一种制备低羟基石英套管的装置及方法_2

文档序号:9516997阅读:来源:国知局
由内石英管和外石英管长度决定,内石英管、外石英管和环形腔体内石英管组合得到光纤预制棒用低羟基石英套管。
[0024]其进一步特征在于:所述二氧化硅微粉以四氯化硅、有机硅烷等为原料,通过气相合成法制得,要求原料纯度不低于99.9%。所述二氧化硅微粉粒径不大于30微米。
[0025]采用本发明后,事先制备好的二氧化硅微粉直接玻璃化得到透明的石英玻璃套管,省去了制造二氧化硅粉尘堆积体的步骤,大幅降低了制造光纤预制棒用石英套管的技术难度、且较容易实现对微粉的100%收集,降低了材料成本和废处理成本,本发明的结构上脱水炉、玻璃化炉分别垂直向布置,进而对二氧化硅粉尘进行脱水和玻璃化的过程同步进行,工艺流程更简单;且采用两根高纯薄壁石英管,即内石英管、外石英管嵌套组装成磨具,生产结束后内石英管、外石英管成为产品的一部分,作为石英套管的内外表面,其形状规则,不需要或只需少量加工即可,显著简化了光纤预制棒用石英套管制造工艺;采用本装置后石英微粉在充分分散状态下被脱水,然后立即被玻璃化,很容易制成羟基和金属杂质含量低的石英套管;本装置中的石英套管向一个方向生长,只要使用的两根薄壁的内石英管、外石英管足够长,较容易制造超长石英套管,适应工业化需求。
【附图说明】
[0026]图1为光纤预制棒截面不意图;
[0027]图2为光纤预制棒用石英套管的现有技术的制造流程示意图;
[0028]图3为本发明的装置结构示意简图;
[0029]图4为本发明的二氧化硅微粉形成石英玻璃过程结构示意图;
[0030]图5为本发明的A处局部放大结构示意图;
[0031]图6为图5的俯视图结构示意图;
[0032]图7为本发明的进料控制阀结构示意图;
[0033]图中各序号所对应的标注名称如下:
[0034]内石英管1、外石英管2、下尾管3、上尾管4、槽口 5、进气管6、排气管7、玻璃化炉8、脱水炉9、进料控制阀10、料斗11、二氧化硅微粉12、料斗排气管13、电动阀14、真空栗15、石英隔板16、出料口 17、环形腔体18、盖板19、定位架结构20、定位环21、连接杆22。
【具体实施方式】
[0035]—种制备低羟基石英套管的装置,见图3?图7:其包括料斗11、玻璃化炉8、脱水炉9、内石英管1、外石英管2,料斗11内装有二氧化硅微粉12,料斗11为封闭容器,料斗11设置有进料口 (图中未画出,一般位于料斗11的上部位置),料斗11的底部设置有出料口17,内石英管1位于外石英管2的内腔,内石英管1的中心轴线盒外石英管2的中心轴线互相重合,内石英管1的外壁和外石英管2的内壁间形成环形腔体18,内石英管1、外石英管2的底端面封装有石英隔板16,外石英管2的上端连接有上尾管4,上尾管4的下端环面、夕卜石英管2的上端环面间无缝焊接,内石英管1的上端环面盖装有盖板19,上尾管4的上端部开口连通料斗11的出料口 17,上尾管4的外环面布置有脱水炉9,上尾管4的下部外环面侧向开有进气管6,进气管6位于脱水炉9的下方,上尾管4的上部外环面侧向开有排气管7,料斗11的出料口 17和上尾管4的上端部开口间设置有进料控制阀10,排气管7、料斗11的上部分别通过管路连通至真空栗15,真空栗15具体为有耐酸腐蚀功能的真空栗15,外石英管2的外环面布置有玻璃化炉8,玻璃化炉8可沿着外石英管2的中心轴线平行向移动。
[0036]料斗11通过料斗排气管13连接至真空栗15,料斗排气管13上布置有阀门,阀门优选为电动阀14 ;
[0037]进料控制阀10和料斗11的出料口 17、上尾管4的上端部开口两者之间密封连接,确保进料控制阀10关闭时,上尾管4、料斗11在该处的真空状态下漏率不大于10帕/小时;
[0038]内石英管1和外石英管2的上端设置有中心轴定位连接结构,中心轴定位连接结构具体为定位架结构20,定位架结构20的中心设置有盖板19,盖板19的外环部下凸形成定位环21,内石英管1的顶部嵌装于定位环21所形成的空腔内,定位架结构20的均布连接杆22焊接连接外石英管2的对应位置的内壁;
[0039]定位架结构20和外石英管2优选地通过模具一体成型制作而成、为一个整体结构;
[0040]内石英管1的顶部侧壁开有槽口 5,该槽口 5用于抽真空,盖板19的直径大于内石英管1的直径,盖板19确保二氧化硅微粉12不会由槽口 5进入到内石英管1的内腔,且槽口 5以下的内石英管1的长度确保制造形成的石英套管的长度达到光纤预制棒的制作要求;
[0041]石英隔板16支承于下尾管3,下尾管3的高度确保玻璃化炉8对于环形腔体内的物料的正常玻璃化;
[0042]内石英管1、外石英管2均为高纯石英件,内石英管1、外石英管2的羟基含量不高于lOppm,且厚度为3mm?8mm ;内石英管1的内径20mm?60mm,外石英管2外径不超过360mm ;
[0043]二氧化硅微粉12以四氯化硅、有机硅烷等为原料,通过气相合成法制得,要求原料纯度不低于99.9%。二氧化硅微粉12粒径不大于30微米。
[0044]一种制造低羟基石英套管的方法,采用上述装置的结构,其具体步骤如下:
[0045]a通过入料口向料斗11中通入二氧化硅微粉12 ;
[0046]b开启真空栗15,此时阀门开启,分别将料斗11、石英组件所形成的腔体进行抽真空处理,要求压力不高于10Pa,压力到位后,继续抽真空2小时?5小时,生产过程中真空栗15始终开启;
[0047]c将玻璃化炉8降至中心与下尾管3的上端等高处,脱水炉9位于进气管6上方,位置保持不变。以不大于25°C /min的速度对玻璃化炉8和脱水炉9进行升温,脱水炉9温度升至1130°C?1250°C,玻璃化炉8温度升至1420°C?1500°C ;
[0048]d关闭阀门,然后由进气管6通入氦气、氯气混合气,氦气流量0.5slm?5slm,氯气流量0.05slm?0.5slm,同时调节真空栗1515,保持真空系统压力不高于lOOOOPa ;
[0049]e玻璃化炉8以5mm?20mm的速度提升至直至玻璃化炉8的中心位于外石英管2的最高位置,对内石英管1外壁、外石英管2内壁进行脱羟处理,然后以100mm/min?200mm/min的速度返回;
[0050]f开启进料控制阀10,二氧化硅微粉12自然下落,经过脱水炉9时,在高温和氯气环境下被脱羟,落至底部时在高温石英玻璃表面逐渐形成透明石英玻璃;脱羟的程度由氯气浓度和二氧化硅微粉12下落速度决定,而氯气浓度由管内气体压力和氯气占比决定,下落速度由管内气体压力决定,气体压力越大,二氧化硅微粉12下落时受到的阻力越大,下落速度越小;通过调整进料控制阀10转速来控制下落二氧化硅微粉12的量,二氧化硅微粉12下落量不超过500g/min,进料控制阀10结构见图7 ;
[0051]g随着步骤f过程的进行,玻璃化炉8以3mm/min?8mm/min的速度向上移动至玻璃化炉8的中心位于外石英管2的最高位置(即图3中的虚线位置),移动总长由内石英管1和外石英管2长度决定,内石英管1、外石英管2和环形腔体内石英管1组合得到光纤预制棒用低羟基石英套管。
[0052]采用该方法制作石英套管和现有的合成法的优势对比如下:
[0053]1合成法制造光纤预制棒用石英套管工艺中,制造二氧化硅粉尘堆积体
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1