用于催化重整烃或醇的设备和方法

文档序号:3438712阅读:178来源:国知局
专利名称:用于催化重整烃或醇的设备和方法
技术领域
本发明是关于催化重整烃或醇的技术。
氢的可用性是在移动或固定的设备中使用的燃料单元的基本条件。在燃料单元的使用越来越频繁时,如在汽车中,是很有意义的,操作汽车的能发动单位限于一种能源,如甲醇、汽油或柴油而不是由不同能源供料每一种能发动单元,例如一种用于奥托-发动机的驱动,柴油适于加热设备而甲醇适于空调或供电力的燃料单元,为此,就产生企图以采用普通的燃料生产用于燃料单元所需的氢。
重整高级烃或醇成为氢是一种在工业上已用的方法。但是使用这种重整方法以制备燃料单元的氢,到目前为止已知设备相当庞大且不适于移动设备如汽车的使用。另一个问题是用于重整高级烃或醇以生产用于燃料单元的氢是重整的化学过程的复杂性并且因而反应进行困难。因此用于重整烃或醇的已知成套设备包括昂贵的控制设备以及处理复杂的反应过程的控制因此不适用于移动设备,如汽车。
因此本发明的目的,提供一种改进的方法和设备以用于重整高级烃或醇。如汽油、柴油、甲醇或甲烷,以易于生产在移动设备的燃料单元,尤其是汽车用的氢。
这任务可通过按本发明的独立权利要求1和独立权利要求13的设备而得到解决。
在重整烃或醇时,在影响复杂相互联系的各种中间反应中可配置和使用具有微反应器和微管道的微反应器网络,它可以有高的选择性。在微反应器中的小尺寸的反应室简化了反应过程的控制和操作,从而降低了设备的费用。
另一个优点是,微反应器网络特别适用于非工业领域中用于氢的生产的设备,因为与已知设备(工业用)相比设备所需空间显著减少。除了可在移动设备中应用外,重整产生的氢例如可用于家庭能源系统的燃料单元中。
按本发明的另一实用方面是工艺控制装置包括在至少一部分涉及的管道Kmj中包含控制所用的调节阀Vmj(m=1,2...;j=2,3...),且通过至少部分管道Kmj借助于操作调节阀Vmj调整多个中间反应TK的原料和/或反应产物的输送。用这种方法可使原料和/或微反应器间的反应产物的流量可以对不同应用情况下的化学反应达到最优化。
本发明再一方面,是在一个或所有管道Kmj中至少输入一个另外的反应物质和/或一种或所有原料的另外的量,以便通过预混合而控制过程参量。由此可有目的地控制在单独的微反应器中反应的发生过程。例如,通过提供另一反应物质或一种或所有的原料的另外的量可移动在微反应器中之一反应的化学平衡。在CO选择性氧化为CO2中所生成H2/CO2-混合物在平衡条件(水平衡)下对选择性氧化反应进行反作用。只有当向管道供给湿润空气时,水平衡可移向优选方向。为此,一个优选实施方案提出供给气体作为另一反应物质以控制过程参数。
按本发明的二个适宜改变,提供通过过程控制装置控制过程参数以至少在部分反应器TK部分是高表离反应平衡。在微反应器网络的微反应器中的反应可有目的地产生所希望的反应产物。
为使在重整烃或醇的化学反应达到最优化以增加效率可按本发明的有利实施方案而达到,在一个微反应器Rx(1≤x≤n)的反应器室RRx(1≤x≤p)产生互补的反应物,是通过一个或多个管道Kmj从反应器室RRx输送到至少另一个反应器室RRy(l≤y≤p,x≠y)而且在这另一个反应器室RRy中进行反应。除了以这种方式得到反应物的反馈外,尤其是在微反应网络中不同微反应器之间进行热量反馈可用于对化学反应的有利影响。可利用放热反应产生的热能来刺激或控制另一个反应器中的吸热反应以便反应自动进行。
在重整烃或醇中优选的是,至少在另一个反应器室RRy中添加反应物质水蒸气以进行蒸汽重整。微反应器网络可以有目的地使用微反应器中之一以生产另外的反应产物,这种产物以后用于一个或多个另外的微反应器中以在其中实施各自的化学反应。
另一个优化是在重整中产生的化学反应的效率是按本发明另一个优选方法而达到,其中,通过至少一个管道Kmj从一个微反应器Rn的反应产物送回到另一个微反应器Rn。
如果要求提供大体积某种确定的中间产物,可按本发明另一个优选的方法,即在多个微反应器Rn以并联进行中间反应器TK。用这种方法如要求时可增加确定原料。
为了对在微反应器网络的微反应器中进行的中间反应施以有目的的控制,可按本发明的又一个有利方法配置,通过在过程控制装置中装有的温度调节装置以进行控制,且使用该温度调节装置对反应器室RRp进行单独的加热或冷却。以此方法使在反应器室RRp中的中间反应的温度性质可进行单独的考虑。
按本发明的再一个优选的方法,微反应器Rn在一块基板上构成,且通过一个基板温度调节装置而使基板可预热和/或预冷却以加热或冷却微反应器Rn。这就降低了用于调节微反应器网络的多个微反应器的规定起始温度所需费用。这样可以建立一种适于有关应用的反应环境。
从属设备权利要求的优点相当于各方法的权利要求。
本发明将通过实施例并参考附图进一步进行描述,其中

图1表示用于催化净化有CO的氢气流的微反应器网络;图2表示用于重整甲醇的有五个微反应器的微反应器网络;图3表示图2的微反应器网络,它具有一个用于选择性CO氧化的下接反应器链;图4表示图2的微反应器网络,其中在微反应器R2和R4之间的管道是关闭的;图5表示图3的微反应器网络,其中在微反应器R2和R4之间的管道是关闭的;图6表示用于甲烷蒸气重整的另一个微反应器网络;图7从侧面看微反应器装置的概略示图;图8表示图7所示的微反应器装置的基板;图9表示图7所示的微反应器装置的冷却板;它包括热流量φ的概略示图;图10表示图7的微反应装置的加热板,它包括加热器系列。
图1是一个包括有多个微反应器R1...R4的微反应器网络的概略示图。在该微反应器网络中可进行高选择性地、多级的、多相地将氢气中含有的一氧化碳(CO)经催化氧化转换为二氧化碳(CO2),而同时不对氢气进行明显的氧化,微反应器R1至R4各有反应器室RR1...RR4。反应器室RR1-RR4由管道K12、K23和K34相互连接。通过管道K12、K23和K34反应物可在反应器室RR1-RR4之间输送。微反应器R1-R4优选设计成按国际专利PCT/DE01/02509所规定的,成为其中可流过H2/CO混合气的催化的管状反应器。微反应器R1-R4和管道K12、K23和K34在基板1上构成,其中伸展有加热器导线2,使得基板1能保持在规定的基本温度。如在国际专利申请PCT/DE01/02509所公布的那样,化学催化剂放置在每个反应器室RR1-RR4中。
除了通过加热导线2对基板1进行温度调节外,有时也可以单独地加热反应器室RR1-RR4,使得它们的温度高于基板1的基本温度。在反应器室RR1-RR4中每一个温度可通过各自的温度传感器4进行测量。由温度传感器4获得的测量的数据,通过控制设备的处理后用于调节反应器室RR1-RR4的各自加热的温度。
管道K12、K23和K34包括用于供应另外气体的入口5、6。这样在每个反应室RR1-RR4的前面引入气体以影响在内部发生的化学反应。在由CO催化氧化到CO2的情况下,由进气口5,6一方面加入湿空气和另一方面加入H2/CO-混合气。这相当于控制前面的混合。为了在包括微反应器R1-R4的整个微反应网络中建立远离平衡的状态,并保持该状态进行了前面的混合,这大大提高了在有H2存在下由CO变为CO2的催化氧化的选择性。通过由进气口5加入湿润空气并适当选择流速可有助于在从CO氧化到CO2中避免调节平衡条件。
微反应器室RR1-RR4优选是以直径约≤2cm且高约≤5mm的扁平圆筒构成。这些反应器室RR1-RR4由管道K12、K23和K34相互直线连接。管道K12、K23和K34优选为宽约≤3mm和高约≤3mm。由此整个微反应器网络的尺寸仅为几厘米。
借助图1所描述的微反应器网络可以在有大量的氢气存在下以高选择性地催化氧化H2/CO混合气中的CO。经这种方法提纯的氢气适用于作燃料单元用的燃料,因为在留剩气体中的CO含量在100ppm以下。由于微反应器网络的尺寸小对包含单个反应器室RR1-RR4和管道K12、K23、K34的基板1的反应所需要的用以保持微反应器的温度仅以很少的费用。使用以铝制成的基板1使微反应器网络重量很轻。而且微反应器网络的紧凑结构使其在进行CO的催化氧化时仅需很少的能源消费。基板1也可由陶瓷,尤其是泡沫陶瓷构成。这种方案具有优点,由于陶瓷是一种不导电的材料,因此使其易于导入加热器导线2。
对微反应器网络的这种方案,图1所示的装置尤其适用于移动燃料单元的成套装置,如用于汽车。
图2至图6说明的是催化重整醇或高级烃(KW)的微反应器网络。与图1所示其中微反应器R1-R4以直线链方式的相继联接的微反应器网络不同,在图2至图6所示的,在对在微反应器网络中的微反应器R1...R5构成一个微反应器可与多个另外微反应器相互连结的更复杂的结构而且在微反应器之间可以进行反馈。
图2所示为一个用于重整甲醇的微反应器网络。原料甲醇进入微反应器R1并汽化。汽化的甲醇通过管道K12和K14进入微反应器R2和R4中。在微反应器R2中甲醇催化分解。
微反应器R4通过管道K24而与微反应器R2相通,通过管道K14与微反应器R1相通和通过管道K54与微反应器R5相通。在微反应器R4中通过甲醇以预混合进行水-气-转移反应(甲醇-蒸气-重整)。通过管道K14汽化的甲醇到达微反应器R4。在微反应器R2中甲醇催化分解产物和CO以及H2,经管道K24进入微反应器R4。另外,由在微反应器R5的水所含的过热水蒸汽,经管道K54而供入微反应器R4。
在微反应器R3中进行同样的水-气-转移反应,但不是在微反应器R4它没有预混合。最后,微反应器R3通过图1中的管道K23与微反应器R2相通,使得CO和H2能直接进入微反应器R3中。通过管道K53过热的水蒸气通过管道53引入微反应器R3中。微反应器R4和R3的原料是CO、CO2、H2。
按图2在微反应器R1-R5间的管道各自配有调节阀V12,V13,V14,...等,这样通过这些管道的物质输送或可以进行或可以阻断。用箭头标志的调节阀是开的,如阀V12和V53,而其他的调节阀如V25和V15是关闭的。
图3是按图2的微反应器,其管道K24是关闭的。这就意味着,在图3所示的微反应器网络中在微反应器R3以及微反应器R4没有经预混,而可进行甲醇蒸汽重整和水-气-转移反应。
图4和图5所示的微反应器网络是分别包括图2或图3所示的微反应器网络。在图4和图5的微反应器网络中是除了图2和图3的微反应器网络外还包括微反应器R6、R7和R8的下接反应器链,用于在氢气存在下的CO的选择性氧化。这些微反应器R6-R8由类似于图1所示的微反应器网络的直线反应器网络而体现而且它们的加入是为了降低重整过程原料气体混合物中的CO含量。经管道K36和K46产物CO、CO2和H2离开微反应器R3和R4进入微反应器R6。通过管道100在微反应器R6,以及微反应器R7和R8中加入由微反应器R5产生的过热水蒸汽和经过蒸汽湿润的空气。用这种方法,因有选择地氧化CO为CO2而消除H2/CO2气体混合物的影响。
图6所示为一个包含微反应器R1-R7的用于进行蒸汽重整甲烷的微反应器网络。甲烷的蒸汽重整主要是在包括微反应器R1-R5的微反应器网络的部分中进行。微反应器R6和R7是以直线反应器链在下面连结作为用于净化一氧化碳用链。图6所示的微反应器网络运行模式将以甲烷示例在下面说明。但它可适用于蒸汽重整任何所要求的烃(KW)。
将要重整的甲烷输进微反应器R1中并进行预热。然后经管道K13使甲烷进入微反应器R3,在R3中与水蒸汽催化混合,并进行部分重整。水蒸汽经管道K23从微反应器R2输送到微反应器R3。随后经部分重整的甲烷经管道K34输送到微反应器R4中。这里在更高的温度下继续进行重整反应。经管道K24水蒸汽输入微反应器R4中。反应产物CO和H2以气体混合物形式由微反应器R4输入到微反应器R5。在这里如在微反应器R6和R7一样添加湿润空气以催化纯化氢气。
一氧化碳的提纯,即在微反应器R6和R7中选择性氧化CO为CO2是放热反应。在这里产生的热量被回送到微反应器R1至R4中,因为在这些微反应器中的发生的过程(在R3和R4)是吸热过程因而需要输入能量,尤其是在微反应器R1中要预热甲烷并在微反应器R2中的水的气化过程。因此方法虽然不能完全确保化学反应的自供热,但所得的热平衡达到尽可能地最好。
在图2至图6中的微反应器网络的微反应器就其单个尺寸和结构类似于图1所示的微反应器网络中的微反应器。同样按图2至图6所示的在微反应器网络的微反应器间的管道相应于图1所示的管道。而且配置成这样,优选地,图2至6的微反应器是在一个共同的基板上构成,该基板如图1所述,要加热或冷却到基本温度。基板装有各种加热装置以用于单独提高各个微反应器的温度到高于基本温度的温度。不同的加热装置可与控制装置相联,它们控制各个加热器装置相应于通过微反应器中的各温度传感器测量温度。在最简单的情况下,各自的加热装置是配置在有关微反应器附近的基板中的加热器导线。这样可以对有催化剂的微反应器的特定面积进行供热。
图7是一个微反应器装置70的侧视图。两基板71和72形成有微反应器和相互联接的微反应器管道(没有示出)。在基板71和73的上面和下面分别配置各自的冷却板73和74。加热板75和76分别安置在冷却板73的上面和74的下面,以保持在基板71和72中的微反应器在所规定的基板温度中,作为用于基板、加热板和冷却板的材料可以是具有适当热传导性的材料。在微反应器70的情况下优选的材料是金属,特别是分别用于加热器和冷却板75、76和73、74的是黄铜。容纳催化剂材料的基板72,是由铬-镍-钢构成,它方便地涂有化学催化剂;基板71优选是由铜所制,以达到最大的导电能力。
以下参阅图8至10详细描述构建微反应装置70的单元实施。如图8所示基板71是包括有14个反应器室RK1,...,RK14的微反应器网络,在这里进行甲醇的催化重整接着进行CO纯化。基板71有几厘米的长度,优选约为25cm,且宽仅几厘米,优选约为7cm。反应器室RK1到反应器室RK13或RK14的距离约16cm。两相邻的反应器室间的距离,如反应器室RK3和RK4或反应器室PK7和PK8间的距离约4cm。基板72具有与基板71相同的结构。对指出的尺寸是实施例,对微反应器装置70可以更小以进一步小型化。
反应器室RK1...RK14用管道80相互联接。每个反应器室RK1-RK14具有自己的加热系统进行加热,例如通过套筒型加热器,并以热电偶元件方式配有传感器以测量温度,微反应器室RK1-RK14和在它们之间的管道80相当于图1所示的微反应器网络中的微反应器和管道。
在微反应装置70甲醇(CH3OH)和水(H2O)进行气化,紧接着在多级过程中进行催化反应(重整)包括预混甲醇和水而转换(重整)为氢气(H2)和二氧化碳(CO2)混合物。此后,含于气体混合物中的一氧化碳(CO)部分在另一个多级过程进行多相的,催化氧化以形成二氧化碳,而同时没有显著量的氢气进行氧化。
往微反应室RK1中注入液态甲醇,且往反应器室RK2中注入液体水。通过进气口81将空气注入微反应室的系统中并经过进气口81并通过流进气口81的进入的管道流入反应器室PK9至PK14中。液态的甲醇在反应器室RK1中气化并由反应器室RK1流出经管道导入反应器室RK3至RK6。液态水在反应器室RK2中汽化并通过管道从反应器室RK2流入进入反应器室RK3至RK14。
在反应器室RK3和RK4中进行第一级的每个甲醇重整(无预混合)。在反应室RK5和RK6中进行第二级的甲醇重整,这里甲醇和水每一个和由反应器室RK3和RK4得到的反应产物(H2,CO2,CO)预混合。在反应器室RK5和RK6中除了发生甲醇重整外已经开始部分水-气-转移反应。与一级的甲醇重整相比提供了改进的能量平衡,因为在放热的水-气-转移反应所排放的热量可直接用于强烈吸热的重整过程。
由反应器室RK5和RK6得到的产物和加入其中的水蒸汽经各自的管道输送到反应器室RK7和RK8。这里主要进行由CO和H2O的水-气-转移反应成为CO2和H2,尚留有CO残余量。为了使CO-残留量转变为CO2,在反应器室RK7的下面连结反应器室RK9,RK11和RK13的链而反应器室RK8的下面连结有反应器室RK10,RK12和RK14的链。这两个反应室链RK9-RK11-RK13和RK10-RK12-RK14是便于设计的,按国际专利申请PCT/DE 01/02509所述。在每个RK9至RK14的反应器室中除单个CO2/CO/H2-气体混合物外并由反应器室RK1得到水蒸汽和空气混合。这导致在反应器室RK9至RK14中的高选择性的CO-氧化,这就是说在反应室RK9-RK11-RK13和RK10-RK12-RK14部分中几乎完全氧化CO的剩余部分成为CO2而同时抑制H2的氧化。其产品CO2和H2由排气口82(参见图8)离开微反应装置70。
在图8中在基板71右边的反应器室中发生的反应(在反应器室PK9至PK14中进行选择氧化且在反应器室PK7和PK8中进行水-气-转移反应)是放热反应。这也适用于反应器室RK3和RK6中的反应。与此相反,在反应器室RK3和RK4中进行甲醇的重整和在反应室RK5和RK6的部分反应是吸热反应,即需要热量。同样在反应器室RK1和RK2中对甲醇和水的气化也需要供热。为了得到最佳的热平衡,在基板71和72的上面和下面分别配置了冷却板73和74(参见图7),这样的配置适于将热流量φ从放热反应处输往吸热反应和气化过程处。图9说明了冷却板73的实例从顶部看,包括KP1...KP14的冷却板区,它们配置在位于基板72中的微反应器室RK1至RK14的下面。热流φ按箭头90流动。
在一个有利的实施方案中可设计成,在管道80中的气体要以这样的方式相互输送热量以致使由放热反应放出的能通过热交换传送到吸热反应。这样例如可通过基板71或72中的交错配置反应器室RK1-RK14来实现。
实验室模型的结构尺寸使其必须对微反应网络提供外部的基本加热以使微反应器网络保持在预定的基本温度上。图10所示为加热板76的俯视图。加热管道100是围绕加热板范围HP1...HP14而配置,它们位于基板72上构成的微反应器室RK1-RK14下面的加热板76上,这样,微反应器室RK1-RK14由下面加热。加热板75设计成类似于加热板76且置于冷却板73的上面以用于由上面加热在基板71上的反应器室RK1-RK14(参见图7)。
借助于加热板75和76分别对基板71,72另外加以基本热量使每个反应器室RK1-RK14能单独加热,使得各个反应室器的温度能高于相应基板71或72的基本温度。在微反应装置70中为此应用了14个筒式加热器。除了在每个加热筒顶部测量温度外,在反应器R1至R14的反应器室的温度通过另外的温度传感器进行单独测量。这里由单独的温度传感器得到的数据,由一个控制装置(不示出)进行处理,并用于通过反应器室RK1至RK14的单独加热而再调节温度。
在一个具有小尺寸的筒式加热器可用加热器导线代替,它用催化剂材料涂层。这样可节省能量并可以使基板71或72的基本加热降到更低的温度。此外还能达到更好的热交换平衡。
在上面的说明书、权利要求和附图公开的本发明的特征主要是以各种实施方案实施本发明,不仅是单个而且可以是任意组合体。
权利要求
1.一种以多个中间反应TK(K=1,2,...)催化重整烃或醇为氢气的方法,其特征为,中间反应TK是在微反应器网络中单独和/或至少由两个的多个中间反应组成的组合体而实施。该微反应器网络包含微反应器Rn(n=1,2,...)且在微反应器Rn间形成的管道Kmj(m=1,2...;j=2,3...),多个中间反应TK的原料和/或反应产物通过在微反应器的反应器室RRp(p=1,2...)之间的至少部分管道Kmj进行输送,且在微反应器网络中多个中间反应TK的方法过程中是由用于控制过程参数的过程控制装置进行控制。
2.按权利要求1的方法,其特征在于,方法控制装置包括在至少所述部分管道Kmj中有调节阀Vmj(m=1,2,...;j=2,3,...),并且多个中间反应TK的原料和/或反应产物通过至少部分管道Kmj的输送是由操作调节阀Vmj进行控制。
3.按权利要求1或2的方法,其特征在于,在一个或所有管道Kmj中,加入至少一种另外的反应物和/或另外量的一种或所有的原料以通过预混合而进行控制方法参数。
4.按权利要求3的方法,其特征在于,用于控制方法的参数的另一个反应物质是加入的气体。
5.按前述权利要求中之一的方法,其特征在于,方法参数由过程控制装置进行控制以实施至少部分中间反应TK远离反应平衡。
6.按前述权利要求中之一的方法,其特征在于,在微反应器Rx(1≤x≤n)的反应器室RRx(1≤x≤p)中产生的附加反应物,是通过一个或多个管道(Kmj)由反应器室RRx输送到至少另一个反应器室RRy(1≤y≤p,x≠y)并在另一反应器室RRy中进行处理。
7.按权利要求6的方法,其特征在于,附加的反应物质是水蒸汽用于在至少另一反应器室RRy进行蒸汽重整。
8.按前述权利要求中之一的方法,其特征在于,反应产物通过至少一个管道Kmj由一个微反应器Rn返回到另一微反应器Rn。
9.按前述权利要求中之一的方法,其特征在于,中间反应TK之一是在多个微反应器Rn中之一平行进行。
10.按前述权利要求中之一的方法,其特征在于,过程控制装置包括温度控制装置,并通过温度控制装置单独地进行加热或冷却反应器室RRp。
11.按权利要求10的方法,其特征在于,温度控制装置的调节取决于在反应器室RRp中的催化剂层中所测量的温度而实施。
12.按前述权利要求中之一的方法,其特征在于,微反应器Rn在一基板中构成,借助于基板一温度调节装置对基板预加热和/或预冷却以对微反器Rn进行加热和/或冷却。
13.一种以多个中间反应TK(K=1,2,...)催化重整烃或醇转换为氢气的设备,其特征在于,包含微反应器Rn(n=1,2,...)的微反应器网络,每个反应器包含至少一个反应器室RRp(p=1,2,...)并通过在微反应器Rn间构建的管道Kmj(m=1,2...;j=1,2...),以在微反应器(R1...Rn)的反应器室RRp之间传输多个中间反应TK的原料和/或反应产物,并通过过程控制装置控制多个中间反应TK的过程参数。
14.按权利要求13的设备,其特征在于,至少有部分微反应器Rn是以直线链的形式按顺序配置微反应器。
15.按权利要求13或14的设备,其特征在于,至少另一部分微反应器Rn通过管道Kmj而相互连结,这样使得另部分的微反应器Rn的每一个微反应器与反应器Rn的另一部分的每一个其它反应器经管道Kmj而相通。
16.按权利要求13至15中之一的设备,其特征在于,在至少部分反应器室RRp中各配置催化剂。
17.按权利要求13至16中之一的设备,其特征在于,在至少部分管道Kmj中各配有气体入口用于进料气体。
18.按权利要求13至17中之一的设备,其特征在于,在管道Kmj中安置有用于调节流量的各自的调节装置。
19.按权利要求13至18中之一的设备,其特征在于,微反应器网络是在一块基板中构成的。
20.按权利要求19的设备,其特征在于,该基板包含有一个用于加热/冷却微反应器网络的温度控制装置。
21.按权利要求13至20中之一的设备,其特征在于,通过有微反应器R1...Rx(x<p)的反应器板以重整烃或醇并通过有微反应器Rx+1...Rp的下面连接的反应器板以选择性CO-氧化反应。
22.按权利要求13至21中之一的装置,其特征在于,微反应器网络的外形尺寸是有几个厘米。
全文摘要
本发明涉及用于以多个中间反应催化重整烃或醇的装置和方法。多个中间反应在微反应器网络中以单独或至少两个中间反应组合进行,该微反应器网络包含微反应器和在在所述微反应器之间的管道,多个中间反应的原料和/或反应产物是通过至少在微反应器中的反应器室之间的部分管道进行输送。在微反应器网络中的多个中间反应的反应进程是由用于控制反应参数的过程控制器进行控制。
文档编号C01B3/34GK1524012SQ02810751
公开日2004年8月25日 申请日期2002年4月2日 优先权日2001年4月12日
发明者彼得·J·普拉思, 厄恩斯特-克里斯托弗·哈斯, 马格努斯·比勒特, 彼得 J 普拉思, 斯 比勒特, 特-克里斯托弗 哈斯 申请人:米尔·化学有限责任公司, 米尔 化学有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1