bn改性前、后的磷化膜外观和形貌。

本发明实施例使用膜厚仪(kett,lz-990)测量bn改性前、后的磷化膜膜厚变化。

本发明实施例使用x射线衍射仪(brukerd8advance,germany)表征bn改性前、后的磷化膜层晶体的主要组成。

本发明实施例使用转塔式数码显微硬度计(wilson402mvd)测量bn改性后的磷化膜微硬度。

实施例1

按重量份数计,称取如下的原料组分:二水合磷酸二氢锌5份、六水合硝酸锌7份、磷酸0.6份、六方氮化硼(平均粒径100纳米,粉末形状为椭圆盘状或者圆盘状,并且短轴la、长轴lb以及厚度t满足:80nm≤la≤lb≤700nm,20nm≤t≤150nm,t≤la,0.5≤la/lb≤1.0)0.1份、直链烷基苯磺酸钠(las)0.2份、氯化钾-盐酸ph缓冲液6份、水100份。然后将各组分投入反应釜中,用碱液调节釜内溶液ph为2.3,升温至30℃。然后控制搅拌速度在300转/分钟,机械搅拌30分钟后出釜。再将配制的磷化处理液放入磷化池内,将表面处理过的钢铁试件浸入其中,处理时间20分钟,用水冲净晾干即可得到磷化处理的试件。

图1为实施例1获得的氮化硼改性前、后磷化膜在同一比例尺下的扫描电镜图片,放大倍数为100倍。从图中看出改性前(左图)的磷化膜结晶疏松、晶粒大,而加入合适比例的氮化硼改性后(右图),结晶变得紧密、晶粒细小,且复合膜上晶体均匀分布。

图2为实施例1获得的氮化硼复合磷化膜高倍扫描电镜图片,左图(a)放大了20000倍,右图(b)放大了2000倍。从图(a)中可以清晰看出磷酸盐晶体的层状膜结构,和氮化硼共沉积在基材底部;图(b)中可以明显看出晶体与晶体之间连接紧密,说明经氮化硼改性后膜层的紧密型提高。

图3为实施例1获得的氮化硼复合磷化膜耐蚀性检测图片。左图(a)是刚滴加硫酸铜点滴液的磷化膜,右图(b)是点滴液出现红棕色的磷化膜。从实施例结论看出,改性后的磷化膜变色时间达到320秒,超过国家合格标准规定的60秒,说明抗蚀性得到明显提升。

图4为实施例1获得的氮化硼改性前、后磷化膜的x射线衍射谱图。从图中看出:改性前晶体主要成分是zn2fe(po4)2·4h2o,加入氮化硼后主要成分变为zn3(po4)2·4h2o,fe峰信号减弱且未明显观测到氮化硼的峰。证明改性剂被磷酸盐晶体紧密包裹起来,复合并结晶在更多的钢铁试件表面,铁的溶解受到抑制。纳米氮化硼的掺杂未改变晶体种类,只是作为成核吸附位点改变了晶体的优先生长取向。

本实施例1得到的磷化膜外观灰暗,膜层细腻,按照gb4956的测试方法,所测膜厚为18.1微米,使用转塔式数码显微硬度计测试复合膜硬度为350hv。按照gb6807-86规定的硫酸铜点滴实验测试磷化膜的抗腐蚀性能,实验表明,磷化膜320秒产生变色。按照gb6458-86规定的中性盐雾实验,磷化膜20小时不发生腐蚀,与不添加氮化硼粒子的膜层相比,本实施例耐腐蚀性显著提升。

与传统的磷化工艺如中国专利cn101029386a报道的40~60℃工艺技术相比,本发明采用绿色低温快速制备磷化膜的方法对工件进行磷化处理,能大大简化磷化工艺,磷化温度低,常温下即可进行。

与现有技术如中国专利cn201610397553.4报导的使用对环境有害的亚硝酸钠和氟化钠作为磷化处理的促进剂相比,本发明采用绿色无污染的无机纳米粒子氮化硼作为促进剂,符合环保要求。

与中国专利如申请号为cn103469187a报导的一种用于钢铁表面磷化黑化的处理液技术相比,本发明磷化速度快,仅需5~20分钟,较为省时。

实施例2

按重量配比取如下的原料组分:磷酸锌8份、氯化锌4份、硝酸锌3份、磷酸2.5份、立方氮化硼(平均粒径50纳米,粉末形状为椭圆盘状或者圆盘状,并且短轴la、长轴lb以及厚度t满足:80nm≤la≤lb≤700nm,20nm≤t≤150nm,t≤la,0.5≤la/lb≤1.0)0.08份、脂肪醇聚氧乙烯醚硫酸钠(aes)0.2份、氨基乙酸-盐酸ph缓冲液6份、水100份。将各组分投入反应釜中,用碱液调节釜内溶液ph为2.7,升温至30℃。然后控制搅拌速度在250转/分钟,机械搅拌30分钟后出釜。将配制的磷化处理液放入磷化池内,然后将表面处理过的钢铁试件浸入其中,处理时间15分钟,用水冲净晾干即可得到磷化处理的试件。

本实施例2得到的磷化膜外观灰暗,膜层细腻,按照gb4956的测试方法,膜厚14.3微米,使用转塔式数码显微硬度计测试复合膜硬度为316hv。按照gb6807-86规定的硫酸铜点滴实验测试磷化膜的抗腐蚀性能,实验表明,磷化膜222秒产生变色。按照gb6458-86规定的中性盐雾实验,磷化膜15小时不发生腐蚀。

实施例3

按重量配比取如下的原料组分:磷酸锌7份、六水合硝酸锌6份、磷酸1份、六方氮化硼(平均粒径80纳米,粉末形状为椭圆盘状或者圆盘状,并且短轴la、长轴lb以及厚度t满足:80nm≤la≤lb≤700nm,20nm≤t≤150nm,t≤la,0.5≤la/lb≤1.0)0.06份、烷基酚聚氧乙烯醚(apeo)乳化剂0.2份、一氯乙酸-氢氧化钠ph缓冲液7份、水100份。将各组分投入反应釜中,用碱液将釜内溶液ph调节为2.5,然后升温至28℃。然后控制搅拌速度在200转/分钟,机械搅拌30分钟后出釜。将配制的磷化处理液放入磷化池内,将表面处理过的钢铁试件浸入其中,处理时间10分钟,用水冲净晾干即可得到磷化处理的试件。

本实施例3得到的磷化膜外观灰暗,膜层细腻,按照gb4956的测试方法,膜厚12.4微米,使用转塔式数码显微硬度计测试复合膜硬度为253hv。按照gb6807-86规定的硫酸铜点滴实验测试磷化膜的抗腐蚀性能,实验表明,磷化膜202秒产生变色。按照gb6458-86规定的中性盐雾实验,磷化膜12小时不发生腐蚀。

实施例4

按重量配比取如下的原料组分:磷酸二氢锌5份、硝酸锌9份、磷酸3份、菱方氮化硼(平均粒径90纳米,粉末形状为椭圆盘状或者圆盘状,并且短轴la、长轴lb以及厚度t满足下式:80nm≤la≤lb≤700nm,20nm≤t≤150nm,t≤la,0.5≤la/lb≤1.0)0.04份、烷基醇醚羧酸盐(aec)稳定剂0.3份、六亚甲基四胺-盐酸ph缓冲液8份、水100份。将各组分投入反应釜中并用碱液将釜内溶液调节ph为2.5,然后升温至30℃,控制搅拌速度为250转/分钟,机械搅拌30分钟后出釜。将配制的磷化处理液放入磷化池内,将表面处理过的钢铁试件浸入其中,处理时间10分钟,用水冲净晾干即可得到磷化处理的试件。

本实施例4得到的磷化膜外观灰暗,膜层细腻,按照gb4956的测试方法,膜厚11.8微米,使用转塔式数码显微硬度计测试复合膜硬度为206hv。按照gb6807-86规定的硫酸铜点滴实验测试磷化膜的抗腐蚀性能,实验表明,磷化膜173秒产生变色。按照gb6458-86规定的中性盐雾实验,磷化膜10小时不发生腐蚀。

需要说明的是,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明保护范围内;本发明要求保护范围由权利要求书界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1