高纯管状共轭微孔聚合物碳化高纯碳纳米管的制备方法与流程

文档序号:13383246阅读:439来源:国知局
高纯管状共轭微孔聚合物碳化高纯碳纳米管的制备方法与流程
本发明涉及高纯度共轭微孔聚合物纳米管的制备方法。

背景技术:
自1991年Lijima课题组第一次报导碳纳米管以来,碳纳米管作为一种新型的碳材料已经应用于诸如:储气、复合材料、医药、电子、发电、能量存储、催化剂,燃料电池等领域。传统的碳纳米管制备方法其主要有电弧法、激光蒸发法、化学气相沉积法。相比之下,以石墨电弧法和激光蒸发法制备的碳纳米管其晶化程度都较高,但产量较低。化学气相沉积法能实现碳纳米管的工业化批量生产但是通过此方法制备的碳纳米管存在许多结构上的缺陷,并且伴有杂质生成。以聚合物纳米管为前躯体经高温碳化可以制备高纯度的碳纳米管可以弥补以上通过其他方法制备的碳纳米管的缺点,其特点是制备过程简单、合成的碳纳米管纯度较高、合成的碳纳米管的性质和结构可由制备条件来调控。目前,专利CN103415465A以多个芳香族环连接而成的环状化合物为模板,以碳或者含碳化合物为碳源制备了碳纳米管。专利CN103910352A以乙炔为碳源,二茂铁为催化剂,在1200℃下恒温一段时间,然后冷却至室温得到碳纳米管。但是由上述两种方法制备碳纳米管的制备条件苛刻,制备步骤繁琐。相比于专利CN103415465A和专利CN103910352A,以聚合物纳米管为前躯体经一步碳化法制备碳纳米管其方法简单并且合成的碳纳米管结构可由聚合物纳米管的结构和碳化温度来进行调控。非专利文献1-Adv.Funct.Mater.2009,19,2125–2129.中公开了一种无模板法经一步碳化聚苯撑纳米管合成碳纳米管的方法。但是其合成的聚合物纳米管中间有黏连,中空的管里有被堵塞的迹象。非专利文献2-MicroporousMesoporousMater.2014,196,335–340.和文献3-J.Mater.Chem.A,2015,3,87–91中公开了一种无模板法经一步Sonogashira–Hagihara偶联得到共轭微孔聚合物纳米管,但非专利文献2中,其制备的共轭微孔聚合物纳米管管间有黏连且管的粗细分布较不均匀,非专利文献3中,其制备的共轭微孔聚合物纳米管由纳米管束或者管壁表面有缺陷。与此二者相比由实施实例1制备的共轭微孔聚合物纳米管纯度较高。芳香化合物能够通过一步C-C偶联反应制备共轭微孔聚合物纳米管,其具有碳含量高、化学稳定性好、热稳定性高和机械强度大的特点。是理想的制备碳纳米管的前驱体,表现在:(1)制备方法简单,合成共轭微孔聚合物的单体具有多样性,合成的纳米管的结构可调,是制备碳纳米管良好的前驱体;(2)本身碳含量高,不含氧元素、仅含少量氢元素,能够在较高温度下碳化,碳化过程中物质损失少,得到高纯的碳纳米管;(3)共轭微孔聚合物纳米管在碳化过程中其形状可以很好地保持,并且由此制备得到的碳纳米管的性质可由前驱体的性质和碳化温度控制,可见,选取不同的共轭微孔聚合物纳米管前驱体,经过碳化能够制备具有不同性质的碳纳米管。

技术实现要素:
本发明的目的是提供一种高纯管状共轭微孔聚合物碳化高纯碳纳米管的制备方法。本发明是高纯管状共轭微孔聚合物碳化高纯碳纳米管的制备方法,以1,3,5-三乙炔基苯和2-氨基-3,5-二溴吡啶为单体,以甲苯和三乙胺为溶剂Pd(0)和CuI为催化剂,调节单体中乙炔基和溴的比例为5:1,使其在80℃下聚合72h制备出高纯的有机聚合物纳米管,然后以有机聚合物纳米管为前躯体将其在碳化温度下碳化得到高纯的碳纳米管。上述制备碳纳米管的技术方案中,所涉及的共轭微孔聚合物纳米管前驱体可以由卤代芳香化合物单体和乙炔基芳香化合物单体按一定比例经一步Sonogashira-Hagihara反应合成,合成过程简单,产率高,所合成的共轭微孔聚合物纳米管的性质可调,并且随着碳化温度和共轭微孔聚合物纳米管前驱体的变化碳化后得到的碳纳米管性质可调。附图说明图1为实施实例1所制备的高纯共轭微孔聚合物纳米管的SEM图片,图2为实施例1所制备的碳化温度为600℃高纯碳纳米管的SEM图片,图3为实施例1所制备的碳化温度为700℃高纯碳纳米管的SEM图片,图4为实施例1所制备的碳化温度为1000℃下的的高纯碳纳米管的SEM图片。具体实施方式本发明是高纯管状共轭微孔聚合物碳化高纯碳纳米管的制备方法,以1,3,5-三乙炔基苯和2-氨基-3,5-二溴吡啶为单体,以甲苯和三乙胺为溶剂Pd(0)和CuI为催化剂,调节单体中乙炔基和溴的比例为5:1,使其在80℃下聚合72h制备出高纯的有机聚合物纳米管,然后以有机聚合物纳米管为前躯体将其在碳化温度下碳化得到高纯的碳纳米管。根据以上所述的制备方法,其制备步骤为:(1)高纯共轭微孔聚合物纳米管的制备:通过Pd(0)/Cu(I)催化的Sonogashira–Hagihara以1,3,5-三乙炔基苯和2-氨基-3,5-二溴吡啶为单体,以甲苯和三乙胺为溶剂Pd(0)和CuI为催化剂,调节单体中乙炔基和溴的比例为5:1,使其在80℃下聚合72h制备出高纯的共轭微孔聚合物纳米管;(2)碳化高纯共轭微孔聚合物纳米管制备高纯碳纳米管:将高纯共轭微孔聚合物纳米管前驱体在氩气氛围中以5℃/min的升温速率升温至600℃,或者700℃,或者1000℃让其碳化,升温结束后保温3h,待温度降至室温后将碳化的样品经乙醇和蒸馏水洗涤,并在80℃干燥24h得到高纯碳纳米管。根据以上所述的制备方法,碳化温度为600℃,或者700℃,或者1000℃。实施例1:称取750.9mg1,3,5-三乙炔基苯,377.87mg2-氨基-3,5-二溴吡啶,150mg四(三苯基膦)钯和50mg碘化亚铜,加入至含有7.5ml甲苯和7.5ml三乙基胺的烧瓶中,氮气脱气30min,然后升温至80℃搅拌反应72h,得到黄色的聚合物。该聚合物经过滤依次用三氯甲烷、丙酮、水和甲醇洗涤数次,除去未反应的单体和催化剂残留;然后用甲醇作溶剂,将得到的聚合物索氏抽提72h后得到高纯的共轭微孔聚合物纳米管。将制备的高纯的共轭微孔聚合物纳米管以5℃/min升温速率升至不同的温度(600℃、700℃、1000℃)保温3h,使共轭微孔聚合物纳米管碳化。然后冷却到室温,用无水乙醇、水洗涤数次干燥即可到到不同碳化温度下的高纯碳纳米管。其SEM照片如图1所示,可见经过一步法合成的共轭微孔聚合物纳米管纯度较高没有杂质。图2、图3、图4分别为在600℃,700℃,1000℃的温度下将制备得到的高纯共轭微孔聚合物纳米管碳化得到的高纯碳纳米管的SEM图片,从图可以明显的看出,碳化后的共轭微孔聚合物纳米管,其保持了原来共轭微孔聚合物纳米管的管状形貌,碳化后依然是很纯净的管。由一步合成法制备得到的共轭微孔聚合物纳米管,其BET比表面积为369m2g-1、微孔面积为264m2g-1、孔体积为0.206cm3g-1,其孔径分布较窄集中于2nm左右。以高纯共轭微孔聚合物纳米管为前躯体,在不同温度下将其碳化得到高纯碳纳米管,随着碳化温度的升高其BET比表面积、孔体积、孔径分布都在发生变化。其比表面积由碳化前的369m2g-1分别变为了479m2g-1、461m2g-1、349m2g-1,微孔面积变为435m2g-1、422m2g-1、318m2g-1,孔体积变为0.232cm3g-1、0.230cm3g-1、0.166cm3g-1。由此可以看出,以高纯聚合物纳米管为前躯体在不同温度下将其碳化可以得到结构不同的高纯碳纳米管。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1