利用非荧光标记检测配体对结合的方法和组合物的制作方法

文档序号:3554310阅读:152来源:国知局
专利名称:利用非荧光标记检测配体对结合的方法和组合物的制作方法
技术领域
本发明总的来说涉及分析核酸分子的方法和组合物,更具体地说,涉及特定的标记和接头的用途,该标记和接头用来提高各种以生物学为基础的测定的灵敏度。
背景技术
核酸分子的检测和分析是生物学中的最重要技术之一。它们处于分子生物学的核心位置,并在其它生物学中扮演着快速扩展的角色。
一般地,在本质上所有生化反应之后,对分析而言某些形式的检测步骤是必需的。其中特别重要的是核酸杂交和抗体-抗原结合的检测。理想地,检测应该是灵敏的并能进行多样品的处理。然而,当前的检测技术在这两个特征上有某些程度的限制。
当杂交探针包含放射性标记时,一般由放射自显影术或者磷光图象分析检测核酸分子的杂交,当杂交探针包含如生物素或者地高辛的标记(通过酶偶联的抗体或者配体识别)时,则由光密度计检测。当利用放射性标记的探针时,利用放射自显影术的检测受到胶片的限制,如照相材料的光化当量差和非线性。通过利用磷光图象分析检测标记可以克服这些胶片的局限性。然而,放射性标记有安全需要、要求增加资源利用以及必须有专门的设备和人员训练。为此,非放射性标记的利用渐渐受到大众的欢迎。在这样的系统中,核苷酸包含如生物素或者地高辛的标记,该标记可以由抗体或者其它分子(由具有显色底物的酶反应标记)检测。可以也可以不利用荧光标记。这些系统不需要如上所述的安全上的考虑,但是利用了经常不稳定的并且能产生非特异性反应的组分,因而导致了高的背景(即低的信噪比)。
抗体-抗原结合反应可以由几个过程之一检测。至于核酸杂交,标记(无论是放射性的或者非放射性的)则典型地缀合到抗体上。标记类型是类似的标记都与显色底物、荧光、半抗原(由配体或者另一个抗体检测)等进行酶促反应。如同核酸杂交的检测一样,类似的局限性是这些检测方法所固有的。
本发明提供了新的组合物,该组合物可以用于各种以核酸为基础的或者以蛋白质(例如抗体)为基础的方法,同时还提供了其它相关优点。
发明概要简言之,本发明提供了能用来在各种基础分析中提高灵敏度和样品处理量的组合物和方法。尤其是,基于这里所描述的发明,许多迄今曾花费长时间完成的分析现在能够以快十至一百多倍的速度完成。因此相对于以前可供使用的分析方法,这里所描述的方法阐述了一种戏剧性和重要的改进。
例如,在本发明方法的一个方面中,本发明提供了检测配体对的第一成员与第二成员的结合的方法,包含步骤(a)在足以使第一成员结合到第二成员的条件和时间下,把一系列第一标记的成员与可能包含一个或多个第二成员的生物样品组合在一起,其中所说的标记与特定的第一成员相关且可由非荧光光谱测定法或者电位滴定法检测;(b)将未结合的成员与结合的第一和第二成员分离;(c)从所标记的第一成员切割标记;以及(d)由非荧光光谱测定法或者电位滴定法检测标记,并从此检测第一成员和第二成员的结合。
各种第一和第二成员对可以用于本发明的方法中,包括例如核酸分子(例如DNA、RNA、如PNA的核酸类似物戊糖核酸、或者这些物质的任一混合物)、蛋白质或者多肽(例如抗体或者抗体片段(如单克隆抗体、多克隆抗体或者如CDR的结合合作者))、低聚糖、激素、有机分子和其它底物(例如诸如葡糖醛酸酶-药物分子之类的生物异源物质)或者任一其它配体。在本发明的各种实施方案中,第一和第二成员可以是同类型或者不同类型的分子。例如,代表性第一成员第二成员配体对包括核酸分子/核酸分子、抗体/核酸分子、抗体/激素、抗体/生物异源物质以及抗体/蛋白质。
优选地,第一成员将识别特定的选择的第二成员(即排除其它相关分子)或者一类相关的第二成员分子(例如一类相关的受体)。优选地,第一成员将结合至少具有大约10-5/M(优选为10-6/M、10-7/M、10-8/M、10-9/M或者大于10-12/M)亲和性的第二成员。第一个分子对第二个分子的亲和性能够易于由本领域的一般方法测定(参见Scatchard,Ann.N.Y.Acad.Sci.51660-672,1949)。
在本发明的其它相关方面中,本发明提供了分析选择的生物样品的基因表达模式的方法,该方法包括步骤(a)从生物样品中暴露核酸,(b)在足以使所说的探针杂交到上述核酸上的条件和时间下,把所说的暴露的核酸与一个或多个选择的标记的核酸(其中所说的标记与特定的核酸探针相关且可由非荧光光谱测定法或者电位滴定法检测)的探针组合在一起,(c)把杂交的探针与未杂交的探针分离,(d)从加标记的片段切割标记,以及(e)由非荧光光谱测定法或者电位滴定法检测标记并由此测定生物样品的基因表达模式。在一个实施方案中,生物样品可以在暴露核酸的步骤之前用选择的分子刺激。“刺激物”的代表性例子包括核酸分子、重组基因送递载体、有机分子、激素、蛋白质、炎性因子、细胞因子、药物、药物候选者、旁分泌以及自分泌因子等等。
在本发明的上下文中,“生物样品”应该理解为不仅包括得自活有机体(例如哺乳动物、鱼、细菌、寄生虫、病毒、真菌等等)或者环境(例如空气、水或者固体样品)的样品,而且包括可以人工或者合成产生的生物材料(例如噬菌体文库、有机分子文库、基因组克隆文库等)。生物样品的代表性例子包括生物体液(例如血液、精液、脑部脊髓液、尿)、生物细胞(例如干细胞、B或者T细胞、肝细胞、成纤维细胞等等)以及生物组织。
在上述方法的各种实施方案中,本发明的核酸探针和/或分子可以由例如连接、切割或者延伸(例如PCR)产生。在其它相关方面,核酸探针或者分子可以标记在5’-末端,并且所标记的分子的功能如同寡核苷酸引物或者双脱氧核苷酸终止子一样。
在本发明的其它实施方案中,4、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、200、250、300、350、400、450或者500个以上的不同和唯一的标记的分子可以同时用于所给定的反应中,其中每一个标记对选择的核酸片段、探针、或者第一或者第二成员是唯一的,并且可以单独地鉴别。
在本发明的进一步的实施方案中,标记可以由荧光测定法、质谱法、红外光谱法、紫外分光法或者恒电势电流分析法(例如利用库仑滴定或者安培滴定检测器)检测。合适的光谱技术的代表性例子包括飞行时间质谱法、四极质谱法、磁扫描质谱法和电扫描质谱法。这样技术的具体实施方案包括离子陷阱质谱法、电喷射离子化质谱法、离子喷射质谱法、液态离子化质谱法,气压离子化质谱法、电子离子化质谱法、快原子轰击质谱法、MALDI质谱法、光离子化飞行时间质谱法、激光滴质谱法、MALDI-TOF质谱法、APCI质谱法、毫微喷射质谱法、雾状喷射质谱法、化学离子化质谱法、共振离子化质谱法、二级离子化质谱法和热喷射质谱法。
在本发明的其它进一步的实施方案中,结合的第一和第二成员或者暴露的核酸可以用诸如凝胶电泳、毛细管电泳、微通道电泳、HPLC、排阻色谱法、过滤、聚丙烯酰胺凝胶电泳、液相色谱、颠倒排阻色谱法、离子交换色谱、反相液相色谱、脉冲电场电泳、倒转电场电泳、透析和荧光活化的液滴分类法之类的方法与非结合成员或者分子分离。另外,第一或第二成员或者暴露的核酸可以结合到固相支持体(例如空心的人造纤维(Amicon公司,Danvers,Mass.)、珠粒(Polysciences,Warrington,Pa.)、磁珠(Robbin Scientific,Mountain View,Calif.)、平板、皿以及烧瓶(Corning Glass Works,Corning,N.Y.)、筛目(Becton Dickinson,Mountain View,Calif.)、筛网以及固体纤维(参见Edelman等,美国专利号3,843,324;也参见Kuroda etijal.,美国专利号4,416,777)、膜(MilliporeCorp.,Bedford,Mass.)以及测杆)上。如果第一或第二成员或者暴露的核酸结合到固相支持体上,那么在本发明的某些实施方案中,这里所揭示的方法还可以包含洗涤未结合材料的固相支持体的步骤。
在其它实施方案中,可以用如化学、氧化、还原、酸不稳定、碱不稳定、酶促、电化学、热以及光不稳定方法的方法切割所标记的第一成员。在其他实施方案中,分离、切割和检测步骤可以以连续方式(例如,象连续流一样)进行,例如在可以自动操作的单一装置上进行。
当参考下列详细描述与附图时,本发明的这些和其它方面将变得明显。此外,这里列出了各种参考文献,这些参考文献更详细地描述了某些方法或者组合物(例如质粒等等),并因此以其整体本文一并参考。
附图简要描述

图1描述可化学切割的质谱标记(释放具有羧酸末端的标记)的五氟苯酯的合成的流程图。
图2描述以化学方法切割的质谱标记(释放具有羧酸末端的标记)的五氟苯酯的合成的流程图。
图3-6和8描述一系列36种可光化学切割的质谱标记的四氟苯酯的合成的流程图。
图7描述一系列36种胺末端化可光化学切割的质谱标记的合成的流程图。
图9描述36种可光化学切割的质谱标记的寡核苷酸(从相应的一系列36种可光化学切割的质谱标记酸的四氟苯酯制备)的合成。
图10描述36种可光化学切割的质谱标记的寡核苷酸(从相应的一系列36种胺末端化的可光化学切割的质谱标记制备)的合成。
图11说明由质谱法同时进行的多个标记的检测。
图12显示单独的α-氰基基质的质谱。
图13描述以模构建的标记的核酸片段。
发明详细描述如上所述,本发明提供了可以用来在各种基于生物学的分析中提高灵敏度和处理的样品的量的标记和接头。下面更详细地描述了可以利用的代表性标记和接头、其中标记可以是有用的各种方法以及用于检测标记的方法。
简言之,在一个方面本发明提供了化合物,其中兴趣分子或者其前体经由一个不稳定键(或者多个不稳定键)与标记连接。因此,可以认为本发明的化合物具有通式T-L-X其中T是标记组分,L是或者包含一个不稳定键的接头组分,X是兴趣分子(MOI)组分或者是官能团组分(Lh)(MOI可以通过其连接到T-L上)。因此,本发明的化合物可以由更具体的通式描绘T-L-MOI和T-L-Lh由于下面详尽描述的理由,可以有目的地使T-L-MOI化合物系列处于一定的条件下,该条件致使不稳定键断裂,由此从化合物的剩余部分释放出标记部分。然后标记部分由一种或多种分析技术鉴定,由此提供了关于标记部分的结构的直接信息以及(更重要地)关于相应的MOI的特性的间接信息。
作为本发明的代表性化合物的一个简单的说明性例子(其中L是直接键),本发明给出下列结构作为参考(i)结构(i) 标记组分 兴趣分子组分在结构(i)中,T是结合到羰基上的、包含氮的多环芳香族部分,X是MOI(具体地说是终止在胺基团上的核酸片段),L是形成酰胺基团的键。酰胺键相对于T中的键是不稳定的,因为正如本领域所认识到的,酰胺键可以由酸性或者碱性条件以化学方法切割(断裂),这些条件在标记组分不变的情况下切割键。因此,标记部分(即包含T的裂解产物)可以释放为如下所示结构
结构(i) 标记部分 化合物的剩余部分然而,如下列说明性例子所示,接头可以不仅仅是一个直接键,这儿给出本发明的另一个代表性化合物作为参考,该化合物具有如下所示的结构(ii)结构(ii) 众所周知,具有正硝基苄胺部分(参见结构(ii)中的加框原子)的化合物是光解不稳定的,因为这样的化合物暴露于特定波长的光化辐射中将造成苄胺键的选择性切割(参见结构(ii)中以粗线指示的键)。因此,结构(ii)具有与结构(i)相同的T和MOI基团,然而接头基团包含多个原子和键(其中有一个特别不稳定的键)。因此结构(ii)的光解从化合物的剩余部分释放出标记部分(包含T的部分),如下所示结构(ii) 标记部分 化合物的剩余部分因此本发明提供了这样的化合物,当其暴露于适当的切割条件下时,其经历裂解反应以致从化合物的剩余部分释放出标记部分。可以根据标记部分、MOI(或其前体,Lh)以及不稳定键(其将上述两基团结合在一起)描述本发明的化合物。另外,可以根据形成它们的组分描述本发明的化合物。因此,如下所述,化合物可以描述为标记反应物、接头反应物以及MOI反应物的反应产物。
标记反应物由化学柄(Th)和一个可变组分(Tvc)组成,所以认为标记反应物具有一般结构Tvc-Th为了说明其名称,指定其为结构(iii),该结构显示了可以用来制备结构(ii)的化合物的标记反应物。具有结构(iii)的标记反应物包含标记可变组分和标记柄,如下所示结构(iii) 标记可变组分 标记柄在结构(iii)中,标记柄(-C(=O)-A)只是提供用于形成T-L部分的标记反应物与接头反应物反应的途径。结构(iii)中的基团“A”表明羧基处于化学活性状态,因此它易于与其它柄偶联。“A”可以是,例如羟基或者五氟苯氧基,以及许多其它可能的基团。如下所详尽讨论的,本发明提供了大量的可以结合标记可变组分的可能的标记柄。因此,标记可变组分是T-L-X式中的“T”的一部分,并且也将是标记部分(从切割L的反应中形成)的一部分。
也如下所详尽讨论的,标记可变组分之所以如此命名,是因为在按照本发明制备化合物系列的过程中,要求一系列成员具有唯一的可变组分,以便可以用一种分析技术将个体成员与另一个成员区别开来。作为一个例子,结构(iii)的标记可变组分可以是下列系列的成员之一(其中系列成员可以由他们的UV或者质谱区别开来)
同样地,接头反应物可以按照它的化学柄(至少必须具有两个化学柄,其每个可以指定为Lh)描述,该化学柄侧面连结接头不稳定组分,其中接头不稳定组分由所需的不稳定部分(L2)和可有可无的不稳定部分(L1和L3)组成,其中可有可无的不稳定部分有效地用来分离L2与柄Lh,并且所需的不稳定部分用来在接头不稳定组分中提供不稳定键。因此,可以认为接头反应物具有通式Lh-L1-L2-L3-Lh用于描述接头反应物的名称可以以结构(iv)的观点来说明,其又是得自结构(ii)的化合物结构(iv) 正如结构(iv)所说明的,原子可以不仅起一种功能作用。因此,在结构(iv)中,苄基氮在经由酰胺形成反应使接头反应物结合至标记反应物的过程中起作为化学柄的作用,并且其后也用作不稳定部分L2的结构的必要部分,因为苄型碳-氮键对光解切割特别敏感。结构(iv)也说明接头反应物虽然不具有L1基团,但是可以具有L3基团(在这种情况下是一个亚甲基)。同样地,接头反应物可以具有L1基团但不具有L3基团,或者可以同时具有L1和L3基团,或者可以既不具有L1基团也不具有L3基团。在结构(iv)中,紧跟于羰基之后的“P”基团的存在表明羰基被保护而不参与反应。如果给定这一构型,标记反应物(iii)的活化的羧基可以干净地与接头反应物(iv)的胺基进行反应而形成酰胺键并产生T-L-Lh式的化合物。
MOI反应物是一种合适反应形式的兴趣分子。其中兴趣分子是一个核酸片段,合适的MOI反应物是一个通过其5’羟基与磷酸二酯基团结合然后与终止于氨基的亚烷基链结合的核酸片段。然后这种氨基可以与结构(iv)的羰基进行反应(当然在羰基脱保护之后,优选的是在其后激活羰基朝着与胺基反应的方向之后)而由此使MOI结合到接头上。
当以时序观察时,发现本发明采用标记反应物(具有化学标记柄和标记可变组分)、接头反应物(具有两个化学接头柄,一个必需的不稳定部分以及0-2种可有可无的不稳定部分)和MOI反应物(具有一种兴趣分子的组分以及一个兴趣分子的化学柄)以形成T-L-MOI。因此,为了形成T-L-MOI,任一标记反应物和接头反应物都首先一起反应以提供T-L-Lh,然后MOI反应物与T-L-Lh进行反应而提供T-L-MOI;或者另外(不太优选)接头反应物与MOI反应物首先一起反应以提供Lh-L-MOI,然后Lh-L-MOI与标记反应物进行反应以提供T-L-MOI。为了方便的目的,将按照标记反应物、接头反应物以及可以用来形成这样的化合物的MOI反应物来描述具有T-L-MOI式的化合物。当然,相同的T-L-MOI式的化合物可以由其它(典型地是更为艰辛的)方法制备,并且仍然落在本发明的T-L-MOI化合物的范围之内。
在任何情况下,本发明提供了使T-L-MOT化合物处于切割条件下,结果是标记部分可从化合物的剩余部分释放出来。标记部分将至少包含标记可变组分,并且将典型地另外包含来源于标记柄的一些或者所有原子、来源于接头柄的一些或者所有原子(其用于使标记反应物与接头反应物结合)、可有可无的不稳定部分L1(如果这一基团出现在T-L-MOI中),并且或许将包含所需的不稳定部分L2(其取决于L2的精确结构和切割化学的性质)的一部分。为方便起见,标记部分可以称作包含T的部分,因为T将典型地构成标记部分的主要部分(按照质量)。
如果将这引入本发明的一个方面,各组分T、L和X将得到详尽的描述。这一描述从下列的特定术语的定义开始,下文将用该术语描述T、L和X。
如本文所使用的,术语“核酸片段″意指一个分子,该分子互补于一个选择的靶核酸分子(即互补于其所有或者部分),并且可以得自天然的或者合成或者重组产生的产物(包括非天然存在的分子),并且可以是适合存在的双链或者单链形式;该分子同时包括寡核苷酸(例如DNA或者RNA)、引物、探针、核酸类似物(例如PNA)、由聚合酶在5’至3’方向上伸展的寡核苷酸、以化学方法或者以酶促方法切割的核酸、用双脱氧终止子终止的或者用化合物(其阻止在5’或3’末端聚合)在3’或5’末端加帽的核酸以及其混合物。核酸片段对一个选择的靶核酸分子的互补性一般意指在整个片段的长度中显示至少大约70%特定的碱基配对。优选地,核酸片段显示出至少大约80%特定的碱基配对;更最优选地至少大约90%。用于测定错配百分率的分析方法是本领域所熟知的,并且当参考充分配对的碱基对照时该分析方法基于作为Tm的函数的错配百分率。
如本文所使用的,术语“烷基”(单独地或者结合形式的)指的是饱和的、包含1至10(优选为1至6,更优选为1至4)个碳原子的直链或者支链烃基。这样的基团的例子包括(但并不限于)甲基、乙基、N-丙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、己基、癸基等等。术语“亚烷基”指的是饱和的、包含1至10(优选为1至6,更优选为1至4)个碳原子的直链或者支链烃双基。这样的双基的例子包括(但并不限于)亚甲基、1,2-亚乙基(-CH2-CH2-)、1,2-亚丙基等等。
术语“烯基”(单独地或者结合形式的)指的是总计为2至10(优选为2至6,更优选为2至4)个碳原子的、至少具有一个碳-碳双键的直链或者支链烃基。这样的基团的例子包括(但并不限于)乙烯基、E-和Z-丙烯基、异丙烯基、E-和Z-丁烯基、E-和Z-异丁烯基、E-和Z-戊烯基、癸烯酰基等等。术语“亚烯基(alkenylene)”指的是总计为2至10(优选为2至6,更优选为2至4)个碳原子的、至少具有一个碳-碳双键的直链或者支链烃双基。这样的双基的例子包括(但并不限于)亚甲基(=CH2)、亚乙基(-CH=CH-)、亚丙基(-CH2-CH=CH-)等等。
术语“炔基”(单独地或者结合形式的)指的是总计为2至10(优选为2至6,更优选为2至4)个碳原子的、具有至少一个碳-碳三键的直链或者支链烃基。这样的基团的例子包括(但并不限于)乙炔基(acetylenyl)、2-丙炔基(炔丙基)、丁炔基、己炔基、癸炔基等等。术语“亚炔基(alkynylene)”(单独地或者结合形式的)指的是总计为2至10(优选为2至6,更优选为2至4)个碳原子的、具有至少一个碳-碳三键的直链或者支链烃双基。这样的基团的例子包括(但并不限于)亚乙炔基(-C≡C-)、亚炔丙基(-CH2-C≡C-)等等。
术语“环烷基”(单独地或者结合形式的)指的是饱和的、碳原子(碳原子数目为3至8,优选为3至6)环排列的基团。这样的环烷基的例子包括(但并不限于)环丙基、环丁基、环戊基、环己基等等。术语“亚环烷基(cycloalkylene)”指环烷基的双基形式。
”环烯基”(单独地或者结合形式的)指的是包含4至8(优选为5或6)个碳原子和一个或多个双键的环状碳环。这样的环烯基的例子包括(但并不限于)环戊烯基、环己烯基、环戊二烯基等等。术语“亚环烯基(cycloalkenylene)”指环烯基的双基形式。
术语“芳基”指的是选自由苯基、萘基、茚基、2,3-二氢化茚基、azulenyl、芴基以及蒽基组成的组的碳环(全部由碳和氢组成)芳基;或者指的是选自由呋喃基、噻吩基、吡啶基、吡咯基、噁唑基、噻唑基、咪唑基、吡唑基、2-吡唑啉基、吡唑烷基、异噁唑基、异噻唑基、1,2,3-噁二唑基、1,2,3-三唑基、1,3,4-噻二唑基、哒嗪基、嘧啶基、吡嗪基、1,3,5-三嗪基、1,3,5-三硫茚基、中氮茚基、吲哚基、异氮茚基、3H-吲哚基、二氢吲哚基、苯并呋喃基、2,3-二氢苯并呋喃基、苯并噻吩基、1H-吲唑基、苯并咪唑基、苯并噻唑基、嘌呤基、4H-喹嗪基、喹啉基、异喹啉基、肉啉基、2,3-二氮杂萘基、喹唑啉基、喹喔啉基、1,8-二氮杂萘基、蝶啶基、咔唑基、吖啶基、吩嗪基、吩噻嗪基以及吩噁吡基组成的组的杂环芳基。
如本申请所定义的,“芳基”基团可以分别包含一至四个取代基,该取代基分别选自由氢、卤素、羟基、氨基、硝基、三氟甲基、三氟甲氧基、烷基、烯基、炔基、氰基、羧基、碳烷氧基、1,2-二氧亚乙基、烷氧基、烯氧基或者炔氧基、烷氨基、烯氨基、炔基胺、脂肪族或者芳香族酰基、烷氧基-碳酰氨基、烷基磺酰氨基、吗啉碳酰氨基吗啉代碳的氨基、硫代吗啉碳酰氨基、N-烷基胍基、芳烷氨基磺酰基、芳烷氧基烷基、N-芳烷氧基脲、N-羟基脲、N-烯基脲、N,N-(烷基,羟基)脲、杂环、硫代芳氧基取代的芳基、N,N-(芳基,烷基)烷基肼基、Ar’取代的磺酰杂环、芳烷基取代的杂环、环烷基和环烯基取代的杂环、环烷基稠合的芳基、芳氧基取代的烷基、杂环氨基、脂肪族或者芳香族酰氨基碳酰、脂肪族或者芳香族酰基取代的烯基、Ar’取代的氨基碳酰氧基、Ar’,Ar’双取代的芳基、脂肪族或者芳香族酰基取代的酰基、环烷基碳酰烷基、环烷基取代的氨基、芳氧基碳酰烷基、二氨基磷酸或者酯组成的组;”Ar′”是如上所定义的具有一至三个取代基的碳环或者杂环芳基,该取代基选自由氢、卤素、羟基、氨基、硝基、三氟甲基、三氟甲氧基、烷基、烯基、炔基、1,2-二氧亚甲基、1,2-二氧亚乙基、烷氧基、烯氧基、炔氧基、烷氨基、烯氨基或者炔氨基、烷基碳酰氧基、脂肪族或者芳香族酰基、烷基碳酰氨基、烷氧基碳酰氨基、烷基磺酰氨基、N-烷基或者N,N-二烃基脲组成的组。
术语“烷氧基”(单独地或者结合形式的)指的是烷基醚基团,其中术语“烷基”如上所定义。合适的烷基醚基团的例子包括(但并不限于)甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基等等。
术语“烯氧基”(单独地或者结合形式的)指的是烯基-O-式的基团,其中只要基团不是烯醇醚,术语“烯基”就如上所定义。合适的烯氧基的例子包括(但并不限于)烯丙氧基、E-和Z-3-甲基-2-丙烯氧基等等。
术语“炔氧基”(单独地或者结合形式的)指的是炔基-O-式的基团,其中只要基团不是炔醇醚(ynol ether),术语“炔基”就如上所定义。合适的炔氧基的例子包括(但并不限于)炔丙氧基、2-丁炔氧基等等。
术语“硫代烷氧基”指的是烷基-S-式的硫醚基团,其中烷基是如上所定义的。
术语“烷氨基”(单独地或者结合形式的)指的是单或双烷基取代的氨基基团(即烷基-NH-或者(烷基)2-N-式的基团),其中术语“烷基”如上所定义。合适的烷氨基的例子包括(但并不限于)甲氨基、乙氨基、丙氨基、异丙氨基、叔丁氨基、N,N-二乙氨基等等。
术语“烯氨基”(单独地或者结合形式的)指的是烯基-NH-或者(烯基)2N-式的基团,其中只要基团不是烯胺,术语“烯基”就如上所定义。这样的烯氨基的例子是丙烯氨基。
术语“炔氨基”(单独地或者结合形式的))指的是炔基-NH-或者(炔基)2N-式的基团,其中只要基团不是炔胺,术语“炔基”是如上所定义的。这样的炔氨基的例子是丙炔氨基。
术语“酰胺”指的是-N(R1)-C(=O)-或者-C(=O)-N(R1)-,其中这里定义R1包括氢以及其它基团。术语“取代的酰胺”指的是其中R1不是氢的情形,而术语“非取代的酰胺”指的是R1是氢的情形。
术语“芳氧基”(单独地或者结合形式的)指的是芳基-O-式的基团,其中芳基如上所定义。芳氧基的例子包括(但并不限于)苯氧基、萘氧基、吡啶氧基等等。
术语“芳氨基”(单独地或者结合形式的)指的是芳基-NH-式的基团,其中芳基如上所定义。芳氨基的例子包括(但并不限于)苯氨基(N-酰苯胺)、萘氨基、2-,3-和4-吡啶氨基等等。
术语“芳基稠合的环烷基”(单独地或者结合形式的)指的是环烷基基团,该基团与芳基共享两个邻近的原子,其中术语“环烷基”和″芳基”如上所定义。芳基稠合的环烷基的例子是苯稠合的环丁基。
术语“烷基碳酰氨基”(单独地或者结合形式的)指的是烷基-CONH式的基团,其中术语“烷基”如上所定义。
术语“烷氧基碳酰氨基”(单独地或者结合形式的)指的是烷基-OCONH-式的基团,其中术语“烷基”如上所定义。
术语“烷基磺酰氨基”(单独地或者结合形式的)指的是烷基-SO2NH-式的基团,其中术语“烷基”如上所定义。
术语“芳基磺酰氨基”(单独地或者结合形式的)指的是芳基-SO2NH-式的基团,其中术语“芳基”如上所定义。
术语“N-烷基脲”(单独地或者结合形式的)指的是烷基-NH-CO-NH-式的基团,其中术语“烷基”如上所定义。
术语“N-芳基脲”(单独地或者结合形式的)指的是芳基-NH-CO-NH-式的基团,其中术语“芳基”如上所定义。
术语“卤素″意指氟、氯、溴和碘。
术语“烃基团”指的是碳和氢原子的排列,其仅仅需要一个氢原子以便成为一个独立的稳定分子。因此,烃基在碳原子上具有一个打开的价位,上述烃基团可以通过该价位结合到其它原子上。烷基、烯基、环烷基等等都是烃基团的例子。
术语“烃双基”指的是碳和氢原子的排列,其需要两个氢原子以便形成一个独立的稳定分子。因此,一个烃基团在一或者两碳原子上具有两个打开价位,通过该价位烃基团可以结合到其它原子上。亚烷基、亚烯基、亚炔基、亚环烷基等等都是烃双基的例子。
术语“烃基”指的是由碳和氢组成的、具有单一价位的任一稳定排列,烃基通过该单一价位与另一部分结合,并因此包括如烷基、烯基、炔基、环烷基、环烯基、芳基(没有杂原子并入芳环中)、芳烷基、烷芳基等等所熟知的基团。烃基团是烃基的另一个名称。
术语“亚烃基(hydrocarbylene)”指的是由碳和氢组成的、具有两个价位的任一稳定排列,亚烃基通过该价位与其它部分结合,并因此包括亚烷基、亚烯基、亚炔基、亚环烷基、亚环烯基、亚芳基(没有杂原子并入亚芳基环中)、亚芳烷基、亚烷芳基等等。烃双基是亚烃基的另一个名称。
术语“烃基-O-亚烃基”指的是结合到一个氧原子上的烃基,其中氧原子同样在两个价位之一的位点处(在该位点亚烃基结合到其它部分上)结合到一个亚烃基上。术语“烃基-S-亚烃基”、“烃基-NH-亚烃基”和“烃基-酰胺-亚烃基”具有等同的意义,其中氧分别为硫、-NH-或者酰胺基团所取代。
术语“N-(烃基)亚烃基”指的是其中两个价位之一结合到氮原子(该氮原子同时结合到氢和烃基上)上的亚烃基。术语“N,N-二(烃基)亚烃基”指的是其中两个价位之一结合到氮原子(该氮原子同时结合到两个烃基上)上的亚烃基。
术语“烃基酰基-亚烃基”指的是通过酰基(-C(=O)-)结合到亚烃基的两个价位之一上的烃基。
术语“杂环烃基”和“杂环基(heterocylyl)”指的是稳定的、环状的原子排列,该原子包括碳原子以及可多达四个原子的杂原子(其选自氧、氮、磷和硫)。环排列可以是3-7个原子的单环形式、或者8-11个原子的双环形式。环可以是饱和的或者不饱和的(包括芳香环),并且可以是可以不是苯稠合的。环中的氮和硫原子可以是任一氧化形式的,包括季铵化形式的氮。杂环烃基可以连接到任一桥环碳原子或者杂原子上,其结果是建立了稳定的结构。优选的杂环烃基包括5-7个成员的单环杂环(包含一个或者两个氮杂原子)。
取代的杂环烃基指的是如上所定义的、其中至少一个其环原子结合到一所指出的取代基(该取代基伸展出环)上的杂环烃基。
关于烃基和亚烃基基团,术语“任一前述的、其中一个或多个氢为相等数量的氟原子所取代的衍生物”指的是包含碳、氢和氟原子但不含有其它原子的分子。
术语“活化的酯″是包含“离去基团”的酯,该基团易于为如胺和醇或者巯基亲核体之类的亲核体所取代。这样的离去基团是众所周知的,并且包括(但并不限于)N-羟基琥珀酰亚胺、N-苯并三唑、卤素(卤化物)、包括四氟苯酚盐的烷氧基,硫代烷氧基等等。术语“保护的酯”指的是其被掩蔽或者不以其它方式进行反应的酯基团。参见,例如Greene的“在有机溶液中的保护基”。
鉴于上述定义,遍及于本申请的其它化学术语能够由本领域技术人员容易地理解。术语可以单独使用或者在其任一结合中使用。基团的优选的和更优选的链长运用于所有的这样结合中。
A.加标记的核酸片段的产生如上所述,本发明的一个方面提供了DNA测序的一般方案,该方案允许在每一条泳道上利用超过16个的标记;通过连续检测,可以检测到标记,并且出现大小分离的序列,正如用常规的基于荧光的测序一样。这一方案适用于基于标记分子的大小分离的任一DNA测序技术。用于在本发明中的合适的标记和接头以及用于测序核酸的方法都将在下面给以更详细的讨论。
1.标记如本文所使用的,“标记”一般指的是化学部分(其用于独一无二地鉴定“兴趣分子”),更具体地说指的是标记可变组分以及在任一标记反应物、标记组分和标记部分中可以最紧密地结合到其上的任何基团。
用于本发明的标记具有以下几个属性1)它能够与所有其它标记区别开来。与其它化学部分区别开来的鉴别能够基于标记的色谱行为(具体是在切割反应之后)、分光或电位性质或者其综合性质。标记可有益地区别开来的分光方法包括质谱法(MS)、红外(IR)、紫外(UV)以及荧光,其中MS、IR和UV是优选的,并且MS是更优选的分光方法。电位电流分析是一种优选的电位滴定法。
2)当存在10-22至10-6摩尔的量时,能够检测到标记。
3)标记具有一个化学柄,通过该化学柄标记连接到MOI(标记是用来独一无二地鉴定它的)上。可以直接或者通过“接头”基团间接地连接到MOI上。
4)标记对所有对其进行的操作来说是化学上稳定的,该操作包括连接和从MOI上切割以及当标记连接到其上时MOI的任一操作。
5)当标记连接到MOI上时,标记不严重地干扰对MOI所进行的操作。例如,如果标记连接到寡核苷酸上,标记不应该严重干扰在寡核苷酸上进行的任一杂交或者酶促反应(例如PCR测序反应)。同样地,如果标记连接到抗体上,它不应该严重干扰抗体的抗原识别。
标记部分(其旨在由一定的分光或者电位滴定方法检测)应该具有这些可提高上述方法的检测灵敏度和专一性的性质。典型地,标记部分将具有这些性质,因为它们已设计成标记可变组分(其将典型地构成标记部分的主要组分)。在下列讨论中,“标记”一词的使用典型地指的是标记部分(即包含标记可变组分的切割产物),然而也能够认为其指的是标记可变组分自身,因为其是标记部分的一部分(该部分典型地负责提供独一无二的可检测的性质)。在T-L-X式的化合物中,“T”部分将包含标记可变组分。当标记可变组分设计成可由如质谱法鉴定时,T-L-X的“T”部分可以称作为Tms。同样地,得自T-L-X的、包含T的切割产物可以称作为包含Tms的部分。下列分光和电位滴定方法可以用来鉴定包含Tms的部分。
a.MS标记的特征当标记可由质谱法分析时(即当标记是MS易读标记(在这里也称作MS标记或者“包含Tms的部分”)时),标记的基本特征是能够离子化。因此在其中合并一个化学官能团(其在MS中的离子化条件之下能够携带正或负电荷),这在易读标记的设计中是优选的因素。这一特征使离子形成的效率提高和赋予更大的总体检测灵敏度,特别是在电喷射离子化中。携带离子化电荷的化学官能团可以得自Tms或L或者两者。在例如Sunner,J.等,分析化学,601300-1307(1988)中讨论了能够增加分析物(由质谱法检测)的相对灵敏度的因素。
便利于携带负电荷的优选官能团是有机酸,例如酚式羟基、羧酸、膦酸酯、磷酸酯、四唑、磺酰基脲、全氟醇和磺酸。
在离子化条件之下便利于携带正电荷的优选官能团是脂肪族或者芳香族胺类。胺官能团(其使得MS标记的检测限提高)的例子包括季铵类(即具有四个键的、每一个都结合到碳原子上的胺类,参见Aebersold,美国专利5,240,859)和叔胺类(即具有三个键的、每一个键都结合碳原子的胺类,该胺类包括如存在于吡啶中的C=N-C基团,参见Hess等,分析生物化学,224373,1995Bures等,分析生物化学,224364,1995)。特别优选的是有立体障碍的叔胺类。叔胺类和季胺类可以是烷基或者芳基。包含Tms的部分必须携带至少一个可离子化的物种,但是可以具有超过一个的可离子化的物种。优选的电荷状态是每个标记携带单一的离子化的产物。因此,优选的是每一个包含Tms的部分(和每一个标记可变组分)仅仅包含单一的有立体障碍的胺或者有机酸基团。
合适的包含胺的基团(可以形成包含Tms的部分的一部分)包括下列基团 和 利用质谱法的标记的鉴定优选基于它的分子量与电荷比率(m/z)。MS标记的优选的分子量范围为大约100至2,000道尔顿,优选的包含Tms的部分具有至少大约250道尔顿的质量,更优选的至少大约300道尔顿,更加优选的大约350道尔顿。由质谱仪区别含有小于大约200-250道尔顿(取决于精确的仪器)的质量的母离子的部分通常是困难的,因此优选的本发明的包含Tms的部分具有大于该范围的质量。
如上所说明的,包含Tms的部分可以包含不同于存在于标记可变组分中的那些原子的原子,事实上是不同于存在于Tms本身中的那些原子。因此,Tms本身的质量可以少于大约250道尔顿,只要包含Tms的部分具有至少大约250道尔顿的质量。因此,Tms的质量可以变化于15(即一个甲基基团)至大约10,000道尔顿的范围之内,优选的变化于100至大约5,000道尔顿的范围之内,更优选的变化于大约200至大约1000道尔顿的范围之内。
当那些标记合并到具有多于一种的同位素处于十分丰富状态的那些原子上时,由质谱法区别标记是比较困难的。因此,优选的T基团(其预期用于质量分光鉴定(Tms基团))包含至少一个碳、氢和氟原子以及可有可无的原子(选自原子氧、氮、硫、磷和碘)。而其它原子可以存在于Tms中,他们的存在可能有点使质谱数据的分析更困难。优选地,除氢和/或氟原子之外,Tms基团仅仅具有碳、氮和氧原子。
氟原子也是可有可无的存在于Tms基团中的优选原子。与氢相比,当然氟原子重得多。因此,氟原子原子的存在比氢原子更易导致高质量的Tms,由此使得Tms基团达到和超过大于250道尔顿的质量(该质量如上所说明是所需的)。此外,用氟原子置换氢能赋予包含Tms的部分以更大的挥发性,分析物的更大挥发性提高了灵敏度(当质谱法用作为检测方法时)。
Tms的分子式落在C1-500N0-100O0-100S0-10P0-10HαFβIδ的范围之内,其中α、β和δ的总数足以满足C、N、O、S和P原子所没有满足的价。C1-500N0-100O0-100S0-10P0-10HαFβIδ表达式意指Tms至少包含一个且可以包含1至500个任意数目的碳原子,此外还可选择地包含多达100个氮原子(“N0-”意指Tms不包含任一氮原子)和多达100个氧原子以及多达10个硫原子和多达10个磷原子。符号α、β和δ表示在Tms中氢、氟原子以及碘化物原子的数量,其中这些数量的任两个可以是零,并且其中这些数量的总数等于C、N、O、S和P原子所没有满足的价的总数。优选地,Tms具有落在C1-50N0-10O0-10HαFβ的范围之内的分子式,其中α和β的总数分别等于存在于部分中的氢和氟原子原子的数量。
b.IR标记的特征有两种基本形式的有机化学基团的IR检测法拉曼散射IR和吸收IR。拉曼散射IR光谱和吸收IR光谱是互补分光方法。一般来说,拉曼激发取决于键极化度变化而IR吸收取决于键偶极矩变化。弱IR吸收线成为强拉曼线,反之亦然。波数是IR光谱的特征单位。有3个光谱区域用于IR标记,这些标记单独应用在12500至4000cm-1的近IR、在4000至600cm-1的中IR、在600至30cm-1的远IR。对于这里所描述的应用(其中化合物用作为标记以鉴定MOI、探针或者引物)来说,中光谱区域将是优选的。例如,羰基段(1850至1750cm-1)将用于测量羧酸,羧酸酯和酰胺,以及烷基和芳基碳酸盐、氨基甲酸酯和酮。N-H弯曲(1750至160cm-1)将用来鉴定胺类、铵离子以及酰胺类。在1400至1250cm-1,R-OH弯曲以及在酰胺中的C-N段得到检测。在900至690cm-1检测芳族取代模式(ArNH的C-H弯曲、N-H弯曲)。饱和的C-H、烯烃、芳香环、双键和三键、酯类、乙缩醛、酮缩醇、铵盐、N-O化合物(如肟、硝基、N-氧化物以及硝酸盐)、偶氮、腙类、醌类、羧酸、酰胺以及内酰胺,这所有都具有振动红外相关数据(参见Pretsch等,有机化合物结构测定的光谱数据,Springer-Verlag,纽约,1989)。优选的化合物将包括芳香族腈,其在2230至2210cm-1显示了十分强大的腈拉伸振动。其它有用的化合物类型是芳香族炔,其具有强大的拉伸振动(该振动在2140和2100cm-1之间引起的一个强烈的吸收谱带)。第三种化合物类型是芳香族叠氮化物,其在2160至2120cm-1之间显示一个强烈的吸收谱带。硫氰酸盐是在2275至2263cm-1之间具有强烈吸收的代表性化合物。
c.UV标记的特征有机生色团类型和他们各自的UV-可见性质的汇编在Scott(天然产物的UV光谱的解读,Permagon出版社,纽约,1962)中给出。生色团是负责具体的光吸收的一个原子或者一组原子或者电子。对于共轭体系中的π至π*最大值而言,存在经验性的法则(参见Pretsch等,有机化合物结构测定的光谱数据,P.B65和B70,Springer-Verlag,纽约,1989)。优选的化合物(伴随共轭体系)将具有n至π和π至π*过渡。这样的化合物的例子有酸性紫7、吖啶橙、吖啶黄G、亮蓝G、刚果红、结晶紫、孔雀绿草酸盐、酸性间胺黄、亚甲蓝、甲基橙、甲基紫B、萘酚绿B、油蓝N、油红O、4-苯偶氮基酚、Safranie O(碱性藏红O)、溶剂绿3以及苏丹橙G,所有这些都是有市售的(Aldrich,Milwaukee,WI)。其它合适的化合物列出在例如Jane,I.等,J.Chrom. 323191-225(1985)中。
d.荧光标记的特征荧光探针由他们的吸收和荧光发射的波长和强度来最直接地鉴定和量化。发射光谱(荧光和磷光)更为灵敏,并且相比于吸收光谱而言允许进行更具体的测量。其它的光物理特征(如激发态寿命和荧光各向异性)是较少广泛地利用的。最一般利用的强度参数是吸收的摩尔消光系数(ε)以及荧光的量子产额(QY)。ε值具体到单一波长(通常指探针的最大吸收值),而QY是覆盖整个荧光光谱轮廓的总光子发射量的测量值。一种狭窄的光学带宽(<20nm)通常用于荧光激发(经由吸收),而荧光检测带宽则是更为可变的,变化范围为从最大灵敏度的全光谱至最大分辨率的狭窄带(~20nm)。每探针分子的荧光强度是与ε和QY的测定结果成比例的。在具有当前的实际重要性的荧光团中的这些参数的范围是ε为大约10,000至100,000cm-1M-1,QY为0.1至1.0。能够用作荧光标记的化合物如下荧光素、罗丹明、λ蓝470、λ绿、λ红664、λ红665、吖啶橙以及碘化丙锭,这些都是由λ荧光公司(Pleasant Gap,PA)市售的。荧光化合物(如尼罗红、德克萨斯红、lissamineTM、BODIPYTMs)是由MolecularProbes(Eugene,OR)提供的。
e.电位滴定标记的特征电化检测(ECD)的原则是基于化合物的氧化或者还原(在一定的应用电压下,将供给或者接受电子因而产生可以测量到的电流)。当使一定的化合物处于电势差下时,在工作电极表面,分子随着电子的失去(氧化)或者获得(还原)经历了分子重排,一般认为这样的化合物是电子的并且经历了电化学反应。EC检测器施加电压于电极表面(HPLC洗脱液流动于其上)。从柱上洗脱的电活化化合物或者给出电子(氧化)或者获取电子(还原)从而及时产生一个电流峰。重要地,所产生的电流量取决于分析物的浓度和所施加的电压(每一化合物具有具体的电压,在该电压下该化合物开始氧化和还原)两个方面。当前最普及的电化学检测器是电流检测器(其中电势保持常量,然后测量由电化学反应产生的电流)。当前将这种类型光谱测定法称为“恒电位电流分析法”。市售电流计由ESA Inc.,Chelmford,MA提供。
当检测的效率是100%时,专门的检测器名为“库仑检测器”。库仑检测器是灵敏的,该灵敏性具有关于选择性和灵敏度方面(使这些类型的检测器有用于成批检测中)的许多实用性优点。在库仑检测器中,对于一种给定浓度的分析物,信号电流设定为施加于工作电极的电势(电压)的函数。所产生的S形曲线图称为电流-电压曲线或者流体动力电量图(hydrodynamic voltammagram)(HDV)。HDV使施加于工作电极(使检测器最大化所观察的信号)的电势得到最好的选择。ECD的主要优点在于它的在亚飞姆托摩尔(subfemtomole)范围内对检测的电流水平的固有灵敏度。
许多化学药品和化合物在电化学方面是活跃的,包括许多生物化学药品、药物和杀虫剂。能够有效地分辨以色谱方法共洗脱的化合物,即使半波电势(在半信号最大值的电势)由仅仅30-60mV区别。
当在基于液相色谱的分离中用作为检测器时,前不久发展的遗传库仑传感器提供了共洗脱化合物的选择性、鉴定特征以及分辨率。因此,这些组合的检测器加入另一系列的在检测器自身中完成的分离。当前的仪器具有16个通道,其在理论上仅仅受速率(数据能够以该速率获取)限制。在EC系统上能够分辨的化合物的数量受到色谱方面的限制(即平板计数限制)。然而,如果以色谱共洗脱的两个或者多个化合物在30-60mV的半波电势中有差别,则系统能够区别该化合物。化合物处于电化学活性状态的能力取决于是否具有EC活性基团(即-OH-、-O、-N、-S)。
利用库仑检测器已成功地检测出的化合物包括5-羟基色胺、3-甲氧基-4-羟苯基-乙二醇、尿黑酸、多巴胺、间甲肾上腺素、3-羟基犬尿氨酸、acetominophen、3-羟基色醇、5-羟基吲哚乙酸、辛基磺酸、酚、O-甲酚、焦榈酚、2-硝化苯酚、4-硝化苯酚、2,4-二硝化苯酚、4,6-二硝基甲酚、3-甲基-2-硝化苯酚、2,4-二氯酚、2,6-二氯酚、2,4,5-三氯酚、4-氯-3-甲酚、5-甲酚,4-甲基-2-硝化苯酚、2-羟基苯胺、4-羟基苯胺、1,2-苯二胺、苯并儿茶素、丁脲酮(buturon)、chlortholuron、二脲酮(diuron)、isoproturon、利农伦、methobromuron、metoxuron、单利农伦、monuron、甲硫氨酸、色氨酸、酪氨酸、4-氨氨基苯甲酸、4-羟基苯甲酸、4-羟基香豆酸、7-甲氧基香豆素、芹菜苷配基黄芩黄素、咖啡酸、儿茶素、棕鳞矢车菊苷、绿原酸、黄豆苷原、橡精、地奥亭、表儿茶素焙酸盐、表焙儿茶素、表焙儿茶素焙酸盐、丁子香酚、半齿泽兰素、阿魏酸、非瑟酸、高良姜精、镓酸、栀子素、染料木黄酮、龙胆酸、橙皮苷、野鸢尾黄素、莰非醇、leucoyanidin、木犀草素、楝子素、桑色素、杨梅黄酮、柚苷、narirutin、花葵素、甲基花青素、根皮素、红车轴草素、原儿茶酸、鼠李亭、五羟黄酮、樱花亭、黄芩配基、莨菪亭、丁香醛、丁香酸、柑桔黄酮、三羟乙基芦丁、伞形酮、香草酸、1,3-二甲基四氢异喹啉、6-羟基多巴胺、r-沙索林酚(r-salsolinol)、N-甲基-r-沙索林酚、四氢异喹啉、阿米替林、阿朴吗啡、辣椒碱、利眠宁、氯丙嗪、道诺红菌素、去郁敏、多塞平、fluoxetine、氟西泮、丙咪榛、异丙基肾上腺素、甲氧明、吗啡、吗啡-3-葡萄糖醛酸化物、去甲替林、奥沙西泮、苯福林、三甲丙咪嗪、抗坏血酸、N-乙酰血清素、3,4-二羟基苄胺、3,4-二羟基苦杏仁酸(DOMA)、3,4-二羟基苯乙酸(DOPAC)、3,4-二羟基苯基丙氨酸(L-DOPA)、3,4-二羟基苯乙二醇(DHPG)、3-羟基邻氨基苯甲酸、2-羟基苯乙酸(2HPAC)、4-羟基苯甲酸(4HBAC)、5-羟基吲哚3-乙酸(SHIAA)、3-羟基犬尿氨酸、3-羟基苦杏仁酸,3-羟基-4-甲氧基苯乙胺、4-羟基苯乙酸(4HPAC)、4-羟苯基乳酸(4HPLA)、5-羟基脲(5HTP)、5-羟基色醇(5HTOL)、5-羟色胺(5HT)、5-羟色胺硫酸盐、3-甲氧基-4-羟基苯乙二醇(MHPG)、5-甲氧基色胺、5-甲氧基色氨酸、5-甲氧基色醇、3-甲氧基酪胺(3MT)、3-甲氧基酪氨酸(3-OM-DOPA)、5-甲基半胱氨酸、3-甲基鸟嘌呤、蟾毒色胺、多巴胺、多巴胺-3-葡萄糖醛酸化物、多巴胺-3-硫酸盐、多巴胺-4-硫酸盐、肾上腺素、麻黄宁、叶酸、谷胱甘肽(还原的)、鸟嘌呤、鸟苷、尿黑酸(HGA)、高香草酸(HVA)、高香草醇(HVOL)、高藜芦酸、hva硫酸盐、次黄嘌呤、吲哚、吲哚-3-乙酸、吲哚-3-乳酸、犬尿氨酸、褪黑素、间甲肾上腺素、N-甲基色胺、N-甲基酪胺、N,N-二甲基色胺、N,N-二甲基酪胺、去甲肾上腺素、去甲变肾上腺素、真蛸胺、吡哆醛、磷酸吡哆醛、吡哆胺、脱氧肾上腺素、色醇、色胺、酪胺、尿酸、香草扁桃酸(vma)、黄嘌呤和黄苷。其它合适的化合物发表在例如Jane,I.等,色谱学杂志323191-225(1985)和Musch,G.等,色谱学杂志34897-110(1985)中。这些化合物可以用本领域所熟知的方法结合到T-L-X式的化合物中。例如,具有羧酸基团的化合物可以与胺、羟基等进行反应从而形成酰胺、酯和其它的T与L之间的键。
除上述性质之外,不论打算使用何种检测方法,标记具有模块的化学结构是优选的。这有助于利用组合化学的技术构建大量的在结构上相关的标记。例如,Tms基团需要具有几个性质。当对包含Tms的部分进行质谱法分析时,它需要包含携带单一的离子化电荷状态的官能团(还简称为“质谱灵敏度增强子”基团或者MSSE)。此外,它需要能够作为包含Tms的部分的家族中的一个成员,该家族成员的每一个都具有不同的质量/电荷比,但在质谱仪中都具有近似相同的灵敏度。因此,家族成员需要具有相同的MSSE。为了使上述的化合物家族得以建立,发现经由模块合成方案产生标记反应物是便利的,所以可以认为组分本身包含模块。
在优选的产生Tms基团的结构的方法中,Tms具有式T2-(J-T3-)n-其中T2是由碳和一个或多个氢、氟、碘、氧、氮、硫以及磷形成的有机部分(具有15至500道尔顿的质量范围);T3是由碳和一个或多个氢、氟、碘、氧、氮、硫以及磷形成的有机部分(具有50至1000道尔顿的质量范围);J是一个直接键或者官能团(如酰胺、酯、胺、硫化物、醚、硫酯、二硫化物、硫醚、脲、硫脲、氨基甲酸酯、硫代氨基甲酸盐、席夫碱、还原的席夫碱、亚胺、肟、腙、磷酸酯、膦酸酯、磷酰胺、膦酰胺(phosphonamide)、磺酸酯、氨磺酰或者碳-碳键;n是1至50之间的整数,所以当n大于1时每个T3和J是分别选择的。
模块结构T2-(J-T3-)n-提供了一种方便地得到T-L-X化合物的家族的方法,其中家族的每一个成员都具有不同的T基团。例如,当T是Tms且每一家族成员需要具有相同的MSSE时,T3基团之一可以提供该MSSE结构。为了提供按照Tms质量的家族成员之间的变异性,T2基团可以在家族成员之间变化。例如,一个家族成员可以有T2=甲基,而另一个有T2=乙基,另一个有T2=丙基,等等。
为了在质量方面提供的“重的”或者大的跳跃基团,可以通过加入有效的(例如一或者几百)质量单位于T-L-X中来设计T3基团。这样的T3基团可以称作分子量范围调节基团(“WRA”)。如果其与单一系列的T2基团一起起作用(其中将有质量伸展超出限定的范围),WRA是十分有用。仅仅通过把一个或多个WRA T3基团结合到Tms中,就可以用单一系列的T2基团来产生具有宽广的质量范围的Tms基团。因此,利用一个简单的例子,如果一系列T2基团为Tms提供了250-340道尔顿的质量范围,那么单一WRA(具有如T3基团一样的100道尔顿的范例数)的加入提供了产生350-440道尔顿质量范围的方法(当利用相同系列T2基团时)。同样地,两个100道尔顿的MWA基团的加入(每个作为一个T3基团)提供了产生450-540道尔顿的质量范围的方法,其中WRA基团的逐渐加入不断地提供了产生大质量范围Tms基团的方法。优选的T2-(J-T3-)n-L-X式的化合物具有RVWC-(RVWA)w-RMSSE-L-X式,其中VWC是“T2”基团,并且每一个WRA和MSSE基团都是“T3”基团。在图12中说明了这一结构,该结构表示Tms制剂的模块近似值。
在T2-(J-T3-)n-式中,T2和T3优选地选自烃基、烃基-O-亚烃基、烃基-S-亚烃基、烃基-NH-亚烃基、烃基-酰胺-亚烃基、N-(烃基)亚烃基、N,N-二(烃基)亚烃基、烃基酰基-亚烃基、杂环烃基(其中杂原子选自氧、氮、硫和磷)、取代的杂环烃基(其中杂原子选自氧、氮、硫和磷,取代基选自烃基、烃基-O-亚烃基、烃基-NH-亚烃基、烃基-S-亚烃基、N-(烃基)亚烃基、N,N-二(烃基)亚烃基和烃基酰基-亚烃基)。此外,T2和/或T3可以是上列之任一的潜在的T2/T3基团的衍生物(结果是其中的一个或多个氢为氟原子所取代)。
此外关于T2-(J-T3-)n-式,优选T3具有-G(R2)-式,其中G是具有单一R2取代基的C1-6亚烷基链。因此,如果G是1,2-亚乙基(-CH2-CH2-),那么1,2-亚乙基的两个碳之任一个可以具有R2取代基,并且R2选自烷基、烯基、炔基、环烷基、芳基稠合的环烷基、环烯基、芳基、芳烷基、芳基取代的烯基或者炔基、环烷基取代的烷基、环烯基取代的环烷基、联芳基、烷氧基、烯氧基、炔氧基、芳烷氧基、芳基取代的烯氧基或者炔氧基、烷氨基、烯氨基或者炔氨基、芳基取代的烷氨基、芳基取代的烯氨基或者炔氨基、芳氧基、芳氨基、N-烷基脲取代的烷基、N-芳基脲取代的烷基、烷基碳酰氨基取代的烷基、氨基碳酰取代的烷基、杂环基、杂环基取代的烷基、杂环基取代的氨基、羧基烷基取代的芳烷基、氧代碳环稠合的芳基和杂环烷基;环烯基、芳基取代的烷基和芳烷基、羟基取代的烷基、烷氧基取代的烷基、芳烷氧基取代的烷基、烷氧基取代的烷基、芳烷氧基取代的烷基、氨基取代的烷基、(芳基取代的烷氧碳酰氨基)取代的烷基、巯基取代的烷基、烷基磺酰取代的烷基、(羟基取代的烷基硫代)取代的烷基、硫代烷氧基取代的烷基、烃基酰氨基取代的烷基、杂环酰氨基取代的烷基、烃基取代的杂环酰氨基取代的烷基、烷基磺酰氨基取代的烷基、芳基磺酰氨基取代的烷基、吗啉烷基、硫代吗啉烷基、吗啉羰基取代的烷基、硫代吗啉羰基取代的烷基、[N-(烷基、烯基或者炔基)-或者N,N-[二烷基、二烯基、二炔基或者(烷基、烯基)-氨基]羰基取代的烷基、杂环氨基碳酰、杂环亚烷氨基碳酰、杂环氨基碳酰取代的烷基、杂环亚烷氨基碳酰取代的烷基、N,N-[二烷基]亚烷氨基碳酰、N,N-[二烷基]亚烷氨基碳酰取代的烷基、烷基取代的杂环羰基、烷基取代的杂环羰基-烷基、羧基取代的烷基、二烷氨基取代的酰氨基烷基和氨基酸侧链(选自精氨酸、天冬酰胺、谷氨酰胺、S-甲基半胱氨酸、甲硫氨酸以及其相应的亚砜和砜衍生物、甘氨酸、亮氨酸、异亮氨酸、别异亮氨酸、叔亮氨酸、正亮氨酸、苯丙氨酸、酪氨酸、色氨酸、脯氨酸、丙氨酸、鸟氨酸、组氨酸、谷酰胺、缬氨酸、苏氨酸、丝氨酸、天门冬氨酸、β氰丙氨酸和别苏氨酸);alynyl和杂环羰基、氨基碳酰、酰氨基、单或者二烷氨基碳酰、单或者二芳氨基碳酰、烷芳氨基碳酰、二芳氨基碳酰、单或者二酰氨基碳酰、芳香族或者脂肪族酰基、可以也可以不由选自氨基、羧基、羟基、巯基、单或者二烷氨基、单或者二芳氨基、烷芳氨基、二芳氨基、单或者二酰氨基、烷氧基、烯氧基、芳氧基、硫代烷氧基、硫代烯氧基、硫代炔氧基、硫代芳氧基和杂环的取代基取代的烷基。
式T2-(J-T3-)n-L-X的优选化合物具有结构 其中G是(CH2)1-6(由此在一个而且仅有一个CH2基团(由单一“G”表示)上的氢为-(CH2)c-酰胺-T4取代);T2和T4是式C1-25N0-9O0-9HαFβ的有机部分。(由此α和β的总数足以满足C、N和O原子所没有满足的化学价);酰胺是-N(R1)-CO-或-CO-N(R1)-;R1是氢或者C1-10烷基;c是0至4之间的整数;n是1至50之间的整数(由此当n大于1时,G、c、酰胺、R1和T4分别选择)。
在进一步优选的实施方案中,T2-(J-T3-)n-L-X式的化合物具有结构
其中T5是式C1-25N0-9O0-9HαFβ的有机部分(由此α和β的总数足以满足C、N以及O原子所没有满足的价);T5包括叔或季铵或者有机酸;m是0-49之间的整数,T2、T4、RI、L和X如前所定义。
另一个优选的具有T2-(J-T3-)n-L-X式的化合物具有具体的结构 其中T5是式C1-25N0-9O0-9HαFβ的有机部分(由此α和β的总数足以满足C、N以及O原子所没有满足的价);T5包括叔或者季铵或者有机酸;m是0-49之间的整数,T2、T4、c、R1、“酰胺”、L和X如前所定义。
在具有T5基团的上述结构中,-酰胺-T5优选地是下列结构之一,这些结构可便利地由使有机酸与伸展出“G”的游离氨基进行反应来得到 和 其中上述化合物具有T5基团,并且“G”基团具有游离的羧基(或者其活性等价物),下列是优选的-酰胺-T5基团,该基团可以便利地通过使适当的有机胺与伸展出“G”基团的羧基进行反应来制备 和 在本发明的三个优选实施方案中,T-L-MOI具有结构 或者结构
或者结构 其中T2和T4是式C1-25N0-9O0-9S0-3P0-3HαFβIδ的有机部分(由此α、β和δ的总数足以满足C、N、O、S和P原子所没有满足的价);G是(CH2)1-6(其中一个而且只有一个在由每个G表示的CH2基团上的氢为-(CH2)c-酰胺-T4所取代;酰胺是-N(R1)-CO-或-CO-N(R1)-;R1是氢或者C1-10烷基;c是0至4之间的整数;“C2-C10”表示具有2至10个碳原子的亚烃基基团,“ODN-3’-OH”表示具有3’末端的羟基的核酸片段(即在除核酸片段的3’末端外的其它部位处结合至(C1-C10)的核酸片段;n是1至50之间的整数(此时当n大于1时,G、c、酰胺、R1和T4是分别选择的)。优选地,没有三个杂原子结合到单一碳原子上。
在上述的结构(包含T2-C(=O)-N(R1)-基团)中,T2-C(=O)-N(R1)-基团可以通过使HN(R1)-式的胺与选自下列有机酸的有机酸进行反应来形成(这仅仅是一个范例而并不构成所有潜在的有机酸的详尽列表)甲酸、乙酸、丙炔酸、丙酸、氟乙酸、2-丁炔酸、环丙烷羧酸、丁酸、甲氧基乙酸、二氟乙酸、4-戊炔酸、环丁烷羧酸、3,3-甲基丙烯酸、戊酸、N,N-二甲基甘氨酸、N-甲酰基-甘氨酸-OH、乙氧基乙酸、(甲硫基)乙酸、吡咯-2-羧酸、3-呋喃甲酸、异噁唑-5-羧酸、反-3-己烯酸、三氟乙酸、己酸、Ac-甘氨酸-OH、2-羟基-2-甲基丁酸、苯甲酸、烟酸、2-吡嗪羧酸、1-甲基-2-吡咯羧酸、2-环戊烯-1-乙酸、环戊基乙酸、(S)-(-)-2-吡咯烷酮-5-羧酸、N-甲基-L-脯氨酸、庚酸、Ac-B-丙氨酸-OH、2-乙基-2-羟基丁酸、2-(2-甲氧基乙氧基)乙酸、对甲苯甲酸、6-甲基烟酸、5-甲基-2-吡嗪羧酸、2,5-二甲基吡咯-3-羧酸、4-氟苯甲酸、3,5-二甲基异噁唑-4-羧酸、3-环戊基丙酸、辛酸、N,N-二甲基琥珀酰胺酸、苯丙炔酸、肉桂酸、4-乙基苯甲酸、对甲氧基苯甲酸、1,2,5-三甲基吡咯-3-羧酸、3-氟-4-甲基苯甲酸、Ac-DL-炔丙基甘氨酸、3-(三氟甲基)丁酸、1-哌啶丙酸、N-乙酰脯氨酸、3,5-二氟苯甲酸、Ac-L-缬氨酸-OH、吲哚-2-羧酸、2-苯并呋喃羧酸、苯并三唑-5-羧酸、4-正丙基苯甲酸、3-二甲氨基苯甲酸、4-乙氧基苯甲酸、4-(甲硫基)苯甲酸、N-(2-糠酰)甘氨酸、2-(甲硫基)烟酸、3-氟-4-甲氧基苯甲酸、Tfa-甘氨酸-OH、2-萘甲酸(Napthoic acid)、喹哪啶酸、Ac-L-异亮氨酸-OH、3-甲基茚-2-羧酸、2-喹喔啉羧酸、1-甲基吲哚-2-羧酸、2,3,6-三氟苯甲酸、N-甲酰基-L-蛋氨酸-OH、2-[2-(2-甲氧基乙氧基)乙氧基]乙酸、4-正丁基苯甲酸、N-苯甲酰甘氨酸、5-氟代吲哚-2-羧酸、4-正丙氧基苯甲酸、4-乙酰基-3,5-二甲基-2-吡咯羧酸、3,5-二甲氧基苯甲酸、2,6-二甲氧基烟酸、环己烷戊酸、2-萘乙酸、4-(1H-吡咯-1-基)苯甲酸、吲哚-3-丙酸、间三氟甲基苯甲酸、5-甲氧基吲哚-2-羧酸、4-戊基苯甲酸、Bz-b-丙氨酸-OH、4-二乙氨基苯甲酸、4-正丁氧基苯甲酸、3-甲基-5-CF3-异噁唑-4-羧酸、3,4-二甲氧苯基乙酸、4-联苯羧酸、新戊酰-脯氨酸-OH、辛酰基-甘氨酸-OH、(2-萘氧基)乙酸、吲哚-3-丁酸、4-(三氟甲基)苯乙酸、5-甲氧基吲哚-3-乙酸、4-(三氟甲氧基)苯甲酸。Ac-L-苯丙氨酸-OH、4-戊氧基苯甲酸、Z-甘氨酸-OH、4-羧基-N-(呋喃-2-甲基)吡咯烷-2-酮、3,4-二乙氧基苯甲酸、2,4-二甲基-5-CO2Et-吡咯-3-羧酸、N-(2-氟苯)琥珀酰胺酸、3,4,5-三甲氧基苯甲酸、N-苯氨茴酸、3-苯氧基苯甲酸、壬酰-甘氨酸-OH、2-苯氧基吡啶-3-羧酸、2,5-二甲基-1-苯基吡咯-3-羧酸、反-4-(三氟甲基)肉桂酸、(5-甲基-2-苯基噁唑-4-基)乙酸、4-(2-环己烯氧基)苯甲酸、5-甲氧基-2-甲基吲哚-3-乙酸、反-4-可替宁羧酸、Bz-5-氨基戊酸、4-己氧基苯甲酸、N-(3-甲氧苯基)琥珀酰胺酸、Z-Sar-OH、4-(3,4-二甲氧苯基)丁酸、Ac-o-氟代-DL-苯丙氨酸-OH、N-(4-氟苯)戊酰胺酸、4’-乙基-4-联苯羧酸、1,2,3,4-四氢化吖啶羧酸、3-苯氧基苯乙酸、N-(2,4-二氟苯基)琥珀酰胺酸、N-癸酰基-甘氨酸-OH、(+)-6-甲氧基-a-甲基-2-萘乙酸、3-(三氟甲氧基)肉桂酸、N-甲酰基DL-Trp-OH、(R)-(+)-a-甲氧基-a-(三氟甲基)苯乙酸、Bz-DL-亮氨酸-OH、4-(三氟甲氧基)苯氧基乙酸、4-庚氧基苯甲酸、2,3,4-三甲氧基肉桂酸、2,6-二甲氧苯甲酰-甘氨酸-OH、3-(3,4,5-三甲氧苯基)丙酸、2,3,4,5,6-五氟苯氧基乙酸、N-(2,4-二氟苯基)戊酰胺酸、N-十一酰-甘氨酸-OH、2-(4-氟代苯甲酰基)苯甲酸、5-三氟甲氧基吲哚-2-羧酸、N-(2,4-二氟苯基)二甘醇酰胺酸、Ac-L-Trp-OH、Tfa-L-苯基甘氨酸-OH、3-碘代苯甲酸、3-(4-正戊基苯甲酰)丙酸、2-苯基-4-喹啉羧酸、4-辛氧基苯甲酸、Bz-L-蛋氨酸-OH、3,4,5-三乙氧基苯甲酸、N-月桂酰-甘氨酸-OH、3,5-双(三氟甲基)苯甲酸、Ac-5-甲基-DL-Trp-OH、2-碘代苯乙酸、3-碘代-4-甲基苯甲酸、3-(4-正己基苯甲酰)丙酸、N-己酰-L-苯丙氨酸-OH、4-壬氧基苯甲酸、4’-(三氟甲基)-2-联苯羧酸、Bz-L-苯丙氨酸-OH、N-十三酰-甘氨酸-OH、3,5-双(三氟甲基)苯乙酸、3-(4-正庚基苯甲酰)丙酸、N-庚酰(Hepytanoyl)-L-苯丙氨酸-OH、4-癸氧基苯甲酸、N-(α,α,α-三氟间甲苯基)邻氨基苯甲酸、尼氟灭酸、4-(2-羟基六氟异丙基)苯甲酸、N-豆蔻酰-甘氨酸-OH、3-(4-正辛基苯甲酰)丙酸、N-辛酰-L-苯丙氨酸-OH、4-十一烷氧基苯甲酸、3-(3,4,5-三甲氧苯基)丙酰-甘氨酸-OH、8-碘代萘甲酸、N-十五酰-甘氨酸-OH、4-十二烷氧基苯甲酸、N-棕榈酰-甘氨酸-OH以及N-硬脂酰-甘氨酸-OH。这些有机酸可获自一个或多个厂商现代化学技术公司,Louisville,KY;Bachem生物科学公司,Torrance,CA;Calbiochem-Novabiochem公司,San Diego,CA;Farchan实验室公司,GainesvilleFL;Lancaster Synthesis,Windham NH;以及MayBridge化学公司(c/oRyan科学公司),Columbia,SC。来自这些公司的商品目录利用以上用于限定酸的缩写。
f用于制备标记的组合化学组合化学是一种合成方法,该方法导致化学文库(参见,例如PCT申请出版物WO 94/08051)的大量产生。这些组合文库能够用作为鉴定兴趣(MOIs)分子的标记。组合化学可以被定义为系统的和重复的共价连接一系列相互变化结构(结构之间的相互变化产生大量的多样化分子实体)的不同“构件”。构件可以采取多种形式,天然存在的和合成的均可,如亲核试剂、亲电子试剂、二烯类、烷化剂或者酰化剂、二胺、核苷酸、氨基酸、食糖、脂类、有机单体、合成纤维以及上述物质的混合物。用于连接构件的化学反应可以包括烷基化、酰化、氧化、还原、水解、取代、消去、加成、环化、缩合等等。这种方法能够产生化合物的文库,该化合物是寡聚体、-非寡聚体或者其混合物。如果是寡聚的,那么化合物能够是支链的、无支链的或者环状的。寡聚结构的例子(其可以用组合方法制备)包括寡肽、寡核苷酸、低聚糖、聚脂类、聚酯、酰胺、聚氨基甲酸乙酯、聚脲、聚醚、聚(磷衍生物)(如磷酸酯、膦酸酯、磷酰胺、膦酰胺、亚磷酸酯、亚膦酸酰胺等等)以及聚(硫衍生物)(如砜、磺酸酯、亚硫酸酯、氨磺酰、亚磺酰胺等等。
一种普通类型的寡聚组合文库是肽组合文库。在肽化学和分子生物学中的最近革新曾使由十个至数千万个的不同肽序列组成的文库能够得到制备和利用。这样的文库可以划分成三大类。一类文库包括可溶性的、非支持体结合肽文库的化学合成物(例如Houghten等,自然,35484,1991)。第二类文库包括支持体结合肽文库(存在于如如塑料针状体、树脂小珠或者棉花的固相支持体上)的化学合成物(Geysen等,分子免疫学,23709,1986;Lam等,自然,35482,1991;Eichler和Houghten,生物化学,3211035,1993)。在上述两类文库中,构件典型地是L-氨基酸、D-氨基酸、非天然的氨基酸、或者一些其混合物或者组合物。第三类文库利用分子生物学方法在丝状噬菌体颗粒或者质粒表面上制备肽或者蛋白质(Scott和Craig,Curr.opinion Biotech.,540,1994)。可溶性的、非支持体结合的肽文库似乎适合于许多应用方面,包括用作为标记。在肽文库中的化学多样性的所有可用部分由如过甲基化(Ostresh等,美国科学院院报,9111138,1994)的步骤扩展。
肽组合文库的许多变体可能存在,其中肽主链被修饰和/或酰胺键为模拟基团所取代。可以利用的酰胺模拟基团包括脲、氨基甲酸乙酯以及羰基亚甲基基团。调整上述的主链(此时侧链从每个氨基酸的酰胺氮发出,而不从α-碳发出)给出已知是类胨的化合物文库(Simon等,美国科学院院报,美国,899367,1992)。
另一个普通类型的寡聚组合文库是寡核苷酸组合文库,其中构件是某些形式的天然存在的或者非天然的核苷酸或者多糖衍生物,包括其中各种有机和无机基团可以取代磷酸键以及氮或者硫可以取代醚键中的氧的化合物(Schneider等,生物化学,349599,1995;Freier等,医药化学杂志,38344,1995;Frank,生物技术杂志,41259,1995;Schneider等,出版号PCT WO 942052;Ecker等,核酸研究,211853,1993)。
最近,非寡聚的小分子化合物的文库的组合产物已为有关文献(DeWitt等,美国科学院院报,90690,1993;Bunin等,美国科学院院报,914708,1994)所描述。适合于加工成小分子文库的结构包括各种有机分子,例如杂环族化合物、芳族化合物、脂环化合物、脂族化合物、甾族化合物、抗菌素、酶抑制剂、配体、激素、药物、生物碱类、阿片样物质、萜烯、卟啉、毒素、催化剂以及其混合物。
g.标记组合合成的具体方法用于制备和利用各种系列的包含胺的MS标记的两种方法概述如下在这两种方法中,利用组合化学技术,实施固相合成以使大量的标记接头能够同时地平行合成。在第一种方法中,寡核苷酸的标记的最后切割导致羧基酰胺的释放。在第二个种方法中,标记的切割产生羧酸。用于这些方法中的化学组分和连接元件缩写如下R = 树脂FMOC = 芴基甲氧羰基保护基All = 烯丙基保护基
CO2H = 羧酸基团CONH2= 羧化酰胺基团NH2= 氨基OH= 羟基CONH = 酰胺键COO = 酯键NH2-Rink- = 4-[(α-氨基)-2,4-二甲氧苄基]-苯氧基CO2H 丁酸(Rink linker)OH-1MeO- = (4-羟甲基)苯氧基丁酸CO2HOH-2MeO- = (4-羟甲基-3-甲氧基)苯氧基丁酸CO2HNH2-A-COOH = 在侧链上具有脂肪胺或者芳香胺官能团的氨基酸X1....Xn-COOH = n个具有唯一分子量的羧酸的系列oligol...oligo(n) = n个寡核苷酸的系列HBTU = O-苯并三唑-1-基-N,N,N’,N’-四甲基脲(tetramethyluronium)六氟磷酸酯在方法1中的步骤的顺序如下OH-2MeO-CONH-R↓ FMOC-NH-Rink-CO2H;偶联(如HBTU)FMOC-NH-Rink-COO-2MeO-CONH-R↓ 哌啶(除去FMOC)NH2-Rink-COO-2MeO-CONH-R↓ FMOC-NH-A-COOH;偶联(如HBTU)FMOC-NH-A-CONH-Rink-COO-2MeO-CONH-R↓ 哌啶(除去FMOC)NH2-A-CONH-Rink-COO-2MeO-CONH-R
↓ 分成n个等分部分↓↓↓↓↓ 偶联到n个不同酸X1…Xn-COOH上X1…Xn-CONH-A-CONH-Rink-COO-2MeO-CONH-R↓↓↓↓↓ 用1%TFA从树脂上切割标记的接头X1…Xn-CONH-A-CONH-Rink-CO2H↓↓↓↓↓ 偶联到n个寡核苷酸上(例如经由Pfp酯)X1…Xn-CONH-A-CONH-Rink-CONH-oligol…oligo(n)↓ 收集标记的寡核苷酸↓ 进行测序反应↓ 从测序反应中分离不同长度的片段(例如经由HPLC或CE)↓ 用25%-100%TFA从接头切割标记X1…Xn-CONH-A-CONH↓用质谱法分析在方法2中的步骤的顺序如下OH-1MeO-CO2-All↓ FMOC-NH-A-CO2H;偶联(例如HBTU)FMOC-NH-A-COO-1MeO-CO2-All↓ 钯(除去烯丙基)FMOC-NH-A-COO-1MeO-CO2H↓ OH-2MeO-CONH-R;偶联(如HBTU)FMOC-NH-A-COO-1MeO-COO-2MeO-CONH-R↓ 哌啶(除去FMOC)NH2-A-COO-1MeO-COO-2MeO-CONH-R↓ 分成n个等分部分↓↓↓↓↓↓ 偶联到n个不同的酸上X1…Xn-CONH-A-COO-1MeO-COO-2MeO-CONH-R↓↓↓↓↓ 用1%TFA从树脂上切割标记的接头X1…Xn-CONH-A-COO-1MeO-CO2H
↓↓↓↓↓ 偶联到n个寡核苷酸上(如经由Pfp酯)X1…Xn-CONH-A-COO-1MeO-CONH-oligol…oligo(n)↓ 收集标记的寡核苷酸↓ 进行测序反应↓ 从测序反应中分离不同长度的片段(如经由HPLC或CE)↓ 用25-100%TFA从接头上切割标记X1…Xn-CONH-A-CO2H↓用质谱法分析2.接头如本文所使用的“接头”组分(或者L)意指一个直接的共价键或者一个有机化学基团,该基团用来通过共价化学键把一个“标记”(或者T)与“兴趣分子”(或者MOI)相连接。此外,在使得T可以从T-L-X化合物(包括MOI组分)的剩余部分释放(换句话说,切割)的条件下,直接键本身或者接头组分中的一个或多个键是可切割的。存在于T中的标记可变组分在切割条件下应该是稳定的。优选地,切割可以快速完成;在几分钟内,优选的在大约15分钟或更少的时间内。
一般来说,接头用来把一大系列标记的每一个与同样大系列的MOI的每一个相连接。典型地,单一标记-接头结合连接到每一个MOI上(以产生各种T-L-MOI),但是在某些情况下,多于一个的标记-接头结合可以连接到每一个体MOI上(以产生各种(T-L)n-MOI)。在本发明的另一个实施方案中,两个或多个标记通过多个在接头上的独立位点结合到单一接头上,然后这一多标记-接头结合到一个单一MOI上(以产生各种(T)n-L-MOI)。
在标记的MOI的系列的各种操作之后,特异的化学和/或物理条件用来切割一个或多个在接头中的共价键,结果使得标记从MOI中释放。可切割的键可以是或可以不是一些相同的键(当标记、接头以及MOI连接在一起时所形成的键)。在很大程度上,接头的设计将决定完成切割的条件。因此,接头可以由切割条件(它们对该条件也特别敏感)确定接头。当接头是光不稳定(即倾向于为在光化辐射下的暴露所切割)时,可以给接头指定为LhU名称。同样地,名称Lacid、Lbase、L[O]、L[R]、Lenz、Lelc、LΔ和LSS可以分别用来指特别敏感于为酸、碱、化学氧化、化学还原、酶催化活性(简称为“酶”)、电化学氧化或者还原、升温(“热”)和巯基交换切割的接头。
特定类型的接头对单一类型的切割条件是不稳定的,而其它类型的接头对不同类型的切割条件是不稳定的。此外,在能够结合多个标记(以产生(T)n-L-MOI类型结构)的接头中,每个结合标记的位点可以对不同的切割条件是不稳定的。例如,在有两个标记结合到其上的接头中,标记之一可以是仅仅对碱不稳定,而另一个仅仅对光解不稳定。
用于本发明的接头具有几个属性1)接头具有化学柄(Lh),通过该化学柄接头能够连接到MOI上。
2)接头具有另一个单独的化学柄(Lh),通过该化学柄标记连接到接头上。如果多个标记连接到单一接头((T)n-L-MOI类型结构)上,那么每一个标记存在一个单独的化学柄。
3)除了允许切割的条件(切割的结果是包含T的部分从化合物的剩余部分(包括MOI)中释放出来)外,接头对所有对其进行的操作都是稳定的。因此,在标记连接到接头、接头连接到MOI以及MOI的任一操作(当接头和标记(T-L)连接到其上时)期间,接头是稳定的。
4)当T-L连接到MOI上时,接头不严重干扰对MOI所进行的操作。例如,如果T-L连接到寡核苷酸上时,T-L不应该严重干扰在寡核苷酸上进行的任一杂交或者酶促反应(例如PCR)。同样地,如果T-L连接到抗体上,它不应该严重干扰抗体的抗原识别。
5)利用不对标记的检测限产生不利影响的物理或者化学方法,用一种高度控制的方式使从化合物的剩余部分上的标记的切割发生。
对于任一所给定的接头,优选的是接头连接到各种MOI上,并且各种标记连接到接头上。这样的柔性是有利的,因为它使得T-L缀合物的文库(一旦制备)可以与几个不同系列的MOI一起使用。
如上所说明的,优选的接头具有式
Lh-L1-L2-L3-Lh其中每个Lh是能够用来把接头与标记反应物和兴趣分子的反应物相连接的活性柄。L2是接头的基本部分,因为L2向接头传递不稳性。L1和L3是可有可无的基团,该基团有效地用于分离L2和柄Lh。
L1(按照定义,其更接近于T而非L3)用于把T从所需的不稳定部分L2中分离出来。当切割反应产生具体的活性产物(例如游离的基团)(其可以造成包含T的部分的结构方面的随机变化)时,可以利用这一分离步骤。当切割位点进一步从包含T的部分中分离出来时,形成于切割位点的活性组分破裂成包含T的部分的结构的可能性减少。此外,由于L1中的原子将典型地存在于包含T的部分中,这些L1原子可以向包含T的部分传递所需的质量。例如,其中包含T的部分是包含Tms的部分,同时有立体障碍的胺理想地存在作为包含Tms的部分的结构的一部分(作为如MSSE),有立体障碍的胺可以存在于L1不稳定的部分中。
在其它实例中,L1和/或L3可以存在于接头组分中,这仅仅是因为接头的供应商选择以具有如L1和/或L3基团的形式出售接头。在这样的例子中,在利用具有L1和/或L3基团的接头期间没有任何伤害,(只要这些基团不抑制切割反应)即使它们不能向与它们结合的化合物传递任一特异效能优点。因此,本发明允许L1和/或L3基团存在于接头组分中。
L1和/或L3基团可以是一个直接键(在该情况下上述基团不能有效地存在)、亚烃基基团(如亚烷基、亚芳基、亚环烷基等等)、-O-亚烃基(如--O-CH2-、O-CH2CH(CH3)-等等)或者亚烃基-(O-亚烃基)W-(其中W是1至大约10之间的整数)(如-CH2-O-Ar-、-CH2-(O-CH2CH2)4-等)。
随着固相合成的出现,发表了大量的关于对具体的反应条件不稳定的接头的文献。在典型的固相合成中,固相支持体通过不稳定的接头结合到活性位点上,在活性位点产生合成的分子。当分子全合成时,使固相支持体-接头-分子构建体处于切割条件(其使分子从固相支持体中释放出来)下。已发展用于本文中(或者可以用于本文中)的不稳定接头也易于在本发明中用作为接头反应物。
Lloyd-Williams,P.等,“固相肽的汇集合成”,四面体报告号347,49(48)11065-11133(1993)提供了一次关于对光化辐射以及酸、碱和其它切割条件不稳定的接头的广泛讨论。关于不稳定接头的其它信息来源是本领域所熟知的。
如上所描述,不同的接头设计将传递在不同的具体物理或者化学条件之下的可切割性(“不稳性”)。用于切割各种设计的接头的条件的例子包括酸、碱、氧化、还原、氟原子、巯基交换、光解以及酶促条件。
以上列出的可切割接头(满足接头的一般标准)的例子将是本领域技术人员所熟知的,并且包括在由Pierce(Rockford,IL)提供的目录中发现的那些例子。例子包括·1,2-亚乙基二醇双(琥珀酰亚胺基丁二酸盐)(EGS),一种为羟胺(1M,37℃,历时3-6小时)所切割的胺活性的交联试剂;·二琥珀酰亚胺基酒石酸盐(DST)和硫代-DST,其是可由0.015M高碘酸钠切割的胺活性的交联试剂;·双[2-(氧化琥珀酰亚胺基羰氧基(succinimidyloxycarbonyloxy))乙基]砜(BSOCOES)和硫代-BSOCOES,该胺活性的交联试剂可由碱(pH11.6)切割;·1.4-二-[3’-(2’-砒啶基二硫代(丙酰胺基))丁烷(DPDPB),一种可由巯基交换或者还原所切割的砒啶基二硫代交联剂;·N-[4-(对叠氮水杨酰氨基)-丁基]-3’-(2’-砒啶基二硫代)丙酰胺(APDP),一种可由巯基交换或者还原所切割的二硫代交联剂;·双-[β-4-(对叠氮水杨酰氨基)乙基]-二硫化物,一种可由巯基交换或者还原所切割的光敏交联剂;·N-琥珀酰亚胺基-(4-叠氮苯基)-1,3’二硫代丙酸酯(SADP),一种可由巯基交换或者还原所切割的光敏交联剂;·硫代琥珀酰亚胺基-2-(7-叠氮-4-甲基香豆素-3-乙酰胺)乙基-1,3’-二硫代丙酸酯(SAED),一种可由巯基交换或者还原所切割的光敏交联剂;·硫代琥珀酰亚胺基-2-(间叠氮基-邻硝基苯甲酰氨基)-乙基-1,3’二硫代丙酸酯(SAND),一种可由巯基交换或者还原所切割的光敏交联剂。
其它可切割的接头和能够用来释放标记的切割条件的例子如下。甲硅烷基连接基团能够由氟原子或者在酸性条件下切割。3-,4-,5-或者6-取代-2-硝基苄氧基或者2-,3-,5-或者6-取代-4-硝基苄氧基连接基团能够由光子源(光解)切割。3-,4-,5-或者6-取代-2-烷氧基苯氧基或者2-,3-,5-或者6-取代-4-烷氧基苯氧基连接基团能够由Ce(NH4)2(NO3)6(氧化)切割。NCO2(尿烷)接头能够由氢氧化物(碱)、酸或者LiA1H(还原)切割。3-戊烯基、2-丁烯基或者1-丁烯基连接基团能够由O3、OsO4/IO4-或者KMnO4(氧化)切割。2-[3-,4-或者5-取代-呋喃基]氧化连接基团能够由O2、Br2、MeOH或者酸切割。
其它不稳定的连接基团的切割条件包括能够由酸切割的叔烷氧基,能够由H3O-切割的甲基(二烃基)甲氧基或者4-取代-2-烷基-1,3-二氧戊环-2-基连接基团,能够由氟原子或者酸切割的2-甲硅烷基乙氧基连接基团,能够在碱性条件下切割的2-(X)-乙氧基(X=酮基、酯酰胺、氰基、NO2、硫化物、亚砜、砜)连接基团,能够由酸或者在还原条件下切割的2-,3-,4-,5-或者6-取代-苄氧基连接基团,能够由(Ph3P)3RhCl(H)切割的2-丁烯氧基连接基团,能够由锂、镁或者BuLi切割的3-,4-,5-或者6-取代-2-溴代苯氧基连接基团,能够由Hg2+切割的甲基硫代甲氧基连接基团,能够由锌或者镁切割的2-(X)-乙氧基(其中X=卤素)连接基团,能够由氧化切割(例如用Pb(OAc)4)的2-羟基乙氧基连接基团。
优选的接头是那些由酸或者光解切割的接头。几个已发展为固相肽合成的酸不稳定接头可用于把标记与MOI相连接。某些上述接头描述在一份由Lloyd-Williams等写的最新的综述(四面体,4911065-11133,1993)中。一种有用类型的接头基于对烷氧基苄醇,其中的两个-4-氢化甲基苯氧基乙酸和4-(4-氢化甲基-3-甲氧基苯氧基)丁酸是由AdvancedChemTech(Louisville,KY)市售的。这两种接头能够经由与苄醇结合的酯键连接到标记上,以及经由与羧酸结合的酰胺键连接到包含胺的MOI上。用不同浓度的三氟乙酸从MOI中释放由这些分子连接的标记。这些接头的切割导致了在标记上的羧酸的释放。通过相关接头(如2,4-二甲氧基-4’-(羧甲氧基)-二苯甲基胺(由Advanced ChemTech以保护的FMOC形式提供))连接的标记的酸切割导致了在释放的标记上的羧化酰胺的释放。
可用于本申请的光不稳定接头也已用于大多数已发展为固相肽合成的接头(参见Lloyd-Williams的综述)。这些接头通常基于2-二硝基苄酯或者2-硝基苯甲酰胺。最近在文献中报道的两个光不稳定接头的例子是4-(4-(1-Fmoc-氨基)乙基)-2-甲氧基-5-硝基苯氧基)丁酸(Holmes和Jones,有机化学杂志,602318-2319,1995)和3-(Fmoc-氨基)-3-(2-硝基苯)丙酸(Brown等,分子多样性,14-12,1995)。这两种接头能够经由羧酸连接到在MOI中的胺上。标记在接头上的连接通过在标记上的羧酸和接头上的胺之间形成酰胺来实现。光不稳定接头的切割通常用350nm波长的UV光线以本领域所知的强度和时间来完成。接头的切割导致在标记上的一级酰胺的释放。可光切割的接头的例子包括硝基苯甘氨酸酯、外和内2-苯并降冰片(benzonorborneyl)氯化物和甲烷磺酸酯以及3-氨基-3(2-硝基苯)丙酸。酶促切割的例子包括切割酯键的酯酶、切割磷酸二酯键的核酸酶、切割肽键的蛋白酶等等。
一个优选的接头组分具有如下所示的邻硝基苄基结构 其中在a、b、c、d或e位的一个碳原子为-L3-X所取代,并且L1(其优选的是一个直接键)存在于上述结构中的N(R1)的左侧。这样接头组分对键(在标记“a”的碳和N(R1)之间)的选择性的光诱导切割是灵敏的。典型地,R1的同一性不是切割反应的关键,然而R1优选地选自氢和烃基。本发明提供了在上述结构中,-N(R1)-可以为-O-所取代。还在上述结构中,a、b、c、d或e位的一个或多个基团可以由也可以不由烷基、烷氧基、氟原子、氯原子、羟基、羧基或者酰胺基取代,其中这些取代基在每次取代时是分别选择的。
具有化学柄Lh的更优选的接头组分具有下列结构 其中b、c、d或e位的一个或多个由氢、烷基、烷氧基、氟原子、氯原子、羟基、羧基或者酰胺基取代,R1是氢或者烃基,R2是-OH或者是保护或激活与另一部分偶联的羧酸的基团。碳氟化合物和氢化碳氟化合物基团是优选的基团,该基团激活羧酸与另一部分偶联。
3.感兴趣的分子(MOI)MOI的例子包括核酸或者核酸类似物(例如PNA)、核酸的片段(即核酸片段)、合成的核酸或者片段、寡核苷酸(例如DNA或者RNA)、蛋白质、肽、抗体或者抗体片段、受体、受体配体、配体对的成员、细胞因子、激素、低聚糖、合成的有机分子、药物以及其混合物。
优选的MOI包括核酸片段。优选的核酸片段是互补于存在于载体中的序列的引物序列,其中载体用于碱基测序。优选地,核酸片段是直接或者在除了片段的3’末端之外的其它部位间接地连接到标记上的;最优选的是连接到片段的5’末端上。核酸片段可以购买或者基于遗传学数据库(例如Dib等,自然,380152-154,1996和CEPH基因型数据库,http//www.cephb.fr)和商业卖主(例如Promega,Madison,WI)制备。
如本文所使用的,MOI包括MOI的衍生物(包含可用于把MOI与T-L-Lh化合物结合的官能团)。例如,在5’末端具有磷酸二酯的核酸片段(其中磷酸二酯也结合到亚烷基胺上)是一种MOI。这样的MOI描述在例如美国专利4,762,779(其并入本文作为参考)中。一种具有内部修饰的核酸片段也是一种MOI。核酸片段的内部修饰范例是其中碱基(例如腺嘌呤、鸟嘌呤、胞嘧啶、胸苷、尿嘧啶)被修饰从而增加一个活性官能团。这样的内部修饰的核酸片段是由例如Glen Research,Herndon,VA市售的。另一个核酸片段的内部修饰的范例是其中无碱基的氨基磷酸酯用来合成修饰的磷酸二酯(其插入核酸片段的糖和磷酸基团之间)。无碱基的氨基磷酸酯包含一个活性基团,该基团使得核酸片段(包含氨基磷酸酯衍生的部分)可以与另一部分(例如T-L-Lh化合物)结合。这样的无碱基的氨基磷酸酯是由例如Clonetech Laboratories,Inc.,Palo Alto,CA市售的。
4.化学柄(Lh)化学柄也是一种作为一级分子的部分存在的稳定的活性原子排列,其中该柄能够进行与互补化学柄(作为二级分子的部分存在)之间的化学反应,以致在两个分子之间形成共价键。例如,化学柄可以是羟基基团,互补化学柄可以是羧酸基团(或者其活化的衍生物,例如氢氟芳基酯(hydrofluroaryl ester)),其中这两个柄之间的反应形成了将上述两个分子结合在一起的共价键(具体地说,酯基团)。
化学柄可以用于大量的形成共价键的反应中,该反应适合于连接标记于接头上以及连接接头于MOI上。这样的反应包括烷基化(例如形成醚、硫醚)、酰化(例如形成酯、酰胺、氨基甲酸酯、脲、硫脲)、磷酸化(例如形成磷酸酯、膦酸酯、磷酰胺、膦酰胺)、磺酰化(例如形成磺酸酯、氨磺酰)、缩合(例如形成亚胺、肟、腙类)、硅烷化、二硫化物形成以及活性中间体(如氮宾或者卡宾)的光解产生。一般来说,适合于连接标记于接头上的柄和形成键的反应也适合于连接接头于MOI上,反过来也是。在某些情况下,MOI可以预先进行修饰或者衍生化以提供连接接头所需要的柄。
特别有用于连接接头于MOI上的一类键是二硫键。它的形成要求在接头上存在一个巯基团(“柄”)以及在MOI上存在另一个巯基。然后轻度氧化条件足以将两个巯基结合在一起而成为二硫化物。二硫化物的形成也可以通过利用过量的适当的二硫化物交换试剂(例如吡啶基二硫化物)来诱导。因为二硫化物的形成是容易可逆的,所以如果需要,二硫化物也可以用作为释放标记的可切割键。典型地,该过程是在同样的轻度条件下利用过量的适当的巯基交换试剂(如二硫苏糖醇)完成的。
对连接标记(或者具有接头的标记)与寡核苷酸特别兴趣是酰胺键的形成。一级脂肪族胺柄能够易于用如6-单甲氧基三苯甲基己基氰乙基-N,N-二异丙基亚磷酰胺的亚磷酰胺(由Glenn Research,Sterling,VA市售的)引入到合成的寡核苷酸上。当与引入的一级胺比较时,在天然的核苷酸上发现的胺类(如腺苷和鸟苷)实际上是非反应的。这种在反应性方面的区别构成了用引入的一级胺(而非核苷酸胺类)选择地形成酰胺和相关结合基团(例如脲、硫脲、氨磺酰)的能力的基础。
如分子探针目录(Eugene,OR)中所列,胺活性的官能团的部分细目包括活化的羧酸酯、异氰酸盐、异硫氰酸盐、磺酰基卤化物以及二氯三氮烯。活性酯是胺修饰的极好试剂,因为所形成的酰胺产物是十分稳定的。此外,这些试剂具有与脂肪族胺类的良好反应性以及与寡核苷酸的核苷酸胺类的低反应性。活性酯的例子包括N-羟基琥珀酰亚胺酯、五氟苯酯、四氟苯酯以及对硝基苯酯。活性酯是可利用的,因为实际上它们能够由任一包含羧酸的分子制备。制备活性酯的方法由Bodansky(肽化学的原则(第二次编著),Springer Verlag,伦敦,1993)列出。
5.接头附着典型地,单一类型的接头用来把具体系列或者家族的标记与具体系列或者家族的MOI相连接。在本发明的一种优选实施方案中,可以遵循一个统一的方法以产生所有各种T-L-MOI结构。当T-L-MOI结构的系列大时,这是特别有利的,因为它使得可以利用组合化学或者其它平行的处理技术来制备系列。按照一种类似的方式,单一类型的利用使得可以使用一个统一的方法来切割所有各种T-L-MOI结构。此外,这对于大系列的T-L-MOI结构是有利的,因为该系列可以以平行的、重复的和/或自动的方式处理。
然而,存在本发明的其它实施方案,其中两个或者多个类型的接头用来把不同的子集标记与相应子集的MOI相连接。既然是这样,选择性的切割条件可以用来分别切割每个接头,而不切割存在于其它MOI的子集上的接头。
许多形成共价键的反应都适合于连接标记于接头上,以及连接接头于MOI上。这样的反应包括烷基化(例如形成醚、硫醚)、酰化(例如形成酯、酰胺、氨基甲酸酯、脲、硫脲)、磷酸化(例如形成磷酸酯、膦酸酯、磷酰胺、膦酰胺)、磺酰化(例如形成磺酸酯、氨磺酰)、缩合(例如形成亚胺、肟、腙类)、硅烷化、二硫化物形成以及活性中间体(如氮宾或者卡宾)的光解产生。一般来说,适合于连接标记于接头上的柄和形成键的反应也适合于连接接头于MOI上,反过来也是。在某些情况下,MOI可以预先进行修饰或者衍生化以提供连接接头所需要的柄。
一类特别有用于连接接头于MOI上的键是二硫键。它的形成要求在接头上存在一个巯基团(“柄”)以及在MOI上存在另一个巯基。然后轻度氧化条件足以将两个巯基结合在一起成为二硫化物。二硫化物的形成也可以通过利用过量的适当的二硫化物交换试剂(例如吡啶基二硫化物)来诱导。因为二硫化物的形成是容易可逆的,所以如果需要,二硫化物也可以用作为释放标记的可切割键。典型地,该过程是在同样的轻度条件下利用过量的适当的巯基交换试剂(如二硫苏糖醇)完成的。
对连接标记(或者具有接头的标记)与寡核苷酸特别有兴趣的是酰胺键的形成。一级脂肪族胺柄能够易于用如6-单甲氧基三苯甲基己基氰乙基-N,N-二异丙基亚磷酰胺的亚磷酰胺(由Glenn Research,Sterling,VA市售的)引入到合成的寡核苷酸上。当与引入的一级胺比较时,在天然的核苷酸上发现的胺类(如腺苷和鸟苷)实际上是非反应性的。这种在反应性方面的区别构成了用引入的一级胺(而非核苷酸胺类)选择地形成酰胺和相关结合基团(例如脲、硫脲、氨磺酰)的能力的基础。
如分子探针目录(Eugene,OR)中所列,胺活性的官能团的部分细目包括活化的羧酸酯、异氰酸酯、异硫氰酸酯、磺酰基卤化物以及二氯三氮烯。活性酯是胺修饰的极好试剂,因为所形成的酰胺产物是十分稳定的。此外,这些试剂具有与脂肪族胺类的良好反应性以及与寡核苷酸的核苷酸胺类的低反应性。活性酯的例子包括N-羟基琥珀酰亚胺酯、五氟苯酯、四氟苯酯以及对硝基苯酯。活性酯是可利用的,因为实际上它们能够由任一包含羧酸的分子制备。制备活性酯的方法由Bodansky(肽化学的原则(第二次编著),Springer Verlag,伦敦,1993)列出。
存在着许多商业的交联试剂,其可以用作为接头(例如参见PierceCross-linkers,Pierce Chemical Co.,Rockford,IL)。在这些交联试剂中有同基双功能胺活性的交联试剂(其以同基双功能亚氨酸酯和N-羟基琥珀酰亚胺基(NHS)酯为例说明)。其中也有异基双功能交联试剂,该试剂具有两个或者多个不同的活性基团(其使得测序反应可以进行)。亚氨酸酯在碱性pH下快速地与胺类进行反应。当与一级或者二级胺类进行反应时,NHS-酯给出稳定的产物。马来酰亚胺、烷基和芳基卤化物、α-卤代酰基以及吡啶基二硫化物是巯基活性的。具体地说,马来酰亚胺是在6.5至7.5的pH范围中用于巯基(硫氢基)基团的,在该碱性pH下马来酰亚胺可以变成胺活性的。硫醚键在生理条件下是稳定的。α-卤代乙酰基交联试剂包含碘代乙酰基基团,并且是对硫氢基活性的。咪唑能够与碘代乙酰基部分进行反应,但是反应十分缓慢。吡啶基二硫化物与巯基团进行反应从而形成二硫键。碳二亚胺偶联羧基到酰肼的一级胺上,该酰肼导致酰基-酰肼键的形成。芳基叠氮化物是光亲和试剂,该试剂在化学方面是惰性的直到暴露于UV或者可见光中。当这样的化合物在250-460nm光解时,形成了一种活性芳基氮宾。活性芳基氮宾是比较非特异的。乙二醛对精氨酸的胍基部分是活性的。
在本发明的一个典型实施方案中,首先使标记结合到接头上,然后将标记和接头的结合物结合到MOI上,从而产生T-L-MOI结构。另外,通过首先结合接头到MOI上然后结合接头和MOI的结合物到标记上可形成同样的结构。一个例子是其中MOI是DNA引物或者寡核苷酸。在该情况下,标记典型地首先结合到接头上然后T-L结合到DNA引物或者寡核苷酸上,然后将其用于例如测序反应中。
一种有用的形式(其中标记可以反过来连接到MOI(例如寡核苷酸或者DNA测序引物)上)是通过一个化学上不稳定的接头。一种优选的接头的设计使得当暴露于易挥发的有机酸(例如三氟乙酸(TFA))时接头可以被切割。尤其是,TFA与大多数的MS离子化方法(包括电喷射)兼容的。
用于突变分析的本发明组合物。用于突变分析的组合物包含一对下式的化合物Tms-L-MOI其中Tms是可由质谱法检测的有机基团,该基团包含碳、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子。在上式中,L是使得包含Tms的部分可以自化合物的剩余部分切割下来的有机基团,其中包含Tms的部分包含官能团,该官能团支持单一的离子化电荷状态(当对化合物进行质谱分析时)并且选自叔胺、季铵以及有机酸。在上式中,MOI是核酸片段,其中L在除MOI的3’末端之外的其它部位缀合到MOI上。组合物包含数对化合物,其中每对的成员具有不相同的Tms基团,并且除了在一个碱基位置的碱基不相同外,具有相同的序列。在本发明组合物的另一个实施方案中,数对化合物的成员具有不相同的Tms基团,并且除了在一个碱基位置的碱基不相同外,具有相同的序列。然后将这些组合物加入至载体结合的核酸序列(其与每对的成员之一的序列是同一的)上。因此,本发明提供了组合物,该组合物包含如上所描述的许多化合物对,以及还包含同样数量的核酸(其固定在固相支持体上),其中这些数量的核酸的每一个都具有确切地互补于每对的一个成员的碱基序列。
本发明也提供了用于突变分析的试剂盒,该试剂盒包含多个容器。每一容器包含一对下式的化合物Tms-L-MOI其中Tms是可由质谱法检测的有机基团,该基团包含碳、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子。在上式中,L是使得包含Tms的部分可以自化合物的剩余部分切割下来的有机基团,其中包含Tms的部分包含官能团,该官能团支持单一的离子化电荷状态(当对化合物进行质谱分析时)并且选自叔胺、季铵以及有机酸。在上式中,MOI是核酸片段,其中L在除MOI的3’末端之外的其它部位缀合到MOI上。在试剂盒中,每对化合物具有不相同的Tms基团,并且除在一个或两个碱基位置的碱基不相同外,具有相同的序列。在优选的试剂盒中,该数量至少是3,更优选的是至少5。
B.分析如上所述,本发明能够利用各种测定法(其中本文提供了标记和检测方法)大大地提高分析的灵敏度与处理量。一方面,这样的方法能够用于检测配体对的第一成员与第二成员之间的结合,包含步骤(a)在足以使第一成员结合到第二成员上的条件和时间下,把一系列第一标记的成员与生物样品(其可能包含一个或多个第二成员)组合在一起,其中所说的标记是与特定的第一成员相关的和且可由非荧光光谱测定法或者电位滴定法检测的,(b)将未结合的成员与结合的第一和第二成员分离,(c)从所标记的第一成员切割标记,以及(d)由非荧光光谱测定法或者电位滴定法检测标记,并由此检测第一个成员和第二成员的结合。
各种第一和第二成员对都可以用于本发明的方法中,包括例如核酸分子(例如DNA、RNA、如PNA的核酸类似物或者这些物质的任一混合物)、蛋白质或者多肽(例如抗体或者抗体片段(例如单克隆抗体、多克隆抗体或者如CDR的结合配偶体))、低聚糖、激素、有机分子和其它底物(例如诸如葡糖醛酸酶-药物分子之类的生物异源物质)或者任一其它配体。在本发明的各种实施方案中,第一和第二成员可以是同类型或者不同类型的分子。例如,代表性第一成员第二成员配体对包括核酸分子/核酸分子、抗体/核酸分子、抗体/激素、抗体/生物异源物质以及抗体/蛋白质。
为了进一步地理解本文所描述的能够完成的测定法,下面提供某些特别优选的测定法的简要讨论。
1.核酸分析a.概论如上所述,本发明也提供了各种方法,其中上述的可切割的标记和/或接头可以用于代替传统的标记(例如放射性的、荧光的或者酶促的),从而提高了一种给定的方法中可以同时被分析的样品的特异性、灵敏度或者数量。这样的方法的代表性例子(可以被提高的)包括例如标准核酸杂交反应(参见Sambrook等,supra)、如循环探针技术(CPT)(参见美国专利4,876,187和5,011,769)的诊断反应或者寡核苷酸连接分析(OLA)(Burket等,科学,196180,1987)。下面将更详细地讨论这些技术和其它技术。
b.杂交技术通过使检测在不相关的DNA或者RNA分子的大库中的基因或者它的mRNA成为可能,使得基因的成功的克隆和测序使它的结构和表达的研究可以进行。在组织中编码具体的蛋白质的mRNA的量是基因活性的一个重要参数,并且可以与功能系统的活性十分相关。mRNA的调节依赖于基因中的序列(顺式作用元件)与序列特异性DNA结合蛋白质(反式作用因子)之间的相互作用,该元件和因子由组织特异性或者由激素和第二个信使系统活化。几种技术可以用于分析特定基因、它的调节序列、它的特定mRNA和它的表达的调节;这些技术包括Southern或者Northern印迹分析、核糖核酸酶(RNase)保护分析和原位杂交。
在一个特定基因的核苷酸组合物中的变异可以具有极大的病理生理学关联性。当定位在非编码区(5’,3’-侧翼区和内含子)时,它们能够影响基因表达的调节,从而造成反常的活化或者抑制作用。当定位在基因的编码区(外显子)时,它们可以导致蛋白质功能或者机能不良的蛋白质的改变。
因此,基因中的一种特定序列能够与具体的疾病相关,同时能够用作为疾病的标记。因此,在医学领域中,研究的一个基本目是检测那些作为诊断工具的遗传变异,并获得关于病理生理学现象的理解的重要信息。
关于一个特定基因中的变异的群体分析的基本方法是利用Southern印迹技术的DNA分析。简言之,制备的基因组DNA用限制酶消化(RE),结果产生大量不同长度的DNA片段(通过基因组上的RE的特异性识别部位的存在来测定)。具有该限制位点内部的突变的一个特定基因的等位基因将切割成不同数量和长度的片段。该等位基因称为限制片长多态性(RFLP),并且能够是许多应用的一个重要诊断标记。
将要分析的片段必须从DNA片段的库中分离,并且必须利用特异性探针来与其它DNA产物相区别。因此,利用琼脂糖凝胶使DNA进行电泳分级分离,其后转移和固定该DNA于尼龙或者硝酸纤维素膜上。使该固定的单链DNA与标记的DNA(互补于将要检测的DNA)杂交。在除去非特异的杂交之后,兴趣DNA片段能够由MALDI-MS(下面将更详细地描述)目测检验。特定基因转录物和其由生理参数调节的存在和存在量能够依靠Northern印迹分析和核糖核酸酶保护测定来分析。
这些方法的原理基础是整个细胞RNA的库与特异性探针的杂交。在Northern印迹技术中,利用琼脂糖凝胶电泳分馏组织的整个RNA,并将其转移和固定于标记的反义RNA(cRNA)(互补于将要检测的RNA)上。然后标记该cRNA探针(如这里所描述)。通过运用严格的洗涤条件,除去非特异结合的分子。其后能够由MALDI-MS检测特异结合的分子。此外,通过比较所检测的mRNA的大小与兴趣mRNA的所预知的长度,能够控制特异性。
更快速但并不特异的是斑点印迹法,除RNA直接点于膜上而没有预先的分级分离外,该方法的操作如同Northern印迹技术。RNA非特异地固定于斑点印迹中。
mRNA产物的检测的最特异的方法是核糖核酸酶保护分析(RNase保护分析)。简言之,使组织或者细胞培养物的整个RNA与标记的特异性cRNA(完全同源性的)杂交。特异性由尔后的RNase消化实现。未杂交的单链RNA以及非特异地与甚至小的错配序列杂交的片段都将被识别和切割下来,而完全同源性的双链RNA不受酶的影响并将得到保护。在由蛋白酶K消化和苯酚提取除去RNase之后,通常在变性的聚丙烯酰胺凝胶上,能够从降解产物中分离出特异的保护片段,并且所预知的大小能够由HPLC检测。以上所描述的所有分析都能够由非荧光光谱测定法或者电位滴定法定量。
给定的mRNA在特定群体的组织细胞中的精确定位能够由原位杂交测定。这一方法类似于免疫细胞化学技术,并且事实上能够与免疫细胞化学同时用于相同的区段以发现蛋白质是否确实局部地合成或实际上取自其它来源。除鉴定表达特异性mRNA的细胞类型的可能性之外,原位杂交甚至能够比利用上述技术的整个组织RNA制备物的分析更灵敏。这是一种情况,其时在组织的极不连续区域或者细胞类型中以高浓度表达mRNA并由整个组织的匀浆稀释mRNA。因此基因表达的原位杂交分析对于如人脑的异质组织具有特别的重要性。对于原位杂交,必须按照组织化学方案冻结或者灌流固定和切片组织。用于组织切片和标记的探针的杂交方案类似于以上所描述的其它杂交方法。半定量分析是可能的。
c.作为mRNA的代表性群体和用作为探针的cDNA大多数mRNA从单一复制序列转录。cDNA的另一个性质是它们表示基因组的更长区域,因为内含子存在于大多数基因的染色体形式中。表现度从一个基因变化到另一个基因,但是可以是非常明显的,因为许多基因在基因组(以单一cDNA表示)中覆盖100kb以上。分子杂交的一种可能用途是利用一种物种的探针来检测从另一种物种制得的克隆。在小鼠和人的mRNA之间的序列趋异使得可以进行长序列的交叉重缔合(但是不包括最高度保守的区域),并且避免了PCR引物的交叉杂交。
由于基于PCR和基于cRNA的扩增技术的发展,现在在复合生物样品中进行示差筛选(如利用由单细胞制备的cDNA探针来发展神经系统)是可能的。以前几个组报道过从少量的聚腺苷酸化RNA(1ng或者更少)(由10-50个细胞制备)产生cDNA文库的方法(Belyav等,核酸研究,172919,1989)。虽然文库充分代表了mRNA复杂度,但是这些文库的平均cDNA插入大小是十分小的(<2kb)。
最近综合了某些方法从而从单细胞产生了基于PCR(Lambolez等,神经元,9247,1992)和基于cRNA(Van Gelder等,Proc.Natl.Acad.Sci.美国,871663,1990)的两种探针。在电记录之后,单细胞的胞质内含物用原位cDNA合成和扩增的膜片钳微电极抽吸。PCR用来扩增选自单Purkinje细胞的谷氨酸受体mRNA的cDNA和选自在器官型小脑培养物中的单胶质的GFAP mRNA的cDNA(Lambolez等,神经元,9247,1992)。在cRNA扩增的情况下,转录启动子序列设计成cDNA合成引物,并且复合反义cRNA由噬菌体RNA聚合酶通过体外转录产生。
因此,在本发明的一个实施方案中,标记的cRNA能够用作为标记的探针来随机地筛选cDNA文库或者用于“表达轮廓”实验中来筛选包含兴趣cDNA片段(受体、生长因子、离子通道等等)的Southern印迹。基于PCR的方法常常遇到的线性扩增的缺乏似乎最大限度地为基于cRNA的万法所减少。
d.寡核苷酸连接分析寡核苷酸连接分析是基于PCR的筛选的延伸,该方法利用基于ELISA的分析(OLA,Nickerson等,Proc.Natl.Acad.Sci.,美国,878923,1990)来检测包含靶序列的PCR产物。因此,凝胶电泳和集落杂交都不需要。简言之,OLA使用两个邻近的寡核苷酸“报道基因”探针(标记在5’末端)和5’-磷酸化/3’-生物素酰化的“锚”探针。使互补于内化到PCR引物的序列的这两个寡核苷酸退火到靶DNA上;同时,如果具有完全的互补性,那么这两个探针为T4DNA连接酶所连接。在固定的链霉抗生物素蛋白上的生物素酰化的锚探针的俘获和对以共价键结合的报道基因探针的分析,二者检测在PCR产物中靶序列是否存在或者缺乏。
e.杂交技术的运用i.法医学在DNA序列变异水平上的个体鉴定提供许多优越于常规标准(如指纹、血型或者身体特征)的实用的优点。与大多数表型标记相比,DNA分析使之易于进行个体之间的相关关系的推论(这在亲权认定中是必需的)。已经证明基因分析在骨髓移植中是十分有用的,其中区别紧密相关的供体和受体细胞是必要的。现在有两种类型的探针用于DNA印迹的DNA指纹分析。多形的最小卫星DNA探针鉴定多个DNA序列,每个序列在不同的个体中以可变的形式存在,这样个体之间就产生了复杂的和可变性大的种种模式。VNTR探针鉴定基因组中的单序列,但是这些序列在人群中可以以多达30种的不同形式(以所鉴定的片段的大小来区别)存在。对于多个VNTR或者最小卫星探针,不相关个体具有同一的杂交模式的概率是非常低的。比DNA印迹所需的组织少得多的组织,甚至一根头发就可为遗传标记的基于PCR的分析提供足够的DNA。此外,部分降解的组织可以用于分析,因为仅仅需要小段的DNA片段。法医学DNA分析最终将用多形的DNA序列进行,这些序列可以由简单的可自动化的分析(如OLA)进行研究。例如,22种单独的基因序列(其中每个基因序列以两种不同的形式存在于人群中)的分析可以产生1010个不同的结果,该结果使个人得到唯一的鉴定。
ii.肿瘤诊断学病毒癌基因或者细胞癌基因的检测是核酸诊断学的另一个重要的应用范围。当其细胞配对物(c-癌基因)已经存在于正常细胞中时,病毒癌基因由逆转录病毒传递。然而,细胞癌基因可以为如s点突变(如在膀胱癌和结肠癌中的c-K-ras癌基因中)、启动子诱导、基因扩增(如在成神经细胞瘤的情况下在N-myc癌基因中)或者染色体重排(如在慢性骨髓白血病的情况下在c-abl癌基因从染色体9至染色体22的转运中)的特异性修饰所活化。每种活化处理(结合附加的变性处理)都导致加速的和不可控制的细胞生长。必须灭活而使其不能形成肿瘤(如在成视网膜细胞瘤Rb基因和骨肉瘤中)的所谓的“隐性癌基因”也能够借助于DNA探针检测。利用抗免疫球蛋白基因和抗T-细胞受体基因,B-细胞淋巴瘤和成淋巴细胞的白血病的检测是可能的。
iii.移植分析所移植的组织的排斥反应是由特定种类的组织相容性抗原(HLA)决定性地控制的。它们表达在存在于血液细胞(例如巨噬细胞)中的抗原表面上。HLA和外源抗原之间的复合体通过在细胞表面上的相应的T-细胞受体由T-辅助细胞识别。HLA、抗原和T-细胞受体之间的相互作用触发一个复杂的防卫反应,该反应在身体上导致一个级联状的免疫应答。
不同的外源抗原的识别以T-细胞受体的可变的抗原特异性区域为介导—类似于抗体反应。因此在移植排斥中,表达特异性T-细胞受体(适合于外源抗原)的T-细胞能够从T-细胞库中除去。通过抗原特异性可变DNA序列(其由PCR扩增并因而选择性地增加)的鉴定,进行这样的分析是可能的。特异性扩增反应使得可以进行特异性T-细胞受体的单细胞特异性鉴定。
目前可以用类似分析进行如少年糖尿病、动脉硬化、综合硬化症、风湿性关节炎或者脑脊髓炎的自身免疫病的鉴定。
iv.基因组诊断学所有婴儿的百分之四是伴随遗传缺损出生的;在已描述的3,500种遗传病中,只要仅仅一个单基因的修饰就可造成其中的一种,原发性分子缺陷仅仅已知它们中的大约400种。
长久以来,遗传病都是由表型分析(既往病史,例如血液的缺损地中海贫血)、染色体分析(核型,例如蒙古症三体性21)或者基因产物分析(修饰的蛋白质,例如苯丙酮尿症导致苯基丙酮酸的水平的提高的苯丙氨酸羟化酶的缺损)诊断的。核酸检测方法的附加利用极大地增加了基因组诊断学的范围。
在特定的遗传病的情况下,仅仅两等位基因之一的修饰就足以引发疾病(显性传递的单基因缺陷);在许多情况之下,必须修饰两等位基因才可引发疾病(隐性传递的单基因缺陷)。在第三类型遗传缺损中,疾病的爆发不仅由基因修饰决定而且由如饮食习惯(在糖尿病或者动脉硬化的情况下)或者生活方式(在癌的情况下)的因素决定。这些疾病十分经常地发生于进步的时代之中。如精神分裂症、躁狂抑郁症或者癫痫症的疾病也应该在本文中论及;正在研究是否在这些情况下的疾病爆发依赖于环境因素以及在不同的染色体位置中的几个基因的修饰。
利用直接和间接DNA分析,一系列遗传病的诊断将变得可能镰状红细胞贫血、地中海贫血、α1-抗胰蛋白酶缺损、自毁容貌综合征、囊性纤维化/粘稠性物阻塞症、Duchenne/Becker型肌营养不良、老年性痴呆、X-染色体-依赖的智力缺陷、慢性舞蹈病。
v.传染病重组DNA方法在传染病的诊断方面的运用已经是病毒感染(其中当前方法受阻并且结果被迟延)最广泛探讨的方面。组织或者培养细胞的原位杂交曾使急性和慢性疱疹感染的诊断成为可能。已经报道了新鲜和fomalin固定的组织适合于在入侵的颈部癌中的乳头瘤病毒的检测和HIV的检测,而培养细胞已用于巨细胞病毒和Epstein-Barr病毒的检测。如果能够满足成本效果、速度以及精密度方面的要求,那么重组DNA方法在微生物疾病的诊断方面的运用就有取代当前的微生物生长方法的可能性。其中重组DNA方法已开始应用的临床情形包括青霉素抗性的Neisseria Sonorrhoeae(通过转座子、一丝不苟地日益增长的衣原体、微生物在食品中的存在)的鉴定以及对群体的感染传播的简单意义的跟踪。重组体方法正在迎接包括如利什曼原虫属和疟原虫的寄生物的疾病的世界性流行病的挑战。
2.基于蛋白质的分析a.概论如上所述,同样地可以由这里所描述的标记增加各种基于蛋白质的分析(参见例如抗体实验室手册,Harlow和Lane(合编),冷泉港实验室出版社,1988)。代表性例子包括抗原-抗体分析(例如对流免疫电泳(CIEP)、酶联免疫吸附测定(ELISA)、抑制或者竞争分析以及夹心分析)、同时免疫和免疫过滤分析。然而可以同样地增加各种其它分析,包括例如配体-受体分析等等。
b.免疫分析由于用于胰岛素和甲状腺素的放射性免疫分析(RIA)的发展,包括以放射性同位素标记抗原的方法已广泛地运用于半抗原分子(如激素和药物)的测量。该方法基于标记的抗原和未标记的抗原之间对有限量的抗体的竞争。这些方法也可以描述为“有限试剂”方法,因为用于分析的有限量抗体。
虽然自1941年以来标记的抗体已用于免疫荧光方法,但是它们并没有更广泛地运用于定量方法中直到放射性同位素标记的抗体引入IRMA(免疫放射分析)中。IRMA和其它基于固体的双抗体或者“夹心”分析(ELISA、IFMA、免疫荧光染色分析)都是以过量的抗体(相比于抗原)为特征;因此它们可以称为“过量试剂”方法。理论上,利用过量试剂缩短了培养时间,并且潜在地增加了灵敏度。固相有利于分离,并且信号直接与抗原的量成正比,这与在竞争性分析中的反比关系相反。
在生物化学、分子生物学和医学的许多领域中,亲和素-生物素技术(包括通过利用非放射性免疫分析的蛋白质检测、细胞化学染色、细胞分离和核酸分离以及通过杂交的特异性DNA/RNA序列的检测)的利用已经变得日益重要。该技术通过亲和素-生物素相互作用(缔合常数1015M-1)的极高亲和性和生物素酰化各种靶生物分子(如抗体、核酸以及脂类)的能力使它得到应用。靶分子分离的第一步是它的生物素酰化或者最终结合到靶分子(如抗体或者形成靶复合体的杂交探针)上的生物分子的生物素酰化。然后通过利用基于亲和素-生物素相互作用的亲和性中间体,在异质的混合物中将生物素酰化的分子或者靶复合体与其它分子分离。
因此,在本发明的一个实施方案中,都可以利用标记的试剂(而不是典型的以同位素标记的试剂)完成任一标准免疫分析。这样的方法产生了极大地增加的灵敏度以及同时分析许多样品的能力。
3.基因表达分析在这里说明的本发明之一是一种高处理量的方法,该方法用于在单一测量中测量许多基因(1-2000)的表达。该方法也具有每次处理一百多个样品的平行处理能力。该方法可运用于药物筛选、发育生物学、分子医学研究等等。因此,在本发明的一个方面中,提供该方法来用于分析选择的生物样品的基因表达模式,该方法包括步骤(a)从生物样品中暴露核酸,(b)在足以使所说的探针杂交到上述核酸上的条件和时间下,把所说的暴露的核酸与一个或多个选择的标记的核酸(其中所说的标记与特定的核酸探针相关且可由非荧光光谱测定法或者电位滴定法检测)的探针组合在一起,(c)把杂交的探针与未杂交的探针分离,(d)从加标记的片段上切割标记,以及(e)由非荧光光谱测定法或者电位滴定法检测标记并由此测定生物样品的基因表达模式。
在本发明的一个特别优选的实施方案中,提供了如下描述的分析或方法将靶来源的RNA通过特异性杂交步骤(即由限制的寡脱氧胸苷酸俘获探针进行的聚腺苷酸mRNA的俘获)结合到固相支持体上。然后洗涤固相支持体,同时利用标准方法(即逆转录酶)在固相支持体上合成cDNA。然后经由水解除去RNA带。结果产生DNA群体,该群体以共价键固定化在固相支持体上,该载体反映了RNA(cDNA由其合成)的多样性、丰度以及复杂度。然后用一至数千个探针(其互补于兴趣基因序列)探测(杂交)载体。用可切割的质谱标记或者其它类型的可切割的标记标记每个探针类型。在探测步骤之后,洗去过量的或者未杂交的探针,固相支持体放置(例如)在微量滴定板的孔中,同时将质谱标记从载体上切割下来。从样品容器的孔中除去固相支持体,同时用质谱仪测量孔的内含物。特定质谱标记的出现表明在样品中存在RNA,并且证明在所给定的生物样品中特定基因得到表达。该方法也可以是定量的。
基因表达的快速测量(利用可切割的标记)的组合物和方法能够详尽地描述如下。简言之,组织(肝、肌肉等等)、原始的或者转化的细胞系、分离的或者纯化的细胞类型或者生物材料的任一其它来源(可在生物材料中用于决定基因表达)都可以用作为RNA的来源。在优选的方法中,在离液剂存在时将生物来源材料溶解以抑制核酸酶和蛋白酶并支持靶酸核与载体的严格杂交。组织、细胞以及生物来源能够有效地溶解于1至6摩尔离液盐(盐酸胍、硫氰酸胍、高氯酸钠等等)中。在生物样品来源溶解之后,将溶液与固相支持体混合以便实现存在于裂解物中的靶核酸的俘获。在该方法的一个变化中,利用限制的寡脱氧胸苷酸俘获探针俘获RNA。固相支持体能够包括尼龙小珠、聚苯乙烯微型珠、玻璃珠和玻璃表面或者任一其它类型的固相支持体(寡核苷酸能够以共价键连接到其上)。固相支持体优先地外覆一层胺聚合物(如聚乙烯(亚胺)、丙烯酰胺、胺-dendrimers等等)。在聚合物上的胺用于以共价键固定化寡核苷酸。用5’-胺优先地合成寡核苷酸(一般地其是包括六个碳间隔臂和一个远侧胺的己胺)。寡核苷酸可以是15至50个核苷酸长度。寡核苷酸由如氰尿酰氯的同基双功能或者异基双功能交联试剂活化。通过排阻色谱法从过量的交联试剂(即氰尿酰氯)中纯化活化的寡核苷酸。然后将活化的寡核苷酸与固相支持体混合以便实现共价连接。在寡核苷酸的共价连接之后,将固相支持体的未反应胺类加帽(即用琥珀酸酐)以除去固相支持体的正电荷。
能够平行地利用固相支持体,并且最好以96-孔或者384-孔格式设置。在96-孔或者384-孔设置中固相支持体能够连接到钉、茎干或者棒上,固相支持体是可脱附的或者是特定设置的整体。固相支持体的特定设置并不对分析的功能起关键作用,而是影响适应于自动化分析的能力。
将固相支持体与裂解物混合15分钟至数个小时以便在固相支持体上实现靶核酸的俘获。一般来说,靶核酸的“俘获”是通过靶RNA的互补碱基配对和固定在固相支持体上的俘获探针来实现的。一种变换利用在大多数真核生物信使RNA上发现的3’聚腺苷酸序列来在固相支持体上杂交限制的寡脱氧胸苷酸。另一种变换将利用一种特异性寡核苷酸或者长探针(大于50个碱基)来俘获包含确定序列的RNA。另一个可能性将使用简并引物(寡核苷酸),该简并引物将影响靶RNA群体中的许多相关序列的俘获。由RNA群体的序列复杂度指导杂交时间和所使用的俘获探针的类型。由所使用的离液剂的类型和离液剂的终浓度来确定杂交温度(参见Van Ness和Chen,核酸研究,用于一般性指导)。优先地用固相支持体连续不断地振荡裂解物以便实现靶RNA的扩散。一旦俘获靶核酸的步骤完成,就从固相支持体中洗涤出裂解物,同时除去所有离液剂或者杂交溶液。优先地用包含离子或者非离子去污剂的溶液、缓冲液和盐洗涤固相支持体。下一步是DNA(互补于俘获的RNA)的合成。在这一步骤中,限制的俘获寡核苷酸用作为逆转录酶的延伸引物。反应一般在25至37℃下进行,优选地在聚合反应期间进行振荡。在cDNA合成之后,cDNA以共价键连接到固相支持体上,因为俘获寡核苷酸用作为延伸引物。然后自cDNA/RNA双螺旋水解RNA。通过利用使双螺旋变性的热或者利用以化学方法水解RNA的碱基(即0.1N NaOH)可以完成该步骤。这一步骤的关键结果在于使cDNA可用于尔后的与确定探针的杂交。然后进一步洗涤固相支持体或者固相支持体系列以便除去RNA或者RNA片段。此时固相支持体包含cDNA分子的一个近似的代表性群体,该cDNA分子群体按照序列丰度、复杂度以及多样性表示RNA群体。
下一步将使选择的探针与固相支持体杂交以鉴定特定cDNA序列的存在或者缺乏和相对丰度。探针优先是15至50个核苷酸长度的寡核苷酸。由分析的终端用户规定探针的序列。例如,如果终端用户是用来研究在组织中的炎症反应的基因表达,那么将选择互补于许多细胞因子mRNA、RNA(编码调节脂类的酶)、RNA(编码调节细胞(涉及炎症反应)的因子)等等的探针。一旦确定了用于研究的一系列确定序列,则每一种序列变成一个寡核苷酸探针,同时每一探针分配一个具体的可切割标记。然后将标记连接到各自的寡核苷酸上。然后在适当的杂交条件下在固相支持体上将寡核苷酸杂交到cDNA上。在杂交步骤完成之后,洗涤固相支持体以便除去任一未杂交的探针。然后将固相支持体或者固相支持体组放置在影响质谱标记的切割的溶液中。然后用质谱仪对质谱标记进行测量,则每个标记存在的量得到鉴定,同时所表达的mRNA的存在(和丰度)或者缺乏也得到测定。
4.微生物、特定基因表达或者核酸中的特定序列的检测具有可切割标记的DNA探针的用途能够用于任一类型样品或者试样中检测微生物的存在或者缺乏。典型地,利用离子去污剂或者choatropes对样品进行溶胞步骤,然后将核酸特异地或者非特异地固定化在固相支持体上,同时用标记的DNA探针探测该核酸。除去未杂交的探针是一个洗涤步骤,从它们各自的探针上切割标记,并测量所得标记。
可检测的核酸可以包括mRNA、基因组DNA、质粒DNA或RNA、rRNA病毒的DNA或者RNA。为了实现靶核酸的检测,靶需要某些类型的固定化,因为这里所描述的分析都不是均相的。两种类型(非特异的或者特异的)的固定化是可能的。在以前的情况中,核酸是固定化在固相支持体或者底物(具有一些核酸亲和性)上的。可以先于非特异固定步骤纯化或者不纯化核酸。固相支持体可以包括尼龙膜、由硝酸纤维素组成的膜等等。然后用预定序列的标记寡核苷酸探测固相支持体以便鉴定兴趣靶核酸。除去未杂交的探针是一个洗涤步骤,将标记从他们各自的探针上切割下来,同时测量该标记。
另一个方法利用了Southern印迹技术,该方法产生了更高的群体分析(关于一定的基因或者DNA序列的存在)特异性。以限制酶(RE)消化制得的DNA,结果产生了大量不同长度的DNA片段(通过在基因组上的限制酶的特异性识别部位的存在测定)。具有在这一限制位点内部的突变的特定基因的等位基因将被切割成不同的数量和长度的片段。如果能够具体地鉴定这些片段,那么所产生的限制片长多态性(RFLP)就能够成为微生物的重要诊断。
所要分析的片段应该从DNA片段的库中分离出来,并且利用特异性探针区别于其它DNA产物。因此,利用某些类型的凝胶或者色谱对DNA进行电泳分级分离,其后将DNA转移和固定于尼龙或者硝酸纤维素膜上。使固定的单链DNA与标记的寡核苷酸(互补于所要检测的DNA)杂交。在除去非特异性杂交之后,通过从杂交的探针上切割标记来鉴定兴趣DNA片段。用这里所描述的技术,能够同时使用超过一百个的探针。
能够借助于Northern印迹分析和RNase保护分析分析特异性基因转录物的存在和存在量。这些方法的原理基础是整个细胞RNA的库与一个特异性标记的探针或者特异性标记的探针系列的杂交。在Northern印迹技术中,利用琼脂糖凝胶(转移至和固定于固相支持体(尼龙、硝酸纤维素等等)上)电泳分离组织的总RNA。使RNA与标记的寡核苷酸(互补于所要检测的RNA)杂交。在除去非特异性杂交之后,通过从杂交的探针上切割标记来鉴定兴趣RNA片段。通过运用严格洗涤条件,除去非特异地结合的分子,这是由于他们的弱杂交(与特异地结合分子比较)所致。快速的但更少特异的方法是斑点印迹方法,除RNA直接点于膜上而没有预先的分级分离而外,该方法的操作如同Northern印迹技术。
用于mRNA产物的检测的具体方法是RNase保护分析。使组织或者细胞培养物的总RNA与核糖核苷酸或者脱氧核糖核苷酸标记的探针杂交。特异性通过尔后的RNase消化实现。将未杂交的单链RNA以及非特异地与甚至小的错配序列杂交的片段都将被识别和切割下来,而完全同源性的双链RNA或者DNA/RNA双螺旋不受酶的影响并将得到保护。能够从降解产物中分离出特定的保护片段,探针从各自的标记上切割下来,而后得到测量。
给定的mRNA(或者任一核酸序列)在特定群体的组织细胞中的精确定位能够由原位杂交测定。原位杂交甚至能够比利用上述技术的总组织RNA制备物的分析更灵敏。这是一种情况,此时在组织的极不连续区域或者细胞类型中以高浓度表达mRNA并由整个组织的匀浆稀释mRNA。对于原位杂交,必须按照组织化学方案冻结或者灌流固定和切片组织。用于组织切片和标记的探针的杂交方案类似于以上所描述的其它杂交方法。定量分析是可能的。
5.突变检测技术疾病的检测在预防和治疗中显得日益重要。正当人们难于设计用于多因子疾病的遗传检验时,超过200种的已知人类疾病由单基因缺陷造成,这种单基因缺陷常常是单个氨基酸残基的改变(Olsen,生物技术时代的工业到来,国家科学院出版社,1986)。许多这样的突变产生了导致疾病的已改变的氨基酸。
敏感的突变检测技术为突变筛选提供了极大的可能性。例如,分析甚至可以在受精卵植入之前完成(Holding和Monk,Lancet,3532,1989)。在细胞中,日益增长的有效的遗传检验也能够在自呼吸道或者膀胱剥落(与健康检查相关的)的细胞中筛选致癌突变(Sidrahsky等,科学,252706,1991)。此外,当一个未知的基因导致遗传病时,检测DNA序列变异的方法可用于通过遗传连锁分析研究疾病的遗传。然而,检测并诊断个体基因中的突变提出了技术和经济方面的挑战。人们已经应用了数个不同的方法,但是没有一个是既有效又廉价到足以得到真正的广泛应用。
可用物理的、化学的或者酶促的方法在样品中鉴定涉及单核苷酸的突变。一般地,用于突变检测的方法可以划分成扫描技术(适合于鉴定以前未知的突变)以及被设计来检测、区别或者定量已知序列变体的技术。
用于突变检测的数个扫描技术已经在错配的互补DNA链(得自野生类型和突变体序列)的异源双链中得到发展,该错配的互补DNA链显示一种反常的行为,尤其是当变性时。这一现象被用于变性和温度梯度凝胶电泳(分别是DGGE和TGGE)方法中。甚至在单一核苷酸位置中的错配的双螺旋也能够部分地变性,结果是当在日益增长地变性梯度的凝胶中电泳时产生了延缓的迁移(Myers等,自然,313495,1985;Abrams等,基因组,7463,1990;Henco等,核酸研究,186733,1990)。虽然可以检测突变,但是没有获得关于突变的精确位置的任一信息。必须进一步分离突变体形式并对其进行DNA序列分析。
另外,RNA探针的异源双链和靶链可以由Rnase A在其中两个链没有适当地配对的位置上切割。然后由变性的探针的电泳能够测定切割的位点。然而,一些突变可以逃脱检测,因为并非所有的错配序列都由RnaseA有效地切割下来。
在双螺旋中错配的碱基也对化学修饰灵敏。这样的修饰能够使链对在错配序列的位点的切割敏感或者使聚合酶在尔后延伸反应中停止。化学切割技术使之可以鉴定在多达2kb的靶序列上的突变,同时它提供了关于错配的核苷酸的近似位置的信息(Cotton等,PNAS USA 854397,1988;Ganguly等,核酸研究,183933,1991)。然而,这一技术的工作量大,并且不能鉴定突变的精确位置。
用于检测DNA链中的突变的一种可替的方法是通过用一个修饰的核苷酸取代(在合成期间)一个正常的核苷酸,改变产物的分子量或者其它物理参数。具有增加的或者减少的质量的这种修饰的核苷酸(与野生型序列相关)的一个链显示出改变的电泳迁移率(Naylor等,Lancet,337635,1991)。这一技术检测突变的存在但不提供位置。
两种其它方法通过改变的凝胶迁移来目测检验DNA节段中的突变。在单链构象多态性技术(SSCP)中,突变产生变性的链来采用不同的二级结构,由此在非变性凝胶电泳期间影响迁移率。异源双链DNA分子(包含内部的错配序列)也能够由电泳从正确地配对的分子中分离出来(Orita,基因组,5874,1989;Keen,Trends Genet.75,1991)。当用以上所讨论的技术时,可以测定突变的存在但不能测定其位置。此外,许多这样的技术不区别单一和多个突变。
所有上述的技术都表明在DNA的有限节段中存在突变,并且其中的一些方法可以在节段中近似地定位突变。然而,仍然要求序列分析来阐明突变对节段的可能性编码的影响。序列分析是十分强有力的,其使之可以例如在一个受影响的家族的其它个体中筛选相同的突变,在噁性疾病的情况下监测疾病发展或者在自体移植之前在骨髓中检测剩余噁性细胞。尽管有这些优点,但由于其中牵涉昂贵的费用,因此上述方法不可能应用作为日常诊断方法。
已经发展了大量其它技术以分析已知的序列变异。对于可以应用的这些类型分析,对于筛选个体和一般群体,自动化和经济是十分重要的考虑事项。下面所讨论的技术没有一个是把经济、自动化与所需要的特异性结合起来的。
可以经由突变的去稳定作用(作用于短寡核苷酸探针与靶序列的杂交)鉴定突变(参见Wetmur,Crit.Rev.Biochem.Mol.Biol.,26227,1991)。一般地,这一技术(即等位基因-特异性寡核苷酸杂交)包括靶序列的扩增和尔后的与短寡核苷酸探针的杂交。因此,通过测定所扩增的产物与固定的寡核苷酸探针系列的杂交模式,能够扫描它的许多可能的序列变异。
然而,所有区别许多其它方法(这些方法都用于辨别核苷酸序列)的条件的建立都取决于鉴定序列差别的酶(Salki,PNAS USA 866230,1989;Zhang,核酸研究,193929,1991)。
例如,限制酶识别大约4-8个核苷酸的序列。基于平均G+C含量,能够用100种限制酶的系列监测DNA节段中的核苷酸位置的大约一半。作为可替方法,可以通过利用部分错配的PCR引物在可变位置周围建立人工限制酶识别序列。用这一技术,可以单独地识别和在扩增之后由限制酶切割或者突变体或者野生型序列(Chen等,分析生物化学,19551,1991;Levi等,癌研究,513497,1991)。
另一种方法利用在3’前末端基位置错配到靶序列上的寡核苷酸引物的性质,该寡核苷酸引物显示出用作为PCR引物的还原容量。然而,一些3’错配序列(特别是G-T)比其它限制它的有效性的错配序列具有更少的抑制性。由于试图改进这一技术,因此在自3’末端起数的第三位置将附加的错配序列掺入引物。这在引物(与一个等位基因的变体杂交)的上述三个3’核苷酸中导致两个错配的位置;并且当引物与其它等位基因的变体杂交时一个错配序列位于自3’末端起数的第三位置(Newton等,核酸研究,172503,1989)。定义极大地便于1bp错配序列扩增的扩增条件是必要的。
通过测定加入至寡核苷酸引物(就在靶链中的可变位置的上游)的核苷酸,人们也已用DNA聚合酶来区别等位基因序列变体。
连接分析已经得到发展。在这一方法中,由DNA连接酶结合两个寡核苷酸探针(以立即并置方式杂交在一个靶链上)。如果在两个寡核苷酸探针的连接处有一个错配序列,那么连接受到抑制。
a.用于突变检测的分析突变是基因组DNA的单碱基对的变化。在本发明的上下文中,通过与寡核苷酸(互补于所讨论的序列)的杂交,大多数的这样变化易于得到检测。在这里所描述的系统中,使用两个寡核苷酸检测突变。一个寡核苷酸具有野生型序列而另一个寡核苷酸具有突变序列。当两个寡核苷酸在野生型靶基因组序列上用作为探针时,野生型寡核苷酸将形成一个完全地碱基配对的结构,同时突变体寡核苷酸序列将形成具有单碱基对错配序列的双螺旋。
如以上所讨论,一个6至7℃的差异(在野生型与错配的双螺旋的Tm方面)使得易于鉴定或者判别两种类型的双螺旋。为了实现这一判别,在错配的双螺旋的Tm下在各自的hybotropic溶液中进行杂交。然后测量与寡核苷酸探针系列杂交的程度。当测量野生型探针与错配的探针的杂交程度的比例时,获得一个10/1至大于20/1的值。这类结果使得用于突变检测的鲁棒分析(robust assay)得到发展。
作为范例目的,一种用于突变检测的分析形式利用靶核酸(例如基因组的DNA)和跨越兴趣区域的寡核苷酸探针。寡核苷酸探针大于或者等于24nt长(最大为大约36nt),并且在寡核苷酸探针的3’或者5’末端以荧光染料标记。经由组织培养细胞、组织、有机体等等在各自的杂交溶液中的溶解获得靶核酸。然后加热溶解的溶液至使靶核酸变性的温度(靶核酸双螺旋的Tm为15-25℃)。在变性温度下加入寡核苷酸探针,同时在错配的双螺旋的Tm下杂交0.5至24小时。然后收集基因组DNA,并通过GF/C(GF/B等等)玻璃纤维滤器。然后用各自的杂交溶液洗涤滤器以便除去任一未杂交的寡核苷酸探针(RNA、短寡核苷酸和核酸在这些条件下没有与玻璃纤维过滤器结合)。然后能够自靶DNA热洗脱出杂交的寡核苷酸探针,同时测量(例如由荧光)杂交的寡核苷酸探针。因为分析要求很高水平的灵敏度,所以要收集和测量探针。
可以利用其它的高度灵敏的杂交方案。本发明的方法使人们能够容易分析包含怀疑存在于细胞、样品等等中的突变的核酸(即靶核酸)。“靶核酸”包含脱氧核糖核酸(DNA)或者核糖核酸(RNA)(它的存在是令人兴趣,并且它的存在或者缺乏将在杂交分析中得到检测)的核苷酸序列。本发明的杂交方法也可以运用于核酸(RNA和/或DNA)的复合生物混合物。这样的复合生物混合物包括各种真核生物与原核生物的细胞(包括原生质体)和/或其它生物材料(携带多核苷酸核酸)。因此,该方法适用于组织培养细胞、动物细胞、动物组织、血液细胞(例如网织红细胞、淋巴细胞)、植物细胞、细菌、酵母、病毒、类菌质体、原生动物门、真菌等等。通过检测已知来源的核酸探针之间的特异性杂交,能够证实靶核酸的特异性存在。
用于在核酸的复合群体中检测靶核酸的典型杂交分析方案如下所描述在凝胶基质(电泳)上按大小分离靶核酸,克隆和隔离靶核酸并将其亚划分成库,或者留下其作为复合群体。转移、点滴靶核酸,或者将靶核酸固定化在固相支持体(如尼龙膜或者硝酸纤维素膜)上。(该“固定”也称作“布置”)。然后对固定化的核酸进行加热步骤或者UV辐射(其不可逆地固定核酸)。然后将膜浸没在“封闭剂”中,该封闭剂包括Dendhart试剂(Dendhart,Biochem.Biophys.Res.Comm.23641,1966)、肝素(Singh和Jones,核酸研究,125627,1984)以及去脂奶粉(Jones等,基因分析技术,13,1984)。当利用硝酸纤维素时,封闭剂一般包括在预杂交步骤和杂交步骤中。然后在上述条件下在基于hybotrope的溶液中用标记的寡核苷酸探针探测靶核酸。然后洗去未结合的酶,同时将膜浸没在底物溶液中。然后由MALDI-MS(本质上如下所描述)检测信号。
b.杂交测序可通过使引物与靶DNA杂交以及利用聚合酶完成链延伸,照惯例地完成DNA序列分析。由双脱氧核苷酸的包含控制特异性终止。通过包含hybotrope在退火缓冲液和/或在引物中惨入无碱基残基以及在判别温度下退火,能够在这类分析中增加引导的特异性。
其它序列分析方法包括靶与各种随机的短寡核苷酸的杂交。序列由重叠杂交分析构建。在这一技术中,精确的杂交是十分重要的。对这一技术来说,hybotropes或者无碱基残基的利用以及在判别温度下的退火都有利于减少或者除去错配的杂交。其目的在于发展自动杂交方法以便探测大系列的寡核苷酸探针或者大系列的核酸样品。这样的技术的应用包括基因作图、克隆鉴定、医学的遗传学和基因新发现、利用杂交的DNA序列分析以及最后的测序检定。
必须控制许多参数以便自动化或者多重测定寡核苷酸探针。各自的探针的稳定性必须是类似的,当探针短时(即6至50个核苷酸),与靶核酸错配序列的程度、温度、离子强度、探针(或者靶)的A+T含量以及其它参数应该是类似的。通常,调整实验条件和探针的序列直到完全地碱基配对的探针形成,该完全地碱基配对的探针为包含一个错配序列的任一双螺旋热力学上支持。探针的十分广泛的应用(如杂交测序(SBH)或者检定高度多形的基因座(如囊性纤维化跨膜蛋白基因座))要求更严格水平的多探针的控制。
6.系列核酸与系列DNA样品的杂交长期用于基本的生物研究中的各种应用方面,并且当前正开始用于医学诊断学、法医学和农业方面。如下面所更详细地描述的,核酸分子或者蛋白质可以连接到固相支持体上从而形成一个系列,并且可以用本发明的加标记的分子检验该核酸分子或者蛋白质。
例如,在本发明的一个实施方案中,系列DNA样品能够用于个体克隆的鉴定。简言之,标记已知的DNA分子以产生标记的探针,并且通过与一组未知克隆的杂交检验该DNA分子。然后可以分离显示特异性杂交(与探针)的克隆。利用无序排列的克隆可以完成这样的分析(Sambrook等,“分子克隆实验手册”冷泉港,纽约,1989)。另外,有规律地携带已知个体特性(虽然典型地为未知的序列)的克隆的间隔的系列的膜也可以购得(例如Research Genetics,BAC克隆系列,Huntsville,AL.)。
在另一个实施方案中,系列可以用来同时测量大量基因的转录水平(一般参见Gess等,哺乳动物基因组,3609-619,1992)。简言之,cDNA的库可以标记为探针,该探针在大量的cDNA克隆上用作为探针以便鉴定在特定组织中得到大量表达的基因。个体cDNA克隆的小系列也可以用于两种不同的RNA样品中来定量测量系列中的每个基因的相对表达(Schena等,科学,270467-470,1995)。更具体地说,机器人可以用来从个体克隆中产生PCR产物的小系列系列中的每个元件相应于一个单cDNA克隆。通过首先用探针标记每种组织样品的cDNA链,制备用于分析的系列。为了比较在两种组织样品中的基因表达,用不同的标记标记每种组织样品的cDNA。收集两种样品,并使其与系列一起杂交。在探针与系列杂交之后,如同本应用(其中标记与系列的每个样品杂交)所描述的方法一样,可以切割和分析标记。对于一个给定的基因,与每种标记的复合cDNA样品的杂交的比率是在两种组织样品中的相对基因表达的测量结果。内部对照和两种(可能高达4种)不同标记的利用对于这一应用是至关重要的。
下面所描述的许多其它应用是基于这一基本实验的变更方法,这些应用利用不同来源的系列DNA和不同来源的探针DNA,但是由于利用了常规检测方法,因此每一应用在杂交混合中限制于4-6个以下的可区别的探针。
另一个与DNA系列杂交的应用是杂交测序(SBH),该应用已经在理论上得到证明并且具有十分广阔的应用前景。杂交测序(SBH)的概念利用一组所有可能的N核苷酸寡聚体(N链节)以鉴定存在于未知的DNA序列中的N链节。然后能够利用计算方法来装配全序列(一般参见Drmanac等,科学,2601649-1652,1993)。SBH的应用包括重叠DNA克隆的物理作图(排序)、序列检测、正常基因和致病基因的DNA指纹分析比较以及在互补DNA和基因组的文库中具有特异的序列基元的DNA片段的鉴定。
DNA系列在遗传变异和多态性的检测方面也有广泛的应用。通过固定已知的序列变体和用标记的PCR产物(得自病人或者病原体)探测,单碱基对改变、缺失和插入、突变和多态性都能够得到检测(参见例如Guo等,核酸研究,225456-5465,1994)。同样地,寡核苷酸的系列可以用来测量遗传变异,包括抗药性和HIV的药物敏感变体(参见例如Lipshutz等,生物技术,19442-447,1995)。
利用至少两种不同的技术能够产生DNA系列单独产生(点滴)的样品的原位合成和沉积作用。用于DNA样品的原位产生的最重要技术之一是如在Pease等,P.N.A.S.USA 915022-6,1994中所描述的寡核苷酸的光指导合成。简言之,通过利用光不稳定的阻断基团(其在系列中利用现代的光能无机营养方法指导寡核苷酸合成)产生确定的DNA序列的系列。制备掩蔽,这样将每一个系列元件(其在下一个合成步骤中需要特异性碱基)暴露于光中。将一种单核苷酸残基加入至每一条链(为掩蔽所暴露)中,合成循环完成时,利用另一个掩蔽和另一个寡核苷酸残基开始下一个循环。这一方案的连续应用能够用来快速构建极大量的寡核苷酸。关于用于转录分析的系列的利用,在Schena等(1995)中描述了一种形式的自动沉积作用。
在本发明的一个实施方案中,第二成员布置在固相支持体(如硅石、石英和玻璃)上面。然后可以处理系列以便封阻非特异的杂交,其后在固相支持体上培养第一成员标记的探针。在某些优选的实施方案中,然后用溶液(在确定的严格性下)冲洗该系列以便除去非特异地杂交的核酸,用包括基质材料(其适合于光谱测定法或者电位滴定法,例如适合于基质辅助的激光解吸和离子化质谱法)的溶液清洗该系列,干燥该系列以便形成一个适当的基质,然后将所形成的基质暴露于光中以便从核酸探针上切割标记。然后可以用光谱测定或者电位滴定技术分析切割的标记(例如MALDI-MS)。
在特定的实施方案中,切割和激光解吸发生在单一步骤中。在其它变更方法中,激光解吸和离子化是在没有基质的情况下完成的。在一些实验中,将参考标记的寡核苷酸或者其它标记的化合物加入至基质溶液中以便控制在光切割效率、激光解吸以及MS检测效率方面的变化。通过测量测试标记和一系列参考标记的丰度之间的比率,可从MALDI-MS数据中提取定量信息。
在其它实施方案中,系列由长度小于50bp的寡核苷酸组成。对于遗传作图,这一方法能够用于检测多态性(例如单碱基对改变);或者对于分析或者分类克隆、亲权认定、法医学、遗传作图,这一方法能够用于检测一种特定DNA在样品中的存在或缺乏。系列同样可以由蛋白质组成。
C.核酸片段的分离需要分析的样品在复合基质中常常是许多组分的混合物。对于包含未知的化合物的样品,必须相互分离组分以便每一个体组分能够用其它分析方法鉴定。在一定的条件下混合物中的组分的分离性质是不变的,因此一旦确定了分离性质,它们就能够用来鉴定和定量每一组分。在色谱和电泳分析分离中,这样的方法是典型的。
1.高效液相色谱(HPLC)高效液相色谱(HPLC)是分离溶解在溶液中的化合物的色谱分离技术。HPLC仪器由流动相的贮液槽、泵、注射器、分离柱以及检测器组成。通过把一小份的样品混合物注射在柱上来分离化合物。由于他们在流动相和固定相之间的分配行为的区别,混合物中的不同的组分以不同的速率通过。
前不久,在无孔PS/DVB颗粒(具有以化学方法结合的烷基链)上的IP-RO-HPLC显示出在可提供相似程度的分辨率的单和双链核酸分析中可快速代替毛细管电泳(Huber等,1993,分析生物化学,212,p351;Huber等,1993,核酸研究,21,p1061;Huber等,1993,生物技术,16,p898)。与离子交换色谱相比,离子交换色谱并非总是保持双链作为单链的函数(因为AT碱基对与带正电的固定相之间发生比GC碱基对强烈的相互作用),而IP-RP-HPLC则使一个严格地依赖于大小的分离能够进行。
一种利用100mM三乙基铵乙酸盐作为离子配对试剂的方法已经得到了发展,在烷基化的无孔的2.3μM聚(苯乙烯-二乙烯基苯)颗粒上依靠高效液相色谱该方法能够成功地分离磷酸二酯寡核苷酸(Oefner等,1994,分析生物化学,223,p39)。所描述的技术使PCR产物的分离仅仅能够区别4至8个长度为50至200个核苷酸范围的碱基对。
2.电泳电泳是一种基于离子(或者如同在这里所描述的情况一样的DNA)在电场中的迁移率的分离技术。带负电的DNA向阳极迁移,而带正电的离子向阴极迁移。为安全起见,一个电极通常接地,而另一个电极偏阳性或者阴性。带电物质具有不同的迁移速率,这取决于他们的总电荷量、大小以及形状,因此能够分离带电物质。电极装置由高压电源、电极、缓冲液以及缓冲液的载体(如聚丙烯酰胺凝胶)或者毛细管组成。开口的毛细管用于许多种类型的样品中,而其它的凝胶载体通常用于生物样品(如蛋白质混合物或者DNA片段)中。
3.毛细管电泳(CE)在其各种表现形式(自由溶液、等速电泳、等电点聚焦、聚丙烯酰胺凝胶、胶束动电“色谱”)中的毛细管电泳(CE)正发展成为一种很小体积的复合混合物样品的快速的高分辨分离的方法。与MS的固有灵敏度和选择性结合起来,CE-MS是一种潜在的强有力的生物分析技术。在这里所说明的新应用中,这两种方法的耦合将产生极好的DNA测序方法,该测序方法使当前的测序的速率方法暗然失色(相差数个数量级)。
CE和电喷射离子化(ESI)流速之间的相符以及二者都有利于(主要用于)溶液中的离子产物的事实都为极端吸引力的组合提供了基础。毛细管区带电泳(CZE)和毛细管等速电泳与基于ESI的四极(quadrapole)质谱仪的综合已得到描述(Olivares等,分析化学,591230,1987;Smith等,分析化学,60436,1988;Loo等,分析化学,179404,1989;Edmonds等,J.chroma.47421,1989;Loo等,J.Microcolumn Sep.1223,1989;Lee等,色谱分析杂志,458313,1988;Smith等,色谱分析杂志,480211,1989;Grese等,J.Am.Chem.Sco.1112835,1989)。小肽容易适合于高(飞姆托摩尔)灵敏度的CZE分析。
DNA片段的最强有力的分离方法是聚丙烯酰胺凝胶电泳(PAGE)(一般采用平板凝胶格式)。然而,当前技术的主要局限性是要求用比较长的时间来完成测序反应中所产生的DNA片段的凝胶电泳。通过利用毛细管电泳(其利用超薄凝胶)能够实现增加量度(10倍)。在达到一级近似的自由溶液中,由于碱基的加入导致质量和电荷的补偿,因此所有DNA以相同的迁移率迁移。在聚丙烯酰胺凝胶中,DNA片段筛和作为长度的函数的迁移现在已运用于CE中。现在用交联的聚丙烯酰胺已经达到值得注意的塔板数(每米10+7个平板,Cohen等,Proc.Natl.Acad.Sci.,美国,859660,1988)。这样的如上所描述的CE柱能够用于DNA测序。在标准测序仪中,CE的方法在理论上比平板凝胶电泳快25倍。例如,每小时能够阅读大约300个碱基。在平板凝胶电泳中分离速度受到电场大小(其能够运用于凝胶而不产生过热)的限制。因此,通过使用更高的电场强度可达到更大的CE速度(CE中的300V/cm相对于平板凝胶电泳中的10V/cm)。毛细管格式减少了电流强度和这样的功率以及所导致的产热。
Smith和其它人员(Smith等,核酸研究,184417,1990)曾建议平行地使用多个毛细管以增加处理量。同样地,Mathies和Huang(Mathies和Huang,自然,359167,1992)曾介绍毛细管电泳(其中在平行排列的毛细管上进行分离)并且显示了高处理量的测序(Huang等,分析化学,64967,1992;Huang等,分析化学,642149,1992)。毛细管电泳的主要缺点是只有有限量样品能够填装在毛细管上。通过在毛细管开始时在分离之前收集大量的样品,可增加载荷能力,同时检测水平能够降低几个数量级。在CE中,预收集的最普及方法是样品堆积。前不久,样品堆积已得到评论(Chien和Burgi,分析化学,64489A,1992)。样品堆积依赖于样品缓冲液和毛细管缓冲液之间的基质区别(pH,离子强度),所以穿过样品区带的电场不只是毛细管区域中的电场。在样品堆积中,低浓度缓冲液中的大量样品被引入以便在毛细管柱的前端预收集。毛细管充满相同组合物的缓冲液,但是浓度更高。当样品离子到达毛细管缓冲液和低电场时,它们就堆积成一个浓缩的区带。样品堆积增加了1-3个数量级的检测限。
另一个预收集的方法是在分析物的自由区带CE分离之前运用等速电泳(ITP)。相比于典型地与CE相联系的低nL注射体积,ITP是一种使得微升体积可以填装在毛细管上的电泳技术。该技术取决于在分别为较高和较低迁移率(相比于分析物)的两种缓冲液(先行和尾随电解质)之间的样品插入。该技术固有地是浓缩技术,其中分析物收集到以相同速度迁移的纯化区带中。当前该技术没有如上所描述的堆积方法普及,这是由于需要先行和尾随电解质的数个选择以及在分离过程期间仅仅分离阳离子或者阴离子产物的能力。
DNA测序过程的核心是显著选择性的DNA或者寡核苷酸片段的电泳分离。这是值得注意的,因为它仅仅根据核苷酸分辨和区别每一片段。人们已经获得多达1000个片段的分离(1000bp)。具有可切割标记的测序的其它优点如下。当DNA片段由聚丙烯酰胺凝胶电泳分离时,当使用可切割的标记时,没有必要使用平板凝胶形式。由于混合了大量样品(4至2000个),因而没有必要如同当前的染色引物或者染色终止子方法(即ABI373测序仪)的情况一样以平行方式处理样品。由于没有理由运行平行泳道,因而没有理由使用平板凝胶。因此,人们能够使用电泳分离方法的管式凝胶格式。Grossman(Grossman等,遗传分析技术应用,99,1992)指出当管式凝胶格式用来代替平板凝胶格式时,可获得大量的优点。这是因为管格式具有更大的散射焦耳热的能力(与平板凝胶相比),这种能力使管格式产生了更快的运行时间(50%)以及更高的高分子量DNA片段的分辨率(大于1000nt)。在基因组的测序中,长时间阅读是决定性的。因此,可切割的标记在测序中的利用具有附加的优点,该优点使用户可以使用最有效的和最灵敏的DNA分离方法(也具有最高分辨率)。
4.微型制造的装置毛细管电泳(CE)是一种用于DNA测序、法医检定、PCR产物分析和限制片段大小排列的强有力的方法。由于用毛细管凝胶能够应用很高的电势场,因此CE远快于传统的平板PAGE。然而,CE具有仅仅允许每种凝胶只处理一种样品的弊端。该方法将更快速的CE分离时间与平行分析多个样品的能力结合起来。在微型制造的装置的利用之后的基本原理是在电泳中通过使泳道尺寸小型化到大约100微米来增加信息密度的能力。电子工业日常利用微型制造来制造具有大小不到一微米的特性的电路。当前的毛细管系列密度受到毛细管外径的限制。通道的微型制造产生更高密度的系列。微型制造也使之不可能用玻璃纤维进行物理装配,并且微型制造把通道直接与芯片上的其它装置相连接。极少有装置构建在用于分离技术的微型芯片上。气相色谱仪(Terry等,IEEE Trans.ElectronDevice,261880,1979)和液相色谱仪(Manz等,Sens.Actuators B1249,1990)已经制造在硅芯片上,但是这些装置还没有得到广泛的利用。几个组曾报道在微型制造的装置上分离荧光染料和氨基酸(Manz等,色谱分析杂志,593253,1992;Effenhauser等,分析化学,652637,1993)。前不久Woolley和Mathies(Woolley和Mathies,Proc.Natl.Acad. Sci.9111348,1994)曾指出影印石版术和化学浸蚀能够用来在玻璃底物上制造大量的分离通道。通道充满羟乙基纤维素(HEC)分离基质。这表明DNA限制片段可以在少至两分钟之内得到分离。
d.标记的切割如上所描述,不同的接头设计将在不同的具体的物理或者化学条件下赋予可切割性(“不稳定性”)。用作切割各种设计的接头的条件的例子包括酸、碱、氧化、还原、氟原子、巯基交换、光解以及酶促条件。
可切割的接头的例子(满足以上列出的接头的一般标准)将是那些本领域技术人员所熟知的例子,并且包括那些在由Pierce(Rockford,IL)提供的目录中发现的例子。这些例子包括·亚乙基二醇双(琥珀酰亚胺基丁二酸盐)(EGS),一种为羟胺(1M,37℃,历时3-6小时)所切割的胺活性的交联试剂;·二琥珀酰亚胺基酒石酸盐(DST)和硫代-DST,其是可由0.015M高碘酸钠切割的胺活性的交联试剂;·双[2-(氧化琥珀酰亚胺基羰氧基)乙基]砜(BSOCOES)和硫代-BSOCOES,该胺活性的交联试剂可由碱(pH11.6)切割;·1.4-二-[3’-(2’-砒啶基二硫代(丙酰胺基))丁烷(DPDPB),一种可由巯基交换或者还原所切割的砒啶基二硫代交联剂;·N-[4-(对叠氮水杨酰氨基)-丁基]-3’-(2’-砒啶基二硫代)丙酰胺(APDP),一种可由巯基交换或者还原所切割的二硫代交联剂;·双-[β-4-(对叠氮水杨酰氨基)乙基]-二硫化物,一种可由巯基交换或者还原所切割的光敏交联剂;·N-琥珀酰亚胺基-(4-叠氮苯基)-1,3’二硫代丙酸酯(SADP),一种可由巯基交换或者还原所切割的光敏交联剂;·硫代琥珀酰亚胺基-2-(7-叠氮-4-甲基香豆素-3-乙酰胺)乙基-1,3’-二硫代丙酸酯(SAED),一种可由巯基交换或者还原所切割的光敏交联剂;·硫代琥珀酰亚胺基-2-(间叠氮基-邻硝基苯甲酰氨基)-乙基-1,3’二硫代丙酸酯(SAND),一种可由巯基交换或者还原所切割的光敏交联剂。
其它可切割的接头和能够用来释放标记的切割条件的例子如下。甲硅烷基连接基团能够由氟原子或者在酸性条件下切割。3-,4-,5-或者6-取代-2-硝基苄氧基或者2-,3-,5-或者6-取代-4-硝基苄氧基连接基团能够由光子源(光解)切割。3-,4-,5-或者6-取代-2-烷氧基苯氧基或者2-,3-,5-或者6-取代-4-烷氧基苯氧基连接基团能够由Ce(NH4)2(NO3)6(氧化)切割。NCO2(尿烷)接头能够由氢氧化物(碱)、酸或者LiA1H(还原)切割。3-戊烯基、2-丁烯基或者1-丁烯基连接基团能够由O3、OsO4/IO4-或者KMnO4(氧化)切割。2-[3-,4-或者5-取代-呋喃基]氧化连接基团能够由O2、Br2、MeOH或者酸切割。
其它不稳定的连接基团的切割条件包括能够由酸切割的叔烷氧基,能够由H3O-切割的甲基(二烃基)甲氧基或者4-取代-2-烷基-1,3-二氧戊环-2-基连接基团,能够由氟原子或者酸切割的2-甲硅烷基乙氧基连接基团,能够在碱性条件下切割的2-(X)-乙氧基(X=酮基、酯酰胺、氰基、NO2、硫化物、亚砜、砜)连接基团,能够由酸或者在还原条件下切割的2-,3-,4-,5-或者6-取代-苄氧基连接基团,能够由(Ph3P)3RhCl(H)切割的2-丁烯氧基连接基团,能够由锂、镁或者BuLi切割的3-,4-,5-或者6-取代-2-溴代苯氧基连接基团,能够由Hg2+切割的甲基硫代甲氧基连接基团,能够由锌或者镁切割的2-(X)-乙氧基(其中X=卤素)连接基团,能够由氧化切割(例如用Pb(OAc)4)的2-羟基乙氧基连接基团。
优选的接头是那些由酸或者光解切割的接头。几个已开发为固相肽合成的酸不稳定接头可用于把标记与MOI相连接。某些上述接头在一份由Lloyd-Williams等撰写的最新的综述(四面体,4911065-11133,1993)中有描述。一种有用类型的接头基于对烷氧基苄醇,其中的两个-4-氢化甲基苯氧基乙酸和4-(4-氢化甲基-3-甲氧基苯氧基)丁酸是由AdvancedChemTech(Louisville,KY)市售的。这两种接头能够经由与苄醇结合的酯键连接到标记上,以及经由与羧酸结合的酰胺键连接到包含胺的MOI上。用不同浓度的三氟乙酸从MOI中释放出由这些分子连接的标记。这些接头的切割导致了在标记上的羧酸的释放。通过相关接头(如2,4-二甲氧基-4’-(羧甲氧基)-二苯甲基胺(由Advanced ChemTech以保护的FMOC形式提供))连接的标记的酸切割导致了在释放的标记上的羧化酰胺的释放。
可用于本申请的光不稳定接头也已用于大多数已开发为固相肽合成的接头(参见Lloyd-Williams综述)。这些接头通常基于2-二硝基苄酯或者2-硝基苯甲酰胺。最近在文献中报道的两个光不稳定接头的例子是4-(4-(1-Fmoc-氨基)乙基)-2-甲氧基-5-硝基苯氧基)丁酸(Holmes和Jones,有机化学杂志,602318-2319,1995)和3-(Fmoc-氨基)-3-(2-硝基苯)丙酸(Brown等,分子多样性,14-12,1995)。这两种接头能够经由羧酸连接到MOI的胺上。标记向接头的连接通过在标记上的羧酸和接头上的胺之间形成酰胺来实现。光不稳定接头的切割通常用350nm波长的UV光线以本领域所知的强度和时间来完成。接头的切割导致在标记上的一级酰胺的释放。可光切割的接头的例子包括硝基苯甘氨酸酯、外和内2-苯并降冰片(benzonorborneyl)氯化物和甲烷磺酸酯以及3-氨基-3(2-硝基苯)丙酸。酶促切割的例子包括切割酯键的酯酶、切割磷酸二酯键的核酸酶、切割肽键的蛋白酶等等。
E.标记的检测检测方法典型地取决于在某些类型的光谱领域中的吸收与发射。当原子或者分子吸收光线时,进入的能量激发量子化的结构至更高的能级。激发的类型取决于光的波长。紫外或者可见光使电子跃迁至更高的轨道上,红外光激发分子振动,以及微波激发旋转。吸收光谱是作为波长的函数的光吸收。原子或者分子的光谱取决于它的能级结构。吸收光谱可用于化合物的鉴定。具体的吸收光谱方法包括原子吸收光谱(AA)、红外光谱(IR)和紫外可见光谱(uv-vis)。
激发到高能级的原子或者分子能够通过放射辐射衰变至较低能级。如果在相同旋转状态之间跃迁,那么这种光发射称为荧光,如果跃迁发生在不同旋转状态之间则称为磷光。分析物的发射强度与浓度(在低浓度)成线性的正比,并且可用于量化发射类型。具体的发射光谱方法包括原子发射光谱(AES)、原子荧光光谱(AFS)、分子激光诱导荧光(LIF)以及X射线荧光(XRF)。
当电磁辐射穿过物质时,大多数辐射继续以它原来的方向传输,但是有一小部分沿其它方向散射。以与入射光波长相同的波长散射的光线称为瑞利散射。在透明固体中由于振动而散射的光线称为布里渊散射。布里渊散射典型地由入射光的0.1至1个波数变换。由于分子中的或者不透明固体中的光学声子中的振动而散射的光线称为拉曼散射。拉曼散射光由多达4000个的入射光波数变换。具体的散射光谱方法包括拉曼光谱。
红外光谱是样品的中红外光的吸收波长与强度的测量。中红外光(2.5-50μm,4000-200cm-1)能量高得足以激发分子振动到更高的能级。红外吸收带的波长具有特定类型的化学键的特征,并且对有机和有机金属分子的鉴定来说红外光谱通常最有用。
近红外吸收光谱法(NIR)是样品的近红外光的吸收波长与强度的测量。近红外光横跨800nm-2.5μm(12,500-4000cm-1)范围,并且能量高得足以激发分子振动的泛频峰(overtones)和综合峰到更高的能级。近红外吸收光谱法典型地用于有机官能团尤其是O-H、N-H和C=的定量测量。NIR仪器的组件和设计类似于uv-vis吸收光谱仪。光源通常是钨灯,检测器通常是一台PbS固态检测器。样品容器可以是玻璃或者石英,典型的溶剂是CCl4以及CS2。NIR光谱的方便仪器使之适合于在线监测和过程控制。
紫外-可见吸收光谱(uv-vis)光谱法是样品的近紫外和可见光的吸收波长和吸收强度的测量。在真空UV中的吸收发生在100-200nm(105-50,000cm-1);在石英UV中的吸收发生在200-350nm(50,000-28570cm-1);在可见光中的吸收发生在350-800nm(28,570-12,500cm-1),并且所有这些均由Beer-Lambert-Bouguet定律描述。紫外和可见光能量高得足以使外部电子跃迁至更高能级。UV-vis光谱法通常能够应用于溶液中的分子和无机离子或者复合体。UV-vis光谱受限于光谱的宽谱(broad)特性。对uv测量来说光源通常是氢或者氘灯,对可见光测量来说光源通常是钨灯。这些连续光源的波长用波长分离器(如棱柱或者光栅单色器)选择。通过扫描波长分离器获得光谱,同时由光谱或者在单一波长进行定量测量。
质谱仪利用在离子化的原子或者分子的质荷比(m/z)方面的差异来相互分离它们。因此,质谱法可用于原子或者分子的定量,也可用于测定分子的化学和结构信息。分子具有明显的断裂模式,该断裂模式提供了鉴定化合物的结构信息。质谱仪的一般操作如下。生成气相离子,在基于其质荷比的空间或者时间中分离上述离子,同时测量每种质荷比的离子的数量。质谱仪的离子分离能力由分辨率描述,该分辨率定义为R=m/δm,其中m是离子质量,δm是在质谱中的两个可分辨峰之间的质量差。例如,1000分辨率的质谱仪能够分辨100.0m/z的离子至100.1m/z的离子。
一般来说,质谱仪(MS)由离子源、质量选择分析器以及离子检测器组成。磁性扇区(magnetic-sector)、四极以及飞行时间设计也要求抽提和加速离子光学系统以便把离子从源区域转移到质量分析器。几个质量分析器设计(磁扇形扫描MS、四极MS或者飞行时间MS的)的细节讨论如下。磁扇形扫描MS的单聚焦分析器利用180、90或者60度的颗粒束通道。影响颗粒的各种聚焦以不同的质荷比分离离子。对于双聚焦分析器,在这种类型仪器上增加了一个静电分析器以便根据动能的差异来分离颗粒。
四极MS的四极滤质器由平行排列的四根金属棒组成。所施加的电压影响沿位于四根棒之中的飞行通道飞行的离子的轨道。对于给定的直流和交流电压,只有具有一定质荷比的离子才能穿过四极过滤器,而所有其它离子都偏离他们原来的轨道。当棒体上的电压变化时,通过监测穿过四极过滤器的离子获得质谱。
飞行时间质谱仪利用通过“漂移区域”的飞行时间的差异来分离不同质量的离子。它以脉冲方式操作,所以离子必须以脉冲形式产生和/或以脉冲形式提取。脉冲电场用qV的动能加速所有离子进入无场漂移区域,其中q是离子电荷,V是施加的电压。由于离子动能是0.5mV2,因此轻离子比重离子具有更高的速度,并且轻离子很快就到达漂移区域末端的检测器。离子检测器的输出作为产生质谱的时间的函数显示在示波器上。
离子形成过程是质谱分析的起点。化学离子化是一种使用试剂离子的方法,该试剂离子与分析物分子(标记)进行反应从而由或者质子或者氢离子转移形成离子。通过把过量甲烷(与标记相关)引入电子碰撞(EI)离子源产生试剂离子。电子碰撞产生CH4+和CH3+(它们进一步与甲烷进行反应以形成CH5+和C2H5+)。另一种离子化标记的方法是通过等离子体和辉光放电。等离子体是热的、部分离子化的气体,该气体有效地激发和离子化原子。辉光放电是保持在两电极之间的低压等离子体。电子碰撞离子化使用电子束(通常由钨丝产生)来离子化气相原子或者分子。该电子束的电子撞击出分析物原子或者分子中的电子以产生离子。电喷射离子化(ESI)利用十分精细的针和一系列撇乳器,将样品溶液喷射至源腔室之中以形成小滴。当离开毛细管时小滴携带电荷,当溶剂汽化时小滴消失而留下高度带电的分析物分子。ESI尤其可用于难于汽化或者离子化的大生物分子。快原子轰击(FAB)利用中性原子的高能束(典型地是Xe或者Ar),该高能束撞击固相样品而造成解吸和离子化。它可用于难于进入气相的大生物分子。FAB造成小断裂,并且常常给出大分子离子峰,该离子峰使它可用于分子量测定。尽管电荷交换细胞存在,但是仍可通过加速离子源的离子产生原子束。离子在与中性原子的碰撞中获得电子从而形成一束高能原子。激光离子化(LIMS)是一种方法,其中激光脉冲从样品表面融化材料,并产生离子化一些样品组分的微等离子体。基质辅助激光解吸离子化(MALDI)是汽化和离子化大生物分子(如蛋白质或者DNA片段)的LIMS方法。该生物分子分散在固相基质(如烟酸)上。UV激光脉冲融化基质,该基质携带一些大分子至离子化形式的气相之中,这样就能够将它们提取至质谱仪中。等离子体解吸离子化(PD)利用252Cf的衰变,该衰变产生两个以相反方向迁移的裂解片段。一个片段撞击样品而击出1-10个分析物离子。另一个片段撞击检测器并且触发数据获取开始。这一离子化法尤其可用于大生物分子。共振离子化(RIMS)是一仲方法,其中一个或多个激光束调谐在气相原子或者分子跃迁的共振频率(其使之以逐步方式跃迁至它的离子化势之上)上从而产生离子。次级离子化(SIMS)利用离子束(如3He+、16O+或者40Ar+),该离子束聚焦在样品表面并且溅射材料到气相中。火花源是一种在固相样品中利用脉冲输送电流通过两个电极来离子化分析物的方法。
标记可以在从分子(标记连接到其上)上切割之前、在切割期间或者在切割之后带电。基于离子“解吸”、离子自固相或者液态表面的直接形成或者发射的离子化方法已经使之可以运用于非挥发性的和热不稳定的化合物中。这些方法使之不需要在离子化之前使中性分子挥发,并常常使分子产物的热降解最大限度地减少。这些方法包括场解吸(Becky,场离子化和场解吸质谱法的原理,Pergamon,Oxford,1977)、等离子体解吸(Sundqvist和Macfarlane,质谱法研究,4421,1985)、激光解吸(Karas和Hillenkamp,分析化学,602295,1988;Karas等,Angew.Chem.101805,1989)、快颗粒轰击(例如快原子轰击(FAB)以及次级离子质谱法(SIMS),Barber等,分析化学,54645A,1982)以及热喷射(TS)离子化(Vestal,质谱法研究,2447,1983)。热喷射广泛应用于与液相色谱的在线结合。连续流FAB方法(Caprioli等,分析化学,582949,1986)也显示出巨大的应用潜力。更完全的离子化/质量光谱结合的列表是离子阱质谱法、电喷射离子化质谱法、离子喷射质谱法、液态离子化质谱法、气压离子化质谱法、电子撞击离子化质谱法、亚稳原子轰击离子化质谱法、快原子质谱轰击离子化质谱法、MALDI质谱法、光离子化飞行时间质谱法、激光小滴质谱法、MALDI-TOF质谱法、APCI质谱法、毫微喷射质谱法、雾化喷射离子化质谱法、化学离子化质谱法、共振离子化质谱法、次级离子化质谱法、热喷射质谱法。
适合于非易挥发的生物化合物的离子化方法有重复的应用范围。离子化效率高度依赖于基质组合物和化合物类型。当前可得的结果表明TS的上限分子量是大约8000道尔顿(Jones和Krolik,Rapid Comm.MassSpectrom.167,1987)。由于TS主要用四极质谱仪实施,因此在较高质荷比(m/z)时灵敏度典型地不成比例地受损。飞行时间(TOF)质谱仪是市售的,并且具有m/z范围仅仅受到检测器效率的限制的优点。最近介绍了两个附加的离子化方法。现在这两种方法称作为基质辅助激光解吸(MALDI,Karas和Hillenkamp,分析化学,602299,1988;Karas等,Angew.Chem.101805,1989)和电喷射离子化(ESI)。这两种方法具有非常高的离子化效率(即非常高的[产生的分子离子]/[消耗的分子])。确定技术最终应用前景的灵敏度依赖于试样量、离子的数量、流速、检测效率和实际离子化效率。
电喷射质谱法基于在二十世纪六十年代首先提出的思想(Dole等,化学生理学杂志,492240,1968)。电喷射离子化(ESI)是一种为质谱法分析产生带电分子的方法。简言之,电喷射离子化通过在强静电场中雾化液体来产生高度带电的小滴。高度带电的小滴(一般在大气压下在干浴气体中形成)因中性溶剂的汽化而收缩,直到电荷排斥克服内聚力(导致“库仑爆炸(Coulombic explosion)”)。离子化的确切机理是有争议的,几个组曾提出假设(Blades等,分析化学,632109-14,1991;Kebarle等,分析化学,65A972-86;Fenn,美国质谱学会杂志4524-35,1993)。不论离子形成的最终过程是怎样的,ESI都在轻度条件下自溶液中产生带电分子。
在少量的有机分子上获得有用的质谱数据的能力取决于离子的有效产生。ESI的离子化效率是与正电荷(与分子相联系)的大小有关。在实验上改进离子化通常包括利用酸性条件。其它改进离子化的方法利用过季胺类(当可能时)(参见Aebersold等,蛋白质科学,1494-503,1992;Smith等,分析化学,60436-41,1988)。
下面将更详细地描述电喷射离子化。电喷射离子的产生需要两步在邻近大气压下高度带电小滴的分散,其后在一定条件下诱导汽化。将一根针(保持高电势)穿过分析物分子的溶液。在针的末端,溶液分散成薄雾状的高度带电小滴(包含分析物分子)。小滴快速汽化,同时由场解吸或者剩余汽化的方法,将质子化的蛋白质分子释放成气相。一般通过应用高电场到毛细管的低流速液体(一般1-10μL/min)中来产生电喷射。典型地,在毛细管和对电极之间(相距0.2-2cm)应用3-6kV的电势差(其中取决于去溶剂化程度的离子、带电群以及甚至带电小滴,都可以通过小管口由MS抽取样品)。电场在毛细管末端在液态表面产生电荷积累;因此,液体流速、粘滞力以及表面张力在小滴产生中是重要因素。强电场导致液态表面的破裂和高度带电液态小滴的形成。能否产生能够带正电或者带负电的小滴取决于毛细管偏倚。阴离子方式要求存在电子清除剂(如抑制放电的氧)。
能够以静电方式(或者借助于雾化剂)喷射各种液体至真空之中。仅仅应用电场于雾化中导致一些在液体电导率和介电常数范围的实践限制。对于在有用的液体流速(与<10-4M的含水电解质溶液相应)下的稳定电喷射,在室温下要求少于10-5ohms的溶液电阻率。在发现最有用于ESI-MS的方式中,适当的液体流速导致液体分散成为薄雾状。毛细管的短距离小滴直径常常是统一的,大约为1μm。特别重要的是对于更高的液体流速整个电喷射离子流仅仅些微地增加。有证据表明加热可用于操作电喷射。例如,轻微加热使得含水溶液易于电喷射,这大概是因为粘度与表面张力的减少。热辅助和气体雾化辅助电喷射使得可以利用更高的液体流速,但是减少了小滴的带电量。分子离子的形成需要影响初始的小滴群体的汽化的条件。通过在转运通过界面期间加热以及(尤其是在离子捕获方法的情况下)通过在较低压力下的能量碰撞,由中等温度(<60℃)的干气的流动能够在高压下达到这一条件。
虽然作为ESI的基础的详尽过程仍然不确定,但是由ESI产生的十分小的小滴似乎使得几乎任一在溶液中携带净电荷的产物可以在剩余溶剂汽化之后转移到气相。此时,质谱检测要求离子在去溶剂化之后具有易于控制的m/z范围(<4000道尔顿,对于四极仪器),以及可以足够效率产生和传递离子。已发现适合于ESI-MS的许多溶质以及离子化效率对分子量的实质依赖性的缺乏,这二者提出了一个高度非区别和广泛可适用的离子化方法。
电喷射离子“来源”在接近大气压下起作用。典型地,电喷射“来源”是与电偏向液体溶液(与对电极有关)的方法结合的金属或者玻璃毛细管。溶液(典型地是包含分析物并常常包含其它添加剂(如乙酸)的水-甲醇混合物)流动至毛细管末端。ESI来源已经得到描述(Smith等,分析化学,62885,1990),其本质上能够适应任一溶剂系统。典型地,ESI的流速是1-10μl/min。对ESI-MS界面的主要要求在于尽可能有效地从高压区域抽取样品和转运离子进入MS。
ESI(可用于这里所描述的本发明)的效率可以是十分高的从而为极灵敏的测量方法提供了基础。当前的仪器效能能够为大约2×10-12或者大约107计数/s(单一带电产物)的检测器提供总离子流。在该仪器效能的基础上,如果分析物完全离子化,那么低至10-10M或者大约10-18mol/s的单一带电产物浓度将给出可检测的离子流(大约10counts/s)。例如,对于季铵离子,已经利用与毛细管区带电泳的ESI界面获得低的渺摩尔检测限(Smith等,分析化学,591230,1988)。对于1000分子量的化合物,电荷的平均数量是1,电荷状态的近似数是1,峰宽(m/z)是1,最大强度(离子/s)是1×1012。
在获得ESI质谱的过程中实际上只消耗非常少量的样品(Smith等,分析化学,601948,1988)。通过利用具有扇形装置的系列检测器(允许同时检测光谱的组分)也能够获得许多增益。由于当前只有由ESI形成的所有离子的大约10-5得到检测,因此注意限制仪器效能的因素可以为改进的灵敏度提供基础。本发明涉及和包括在离子化和检测方法方面的改进,这对于那些本领域技术人员这将是明显的。
界面优选地放置在分离仪器(例如凝胶)和检测器(例如质谱仪)之间。界面优选地具有下列性质(1)在考虑周到的时间间隔内收集DNA片段的能力,(2)收集DNA片段,(3)从电泳缓冲液与环境中除去DNA片段,(4)从DNA片段上切割标记,(5)分离标记与DNA片段,(6)排列DNA片段,(7)放置标记在易挥发的溶液中,(8)挥发和离子化标记,以及(9)放置或者转运标记至电喷射装置(引入标记于质谱仪中)。
当DNA片段从凝胶底部洗脱时,界面也具有“收集”DNA片段的能力。凝胶可以由平板凝胶、管凝胶、毛细管等等组成。DNA片段能够用数种方法收集。第一种方法是利用电场的收集方法,其中DNA片段聚集在电极上或者靠近电极。第二种方法是其中通过使液体流流过凝胶底部来收集DNA片段。上述两种方法的某些方面能够综合在一起,其中DNA收集到流动流(稍后能够通过利用电场收集该流动流)中。最终结果是DNA片段从环境(在该环境下能够实现分离方法)中除去。也就是说,通过利用电场能够将DNA片段从一种溶液类型“拖曳”至另一种溶液类型。
一旦DNA片段处于适当的溶液(可与电喷射和质谱法兼容)中,标记就能够从DNA片段上切割下来。然后通过施加电场能够从标记中分离DNA片段或者其剩余部分(优选地,标记所带电荷与DNA标记的相反)。然后通过利用电场或者流动液体将标记引入电喷射装置。
由荧光标记吸收的和荧光发射的波长和强度,能够最直接地鉴定和量化荧光标记。
当常规分光荧光计极端灵活时,它提供连续范围的激发和发射波长(lEX、ls1、ls2),更专门的仪器(如流式细胞仪和激光扫描显微镜)要求探针在单一固定的波长都是可激发的。在现代仪器中,这通常是氩激光器的488nm线。
每个探针分子的荧光强度与e和QY的乘积成正比。在具有当前实际重要性的荧光团中的这些参数的范围分别是大约10,000至100,000cm-1M-1(对于ε)和0.1至1.0(对于QY)。当吸收为高强度照明所驱动而趋向于饱和时,激发荧光团(光漂白的)的不可逆破裂成为限制荧光检测限的因子。光漂白的实际效果取决于所讨论的荧光检测技术。
可以将装置(界面)插入分离和检测步骤之间以便使得大小分离和标记检测(实时)的连续操作得以进行,对于本领域技术人员这将是明显的。这综合了分离方法和仪器用法与检测方法和形成单一装置的仪器用法。例如,将界面插入分离技术和检测(用质谱法或者恒电位电流分析法)之间。
界面的功能主要是使(如质谱法)标记从分析物释放。有几个代表性的界面执行过程。界面的设计依赖于可切割的接头的选择。在可光切割的或者可光照切割的接头的情况下,要求能量或者光子源。在酸不稳定接头、碱不稳定接头或者二硫化物接头的情况下,在界面中要求试剂加入。在热不稳定接头的情况下,要求热源能量。对于酶敏感的接头(如特异性蛋白酶和肽接头、核酸酶和DNA或RNA接头、糖基酶、HRP或者磷酸酶以及在切割之后不稳定的接头(例如,类似于化学萤光底物)),要求酶加入。界面的其它特征包括最小限度的谱带增宽、DNA在注入质谱仪之前从标记中的分离。分离技术包括那些基于电泳方法和技术的技术、亲和性技术、大小保留(透析)、过滤等等。
也可以收集标记(或者核酸-接头-标记构建体),以电泳方式俘获标记,然后释放标记成为交替试剂流(其可与选择的具体类型的离子化方法兼容)。界面也能够在微型玻璃珠上俘获标记(或者核酸-接头-标记构建体)、将小珠射入腔室然后进行激光解吸/汽化。也可能在流动中提取成为交替缓冲液(例如由毛细管电泳缓冲液穿过透性膜成为疏水缓冲液)。也可能需要在一些利用中间歇地传送标记进入质谱仪(其将包含界面的其他功能)。界面的另一个功能在于借助于每个柱旋转的时间空档从多个柱传送标记进入质谱仪。此外,也可能从单柱传送标记进入多个MS检测器(由时间分离),用几毫秒时间收集每一系列标记,然后传送到质谱仪。
下列是可用于本发明的分离和检测技术的代表性卖主的列表。Hoefer科学仪器公司(旧金山,CA)制造测序应用方面的电泳设备(TwoStepTM,Poker FaceTMII)。Pharmacia生物技术公司(Piscataway,NJ)制造DNA分离和测序的电泳设备(用于PCR-SSCP分析的PhastSystem,用于DNA测序的MacroPhor System)。Perkin Elmer/应用生物系统部(ABI,Foster City,CA)制造基于荧光染料的半自动序列分析仪(ABI373和ABI377)。分析光谱装置公司(Boulder,CO)制造UV分光仪。Hitachi仪器公司(东京,日本)制造原子吸收分光计、荧光分光仪、LC和GC质谱仪、核磁共振分光仪以及UV-vis分光仪。PerSeptive生物系统公司(Framingham,MA)生产质谱仪(VoyagerTMElite)。Bruker仪器公司(Manning Park,MA)制造傅里叶变换红外分光仪(载体22)、傅里叶变换拉曼分光仪、飞行时间质谱仪(Reflex IITM)、离子阱质谱仪(EsquireTM)和Maldi质谱仪。分析技术公司(ATI,波士顿,MA)制造毛细管凝胶电泳装置、UV检测器以及二极管系列检测器。Teledyne电子技术公司(Mountain View,CA)制造离子阱质谱仪(3DQ Discovery和3DQApogeeTM)。Perkin Elmer/应用生物系统部(Foster City,CA)制造可与电喷射兼容的Sciex质谱仪(三联四极LC/MS/MS,API 100/300)。Hewlett-Packard(Santa Clara,CA)生产质量选择检测器(HP 5972A)、MALDI-TOF质谱仪(HP G2025A)、二极管系列检测器、CE装置、HPLC装置(HP 1090)以及UV分光仪。Finnigan公司(San Jose,CA)制造质谱仪(磁性扇区(MAT 95 STM)、四极分光仪(MAT 95 SQTM)和其它四个相关的质谱仪)。Rainin(Emeryville,CA)制造HPLC仪器。
这里所描述的方法和组合物使之可以利用所切割的标记(用作为图谱)于特定的样品类型和核苷酸特性。在每一种测序方法开始时,一个特定的(选择的)引物分配一个特定的唯一标记。标记作图于样品类型、双脱氧终止子类型(在Sanger测序反应的情况下)之任一或者(优选地)二者。具体地说,标记作图于引物类型,该引物类型反过来作图于载体类型,该载体类型反过来作图于样品性质。参照标记的引物放置于其中的双脱氧核苷酸反应,标记也可以作图于双脱氧终止子(ddTTP、ddCTP、ddGTP、ddATP)。然后进行测序反应,并及时地按大小依次分离产生的片段。
在序框中将标记从片段上切割下来,并在时序框中测量和记录所切割的标记。通过比较标记图谱和时序框构建序列。也就是说,在依大小排列步骤之后所有标记性质都及时地得到记录,同时相关的标记性质变得与时序框中的性质相互相关。依大小排列步骤按照一个核苷酸增量分离核酸片段,因而相关的标记性质按照一个核苷酸增量分离。由预知的双脱氧终止子或者核苷酸图谱和样品类型,容易以线型方式推定序列。
提供下列实施例作为例证而不是作为限制。
除非有其它说明,用于实施例的化学药品可以得自Aldrich化学公司,Milwaukee,WI。在这里使用了具有所说明的意义的下列缩写ANP=3-(Fmoc-氨基)-3-(2-硝基苯)丙酸NBA=4-(Fmoc-氨甲基)-3-硝基苯甲酸HATU=O-7-氮杂苯并三唑-1-基-N,N,N’,N’-四甲基脲六氟-磷酸酯DIEA=二异丙基乙胺MCT=一氯三嗪NMM=4-甲基吗啉NMP=N-甲基吡咯烷酮ACT357=现代化学技术公司,Louisville,KY的ACT357肽合成仪ACT=现代化学技术公司,Louisville,KYNovaBiochem=CalBiochem-NovaBiochem Internatiomal,San Diego,CATFA=三氟乙酸Tfa=三氟乙酰iNIP=N-甲基六氢异烟酸Tfp=四氟苯基DIAEA=2-(二异丙氨基)乙胺MCT=一氯三氮烯
5’-AH-ODN=5’-氨基己基-尾随的寡脱氧核苷酸实施例实施例1用于可切割标记测序的酸不稳定接头的制备A.可化学切割(释放具有羧基酰胺末端的标记)的质谱标记的五氟苯酯的合成图1显示反应图解。
步骤A.用DMF将TentaGel S AC树脂(化合物II;由ACT提供;1当量)悬浮在ACT357肽合成仪(ACT)的收集器中。加入在DMF中的化合物I(3当量)、HATU(3当量)和DIEA(7.5当量),同时摇动收集器1小时。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。重复化合物I与树脂的偶联和洗涤步骤,以给出化合物III。
步骤B.使树脂(化合物III)与在DMF中的25%哌啶混合,并摇动5分钟。过滤树脂,然后与在DMF中的25%哌啶混合,并且摇动10分钟。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂,并且直接在步骤C中利用所得的树脂。
步骤C.使得自步骤B的脱保护树脂悬浮在DMF中,同时在其中加入在DMF中的FMOC保护的氨基酸(在其侧链包含胺官能团(化合物IV,如α-N-FOMC-3-(3-吡啶基)-丙氨酸,由Synthetech提供,Albany,OR;3当量))、HATU(3当量)以及DIEA(7.5当量)。摇动容器1小时。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。重复化合物IV与树脂的偶联和洗涤步骤,以给出化合物V。
步骤D.用如步骤B所描述的哌啶处理树脂(化合物V)以除去FMOC基团。然后由ACT357将脱保护的树脂从收集器等分到16个反应容器中。
步骤E.使得自步骤D的脱保护树脂的16个等分试样悬浮在DMF中。在每一个反应容器中加入适当的在DMF中的羧酸VI1-16(R 1-16CO2H;3当量)、HATU(3当量)和DIEA(7.5当量)。摇动容器1小时。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂的等分试样。重复化合物VI1-16与树脂的等分试样的偶联和洗涤步骤,以给出化合物VII1-16。
步骤F.用CH2Cl2(3X)洗涤树脂(化合物VII1-16)的等分试样。在每一个反应容器中加入在CH2Cl2中的1%TFA,同时摇动容器30分钟。从反应容器过滤溶剂到单独的管中。用CH2Cl2(2X)和MeOH(2X)洗涤树脂的等分试样,滤液混合入单独的管中。在真空中蒸发单独的管,从而提供化合物VIII1-16。
步骤G.在DMF中溶解每个游离的羧酸VIII1-16。在每种溶液中加入吡啶(1.05当量),其后加入五氟苯基三氟乙酸酯(1.1当量)。在室温下振荡上述混合物45分钟。所得溶液用EtOAc稀释,用1M柠檬酸(3X)和5%含水NaHCO3(3X)洗涤,在Na2SO4上干燥,过滤,并在真空中蒸发,从而提供化合物IX1-16。
B.可化学切割(释放具有羧酸末端的标记)的质谱法标记的五氟苯酯的合成图2显示反应图解。
步骤A.使4-(羟甲基)苯氧基丁酸(化合物I;1当量)与在CHCl3中的DIEA(2.1当量)和烯丙基溴化物(2.1当量)混合,并加热以回流2小时。上述混合物用EtOAc稀释,用1N HCl(2X)、pH9.5碳酸盐缓冲液(2X)和盐水(1X)洗涤,在Na2SO4上干燥,并在真空中蒸发以给出烯丙基酯化合物I。
步骤B.在CH2Cl2中使得自步骤A的化合物I的烯丙基酯(1.75当量)与FMOC保护的氨基酸(在其侧链包含胺官能团(化合物II,如α-N-FOMC-3-(3-吡啶基)-丙氨酸,由Synthetech提供,Albany,OR;3当量))、N-甲基吗啉(2.5当量)以及HATU(1.1当量)混合,并在室温下振荡4小时。上述混合物用CH2Cl2稀释,用1M含水柠檬酸(2X)、水(1X)以及5%含水NaHCO3(2X)洗涤,在Na2SO4上干燥,并在真空中蒸发。用闪烁色谱法分离化合物III(CH2Cl2-->EtOAc)。
步骤C.将化合物III溶解在CH2Cl2中,加入Pd(PPh3)4(0.07当量)以及N-甲基苯胺(2当量),同时在室温下将上述混合物振荡4小时。上述混合物用CH2Cl2稀释,用1M含水柠檬酸(2X)和水(1X)洗涤,在Na2SO4上干燥,并在真空中蒸发。用闪烁色谱法分离化合物IV(CH2Cl2-->EtOAc+HOAc)。
步骤D.用DMF将TentaGel S AC树脂(化合物V;1当量)悬浮在ACT357肽合成仪(Advanced ChemTech Inc.(ACT),Louisville,KY)的收集器中。加入在DMF中的化合物IV(3当量)、HATU(3当量)和DIEA(7.5当量),同时摇动收集器1小时。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。重复化合物IV与树脂的偶联和洗涤步骤,以给出化合物VI。
步骤E.使树脂(化合物VI)与在DMF中的25%哌啶混合,并且摇动5分钟。过滤上述树脂,然后与在DMF中的25%哌啶混合,并摇动10分钟。除去溶剂,同时用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。然后由ACT357将脱保护的树脂从收集器等分到16个反应容器中。
步骤F.使得自步骤E的脱保护树脂的16个等分试样悬浮在DMF中。在每一个反应容器中加入适当的在DMF中的羧酸VII1-16(R1-16CO2H;3当量)、HATU(3当量)和DIEA(7.5当量)。摇动容器1小时。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂的等分试样。重复化合物VII1-16与树脂的等分试样的偶联和洗涤步骤,以给出化合物VIII1-16。
步骤G.用CH2Cl2(3X)洗涤树脂(化合物VIII1-16)的等分试样。在每一个反应容器中加入在CH2Cl2中的1%TFA,同时摇动容器30分钟。从反应容器过滤溶剂到单独的管中。用CH2Cl2(2X)和MeOH(2X)洗涤树脂的等分试样,滤液混合入单独的管中。在真空中蒸发单独的管,从而提供化合物IX1-16。
步骤H.在DMF中溶解每个游离的羧酸IX1-16。在每种溶液中加入吡啶(1.05当量),其后加入五氟苯基三氟乙酸酯(1.1当量)。在室温下振荡上述混合物45分钟。所得溶液用EtOAc稀释,用1M柠檬酸(3X)和5%含水NaHCO3(3X)洗涤,在Na2SO4上干燥,过滤,并在真空中蒸发,从而提供化合物X1-16。
实施例2T-L-X的光解切割的示范在室温下用近紫外光照射在实施例11中制备的T-L-X化合物7分钟。在350nm具有发射峰的Rayonett荧光UV灯(Southern EnglandUltraviolet Co.,Middletown,CT)用作为UV光源。该灯放置在距离装有样品的陪替氏培养皿15cm的地方。SDS凝胶电泳显示在这些条件下>85%的缀合物得到切割。
实施例3荧光标记的引物的制备以及荧光团的切割的示范寡核苷酸的合成和纯化利用标准的亚磷酰胺化学(由卖主供给)或者H-膦酸酯化学(GlennResearch Sterling),VA)在自动DNA合成仪上制备寡核苷酸(ODN)。适当地封阻的dA、dG、dC和T亚磷酰胺以这些形式市售,同时合成核苷可以容易转化成为适当的形式。利用由卖主供给的标准的亚磷酰胺或者H-膦酸酯化学法制备寡核苷酸。由标准方法的修改的方法纯化寡核苷酸。利用15%至55%MeCN(在Et3NH+OAc-中,pH7.0)的梯度由12微米、300#Rainin(Emeryville,CA)Dynamax C-8 4.2×250mM反相柱在HPLC上进行具有5’-三苯甲基的寡核苷酸的层析,该过程历时20分钟。当完成脱三苯甲基时,由凝胶排阻色谱进一步纯化寡核苷酸。用PRP柱(Alltech,Deerfield,IL)在碱性pH下和由PAGE实施寡核苷酸的质量分析校核。
2,4,6-三氯三嗪衍生的寡核苷酸的制备使10至1000μg 5’-末端胺连接的寡核苷酸与过量的再结晶的氰尿酰氯(在10%正甲基-吡咯烷酮中)在碱性(优选为pH8.3至8.5)缓冲液中在19℃至25℃下反应30至120分钟。最后的反应条件由0.15M硼酸钠(pH8.3)、2mg/ml再结晶氰尿酰氯和500μg/ml的各寡核苷酸组成。由大小排阻色谱法在G-50葡聚糖凝胶(Pharmacia,Piscataway,NJ)柱上除去未反应的氰尿酰氯。
然后使活化的纯化寡核苷酸与100倍摩尔过量的胱胺在0.15M硼酸钠(pH8.3)中在室温下反应1小时。由大小排阻色谱法在G-50葡聚糖凝胶柱上除去未反应的胱胺。然后使衍生的ODN制剂与胺活性的荧光染料反应。将衍生的ODN制剂分成3部分,并使每一部分与任一(a)20倍摩尔过量的得克萨斯红磺酰氯(分子探针,Eugene,OR)、与(b)20倍摩尔过量的丽丝胺磺酰氯(分子探针,Eugene,OR)、(c)20倍摩尔过量的荧光素异硫氰酸盐反应。最后的反应条件由0.15M硼酸钠(pH8.3)、1小时、室温组成。由大小排阻色谱法在G-50葡聚糖凝胶柱上除去未反应的荧光染料。
为了从寡核苷酸上切割荧光染料,将ODN调整至1×10-5摩尔,然后在TE(TE是0.01M Tris、pH7.0、5mM EDTA)中制备(12,3倍稀释)稀释液。在100μl体积的ODN中加入25μl 0.01M二硫苏糖醇(DTT)。在控制的同一系列中没有DDT加入。在室温下培养上述混合物15分钟。在一个黑色的微量滴定板中测量荧光。从培养管(150微升)中除去溶液,并将该溶液放置在一个黑色的微量滴定板(Dynatek实验室,Chantilly,VA)中。然后利用495nm的激发波长并在520nm监测荧光素的发射,利用591nm的激发波长并在612nm监测得克萨斯红的发射,以及利用570nm的激发波长并在590nm监测丽丝胺的发射,利用Fluoroskan II荧光计(Flow实验室,McLean,VA)直接阅读平板。
荧光染料的摩 非切割的RFU 切割的RFU 游离的RFU尔数1.0×105M6.4 1200 13453.3×106M2.4 4514561.1×106M0.9 1351303.7×107M0.3 44 481.2×107M0.12 15.3 16.04.1×107M0.14 4.95.1
1.4×108M0.13 2.5 2.84.5×109M0.12 0.8 0.9上述数据表明当荧光染料从ODN切割下来时,在相关的荧光方面有大约200倍增加。
实施例4标记的M13序列引物的制备以及标记的切割的示范2,4,6-三氯三嗪衍生的寡核苷酸的制备使1000μg 5’-末端胺连接的寡核苷酸(5’-己胺-3-TGTAAAAGGACGGCCAGT-3’)(Seq.ID No.1)与过量的再结晶氰尿酰氯在10%正甲基-吡咯烷酮碱性(优选为pH8.3至8.5)缓冲液中在19至25℃下反应30至120分钟。最后的反应条件由0.15M硼酸钠(pH8.3)、2mg/ml再结晶氰尿酰氯和500μg/ml的各寡核苷酸组成。在G-50 Sephadex柱上由大小排阻色谱法除去未反应的氰尿酰氯。
然后使活化的纯化寡核苷酸与100倍摩尔过量的胱胺在0.15M硼酸钠(pH8.3)中在室温下反应1小时。在G-50 Sephadex柱上由大小排阻色谱法除去未反应的胱胺。然后使衍生的ODN与各种酰胺进行反应。然后将衍生的ODN分成12份,并使每一份与下列之任一的五氟苯基酯进行反应(25摩尔过量的)(1)4-甲氧基苯甲酸、(2)4-氟苯甲酸、(3)甲苯甲酸、(4)苯甲酸、(5)吲哚-3-乙酸、(6)2,6-二氟苯甲酸、(7)烟酸N-氧化物、(8)2-硝基苯甲酸、(9)5-乙酰水杨酸、(10)4-乙氧基苯甲酸、(11)肉桂酸、(12)3-氨基烟酸。反应在0.2M硼酸钠(pH8.3)中在37℃下进行2小时。在G-50 Sephadex上由凝胶排阻色谱纯化衍生的ODN。
为了从寡核苷酸上切割标记,将ODN调整至1×10-5摩尔,然后在TE(TE是0.01M Tris、pH7.0、5mM EDTA)中用50%EtOH(V/V)制备(12,3倍稀释)稀释液。在100μl体积的ODN中加入25μl 0.01M二硫苏糖醇(DTT)。在对照的同一系列中没有DDT加入。在室温下培养上述混合物30分钟。然后加入NaCl至0.1M,同时加入2体积EtOH以沉淀出ODN。通过4℃、14,000×G、15分钟的离心从溶液中除去ODN。保存并完全干燥上清液。然后在25μl MeOH中溶解粒状沉淀。然后由质谱法检定该粒状沉淀是否存在标记。
用于这一工序的质谱仪是一种外部离子源的傅里叶变换质谱仪(FTMS)。为MALDI分析制备的样品沉淀在直接探针的尖端上,将该样品插入离子源中。当用激光脉冲照射样品时,从源中提取离子,并使离子进入长四极离子导向装置,该导向装置聚焦和运输离子到FTMS分析池(内部定位于超导磁体的内部)中。
光谱产生下列信息。在强度方面变化于25至100相对强度单位的峰值具有下列的分子量(1)212.1amu(表明4-甲氧基苯甲酸的衍生物)、(2)200.1amu(表明4-氟苯甲酸的衍生物)、(3)196.1amu(表明甲苯甲酸的衍生物)、(4)182.1amu(表明苯甲酸的衍生物)、(5)235.2amu(表明吲哚-3-乙酸的衍生物)、(6)218.1amu(表明2,6-二氟苯甲酸的衍生物)、(7)199.1amu(表明烟酸N-氧化物的衍生物)、(8)227.1amu(表明2-硝基苯甲酰胺)、(9)179.18amu(表明5-乙酰水杨酸的衍生物)、(10)226.1amu(表明4-乙氧基苯甲酸的衍生物)、(11)209.1amu(表明肉桂酸的衍生物)、(12)198.1amu(表明3-氨基烟酸的衍生物)。
上述结果表明可从引物上切割标记并可由质谱法检测该标记。
实施例5一系列具有式R1-36-Lys(ε-INIP)-ANP-TFP的化合物的制备图3说明一系列36种T-L-X(X=Lh)化合物的平行合成,其中Lh是活化的酯(具体地说,是四氟苯酯),L2是具有L3的邻硝基苄胺基,L3是连接Lh和L2的亚甲基,T具有模块结构(其中赖氨酸的羧酸基团已结合至L2苄胺基的氮原子上而形成一个酰胺键),同时可变重量组分R1-36(其中这些R基团相当于这里所定义的T2,并且可以经由这里所列的任一特定羧酸引入)通过赖氨酸的α-氨基结合,而质谱灵敏度增强基团(经由N-甲基六氢异烟酸引入)则通过赖氨酸的ε-氨基结合。
参考图3步骤A.用DMF将NovaSyn HMP树脂(由NovaBiochem提供;1当量)悬浮在ACT357的收集器中。在DMF中加入化合物I(得自ACT的ANP;3当量)、HATU(3当量)和NMM(7.5当量),并摇动收集器1小时。除去溶剂,同时用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。重复化合物I与树脂的偶联和洗涤步骤,以给出化合物II。
步骤B.使树脂(化合物II)与在DMF中的25%哌啶混合,并摇动5分钟。所得树脂过滤,然后与在DMF中的25%哌啶混合,并摇动10分钟。除去溶剂,用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂,所得树脂直接用于步骤C。
步骤C.将得自步骤B的脱保护树脂悬浮在DMF中,并在其中加入在DMF中的FMOC保护的氨基酸(在它的侧链上包含保护的胺官能团(FMOC-赖氨酸(Aloc)-OH,由PerSeptive Biosystems提供;3当量)、HATU(3当量)和NMM(7.5当量)。摇动容器1小时。除去溶剂,同时用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。重复Fmoc-赖氨酸(Aloc)-OH与树脂的偶联和洗涤步骤,以给出化合物IV。
步骤D.用CH2Cl2(2X)洗涤树脂(化合物IV),然后将其悬浮在在CH2Cl2中的(PPh3)4Pd(0)(0.3当量)和PhSiH3(10当量)的溶液中。摇动混合物1小时。除去溶剂,并用CH2Cl2(2X)洗涤树脂。重复钯步骤。除去溶剂,并用CH2Cl2(2X)、在DMF(2X)中的N,N-二异丙基乙基铵二乙基二硫代氨基甲酸酯、DMF(2X)洗涤树脂以给出化合物V。
步骤E.使得自步骤D的脱保护树脂与如步骤C所描述的N-甲基六氢异烟酸偶联以给出化合物VI。
步骤F.由ACT357将Fmoc保护的树脂VI从收集器等分成36个反应容器以给出化合物VI1-36。
步骤G.用如步骤B所描述的哌啶处理树脂(化合物VI1-36)以除去Fmoc基团。
步骤H.使得自步骤G的脱保护树脂的36个等分试样悬浮在DMF中。在每一个反应容器中加入适当的羧酸(R1-36CO2H;3当量)、HATU(3当量)和在DMF中的NMM(7.5当量)。摇动容器1小时。除去溶剂,同时用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂的等分试样。重复R1-36CO2H与树脂的等分试样的偶联和洗涤步骤,以给化合物VIII1-36。
步骤I.用CH2Cl2(3X)洗涤树脂的等分试样(化合物VIII1-36)。在每一个反应容器中加入90∶5∶5的TFA∶H2O∶CH2Cl2,并摇动容器120分钟。溶剂从反应容器中过滤到单独的管中。用CH2Cl2(2X)和MeOH(2X)洗涤树脂的等分试样,滤液混入单独的管中。在真空中蒸发单独的管,从而提供化合物IX1-36。
步骤J.将每个游离的羧酸IX1-36溶解在DMF中。在每一种溶液中加入吡啶(1.05当量),其后加入四氟苯酯三氟乙酸酯(1.1当量)。在室温下振荡混合物45分钟。所得溶液用EtOAc稀释,用5%NaHCO3水溶液(3X)洗涤,在Na2SO4上干燥,过滤,并在真空中蒸发,从而提供化合物X1-36。
实施例6一系列式R1-36-LYS(ε-INIP)-NBA-TFP的化合物的制备图4说明一系列36种T-L-X化合物(X=Lh)的平行合成,其中Lh是活化的酯(具体地说,是四氟苯酯),L2是具有L3的邻硝基苄胺基,L3是Lh和L2之间的直接键,其中Lh直接结合至L2基团的芳环上,T具有模块结构(其中赖氨酸的羧酸基团已结合至L2苄胺基的氮原子上而形成酰胺键),同时可变重量组分R1-36(其中这些R基团相当于这里所定义的T2,并可以经由这里所列的任一特异性羧酸引入)通过赖氨酸的α-氨基结合,而质谱增强基团(经由N-甲基六氢异烟酸引入)则通过赖氨酸的ε-氨基结合。
参考图4步骤A.按照实施例5的步骤A所描述的方法使NovaSyn HMP树脂与化合物I偶联(按照Brown等,分子多样性,1,4(1995)的方法所制备的NBA)以给出化合物II。
步骤B-J.如同实施例5中的步骤B-J所描述的一样处理树脂(化合物II)以给出化合物X1-36。
实施例7一系列式INIP-Lys(ε-R1-36)-ANP-TFP的化合物的制备图5说明一系列36种T-L-X化合物(X=Lh)的平行合成,其中Lh是活化的酯(具体地说,是四氟苯酯),L2是具有L3的邻硝基苄胺基,L3是Lh和L2的亚甲基团连接,T具有模块结构(其中赖氨酸的羧酸基团已结合至L2苄胺基的氮原子上而形成酰胺键,同时可变重量组分R1-36(其中这些R基团相当于这里所定义的T2,并可以经由这里所列的任一特定羧酸引入)通过赖氨酸的ε-氨基结合,而质谱灵敏度增强基团(经由N-甲基六氢异烟酸引入)则通过赖氨酸α-氨基结合。
参考图5步骤A-C.与实施例5相同。
步骤D.如同实施例5中的步骤B所描述的一样用哌啶处理树脂(化合物IV)以除去Fmoc基团。
步骤E.如同实施例5中的步骤C所描述的一样使在步骤D中在树脂上脱保护的α-胺与N-甲基六氢异烟酸偶联以给出化合物V。
步骤F.与实施例5相同。
步骤G.如同实施例5中的步骤D所描述的一样用钯处理树脂(化合物VI1-36)以除去Aloc基团。
步骤H-J.按照与实施例5相同的方法制备化合物X1-36。
实施例8一系列式R1-36-谷氨酸(γ-DIAEA)-ANP-TFP的化合物的制备图6说明一系列36种T-L-X化合物(X=Lh)的平行合成,其中在Lh是活化的酯(具体地说,是四氟苯酯),L2是具有L3的邻硝基苄胺基,L3是连接Lh和L2的亚甲基团,T具有模块结构(其中谷氨酸的α-羧酸基团结合至L2苄胺基的氮原子上而形成酰胺键),同时可变重量组分R1-36(其中这些R基团相当于这里所定义的T2,并且可以经由这里所列的任一特定羧酸引入)通过谷氨酸的α-氨基结合,而质谱灵敏度增强基团(经由2-(二异丙氨基)乙胺引入)则通过谷氨酸的γ-羧酸结合。
参考图6步骤A-B.与实施例5相同。
步骤C.利用实施例5的步骤C所描述的偶联方法使脱保护的树脂(化合物III)与Fmoc-谷氨酸-(OAl)-OH偶联以给出化合物IV。
步骤D.用CH2Cl2(2X)洗涤在树脂(化合物IV)上的烯丙基酯,并使其与在CH2Cl2中的(PPh3)4Pd(0)(0.3当量)和N-甲基苯胺(3当量)的溶液混合。摇动混合物1小时。除去溶剂,并用CH2Cl2(2X)洗涤树脂。重复钯步骤。除去溶剂,并用CH2Cl2(2X)、在DMF(2X)中的N,N-二异丙基乙基铵二乙基二硫代氨基甲酸酯、DMF(2X)洗涤树脂以给出化合物V。
步骤E.使得自步骤D的脱保护的树脂悬浮在DMF中,并通过混合HATU(3当量)和NMM(7.5当量)激活该树脂。摇动容器15分钟。除去溶剂,并用NMP(1X)洗涤树脂。将树脂与2-(二异丙氨基)乙胺(3当量)和NMM(7.5当量)混合。摇动容器1小时。重复2-(二异丙氨基)乙胺与树脂的偶联和洗涤步骤以给出化合物VI。
步骤F-J.与实施例5相同。
实施例9一系列式R1-36-Lys(ε-INIP)-ANP-Lys(ε-NH2)-NH2的化合物的制备图7说明一系列36种T-L-X化合物(X=Lh)的平行合,其中Lh是胺(具体地说,是赖氨酸衍生的部分的ε-氨基),L2是具有L3的邻硝基苄胺基,L3是连接Lh和L2的羧基酰氨基取代的亚烷基氨酰基亚烷基基团,T具有模块结构(其中赖氨酸的羧酸基团已结合至苄胺基的氮原子上而形成酰胺键),以及可变重量组分R1-36(其中这些R基团相当于这里所定义的T2,并且可以经由这里所列的任一特定羧酸引入)通过赖氨酸的α-氨基结合,而质谱灵敏度增强基团(经由N-甲基六氢异烟酸引入)则通过赖氨酸的ε-氨基结合。
参考图7步骤A.将Fmoc-Lys(Boc)-SRAM树脂(由ACT提供;化合物I)与在DMF中的25%哌啶混合并摇动5分钟。过滤树脂,然后将其与在DMF中的25%哌啶混合并摇动10分钟。除去溶剂,用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂,并在步骤B中直接利用该树脂。
步骤B.加入树脂(化合物II)、ANP(由ACT提供;3当量)、HATU(3当量)和在DMF中的NMM(7.5当量),并摇动收集器1小时。除去溶剂,并用NMP(2X)、MeOH(2X)和DMF(2X)洗涤树脂。重复化合物I与树脂的偶联和洗涤步骤,以给出化合物III。
步骤C-J.如同实施例5中的步骤B-I一样处理树脂(化合物III)以给出化合物X1-36。
实施例10一系列式R1-36-Lys(ε-TFA)-Lys(ε-INIP)-ANP-TFP的化合物的制备图8说明一系列36种T-L-X化合物(X=Lh)的平行合成,其中Lh是活化的酯(具体地说,是四氟苯酯),L2是具有L3的邻硝基苄胺基,L3是连接Lh和L2的亚甲基团,T具有模块结构(其中第一个赖氨酸的羧酸基团结合至L2苄胺基的氮原子上而形成酰胺键),质谱灵敏度增强基团(经由N-甲基六氢异烟酸引入)通过第一个赖氨酸的ε-氨基结合,第二个赖氨酸分子(molecle)已通过第一个赖氨酸的α-氨基结合至第一个赖氨酸上,分子量调节基团(具有使三氟乙酰结构)通过第二个赖氨酸的ε-氨基结合,以及可变重量组分R1-36(其中这些R基团相当于这里所定义的T2,并且可以经由这里所列的任一特定羧酸引入)通过第二个赖氨酸的α-氨基结合。
参考图8步骤A-E.这些步骤与实施例5中的步骤A-E相同。
步骤F.如同实施例5中的步骤B所描述的一样用哌啶处理树脂(化合物VI)以除去FMOC基团。
步骤G.利用实施例5的步骤C所描述的偶联方法使脱保护的树脂(化合物VII)与Fmoc-Lys(Tfa)-OH偶联以给出化合物VIII。
步骤H-K.如同实施例5中的步骤F-J一样处理树脂(化合物VIII)以给化合物XI1-36。
实施例11一系列式R1-36-Lys(ε-INIP)-ANp-5’-AH-ODN的化合物的制备图9说明一系列36种T-L-X化合物(X=MOI,其中MOI是核酸片段,ODN)的平行合成,该化合物得自实施例5的酯(相同过程可以与其它T-L-X(其中X是活化的酯)化合物一起使用)。经由磷酸二酯-亚烷基胺基团,使MOI通过MOI的5’末端结合到T-L上。
参考图9步骤A.按照在Van Ness等,核酸研究,19,3345(1991)中的改进的生物素酰化方法制备化合物XII1-36。在5’-氨基己基寡核苷酸(化合物XI1-36,1mg)之一的溶液中在200mM硼酸钠中加入四氟苯酯(得自实施例5的化合物X1-36,其在250mL的NMP中为100倍摩尔过量)之一。在环境温度下温育反应一整夜。由Sephadex G-50色谱从化合物XII1-36中除去未反应的和水解的四氟苯酯。
实施例12一系列式R1-36-Lys(ε-INIP)-ANP-Lys(ε-(MCT-5’-AH-ODN))-NH2的化合物的制备图10说明一系列36种T-L-X化合物(X=MOI,其中MOI是核酸片段,ODN)的平行合成,该化合物得自实施例9的胺类(相同过程可以与其它T-L-X(其中X是胺)化合物一起使用)。经由磷酸二酯-亚烷基胺基团通过MOI的5’末端使MOI与T-L结合。
参考图10步骤A.如同在Van Ness等,核酸研究,19,3345(1991)中所描述的一样制备5’-[6-(4,6-二氯-1,3,5-三嗪-2-氨基)己基]寡核苷酸XII1-36。
步骤B.在100mM硼酸钠(pH8.3)中在浓度为1mg/ml的5’-[6-(4,6-二氯-1,3,5-三嗪-2-氨基)己基]寡核苷酸(化合物XII1-36)之一的溶液中加入100倍摩尔过量的一级胺(选自R1-36-Lys(e-iNIP)-ANP-Lys(e-NH2)-NH2(实施例11的化合物X1-36)。在环境温度下混合溶液一整夜。通过3000MW截断膜(Amicon,Beverly,MA)利用H2O(3X)作为洗涤液由超滤除去未反应的胺。通过还原分离化合物XIII1-36至100ml。
实施例13由质谱法同时检测多个标记的示范这一实施例提供了由质谱法同时检测多个化合物(标记)的能力的描述。在这一具体的例子中,将31种化合物与基质混合,并沉淀和干燥其到固相支持体上,然后用激光使之释放。然后将所产生的离子引入质谱仪。
以等摩尔基底共同混合下列化合物(购自Aldrich,Milwaukee,WI)从而形成0.002M(对于每种化合物)终浓度的基底苯甲酰胺(121.14)、烟酰胺(122.13)、吡嗪酰胺(123.12)、3-氨基-4-吡唑羧酸(127.10)、2-噻吩羧基酰胺(127.17)、4-氨基苯甲酰胺(135.15)、甲苯甲酰胺(tolumide)(135.17)、6-甲基烟酰胺(136.15)、3-氨基烟酰胺(137.14)、烟酰胺N-氧化物(138.12)、3-氢化吡啶酰胺(138.13)、4-氟苯甲酰胺(139.13)、肉桂酰胺(147.18)、4-甲氧基苯甲酰胺(151.17)、2,6-二氯苯甲酰胺(157.12)、4-氨基-5-咪唑-羧基酰胺(162.58)、3,4-吡啶-二羧基酰胺(165.16)、4-乙氧基苯甲酰胺(165.19)、2,3-吡嗪二羧基酰胺(166.14)、2-硝基苯甲酰胺(166.14)、3-氯-4-甲氧基苯甲酸(170.4)、吲哚-3-乙酰胺(174.2)、5-乙酰水杨酰胺(179.18)、3,5-二甲氧基苯甲酰胺(181.19)、1-萘乙酰胺(185.23)、8-氯-3,5-二氨基-2-吡嗪羧基酰胺(187.59)、4-三氟甲基-苯甲酰胺(189.00)、5-氨基-5-苯基-4-吡唑-羧基酰胺(202.22)、1-甲基-2-苄基-丙酰胺酸酯(207.33)、4-氨基-2,3,5,6-四氟苯甲酰胺(208.11)、2,3-萘二羧酸(212.22)。化合物以上述浓度放置在DMSO中。然后将1μl材料与α-氰-4-羟基肉桂酸基质(在1∶10,000稀释之后)混合,并存放在固相不锈钢载体上。
然后利用蛋白质TOF质谱仪(Bruker,Manning Park,MA)由激光释放所说的物质,并以线型和反射两种操作方式测量所产生的离子。观察到下列m/z值(图11)121.1---->苯甲酰胺(121.14)122.1---->烟酰胺(l22.13)123.1---->吡嗪酰胺(123.12)
124.1125.2127.3----> 3-氨基-4-吡唑羧酸(127.10)127.2----> 2-噻吩羧基酰胺(127.17)135.1----> 4-氨基苯甲酰胺(135.15)135.1----> 甲苯甲酰胺(135.17)136.2----> 6-甲基烟酰胺(136.15)137.1----> 3-氨基烟酰胺(137.14)138.2----> 烟酰胺N-氧化物(138.12)138.2----> 3-氢化吡啶酰胺(138.13)139.2----> 4-氟苯甲酰胺(139.13)140.2147.3----> 肉桂酰胺(l47.18)148.2149.24-甲氧基苯甲酰胺(151.17)152.22,6-二氯苯甲酰胺(157.12)158.3163.3165.2----> 3,4-吡啶-二羧基酰胺(165.16)165.2----> 4-乙氧基苯甲酰胺(165.19)166.2----> 2,3-吡嗪二羧基酰胺(166.14)166.2----> 2-硝基苯甲酰胺(166.14)3-氟-4-甲氧基苯甲酸(170.4)171.1172.2173.4吲哚-3-乙酰胺(174.2)
178.3179.3----> 5-乙酰水杨酰胺(179.18)181.2----> 3,5-二甲氧基苯甲酰胺(181.19)182.2---->
1-萘乙酰胺(185.23)186.28-氯-3,5-二氨基-2-吡嗪羧基酰胺188.2189.2----> 4-三氟甲基-苯甲酰胺(189.00)190.2191.2192.35-氨基-5-苯基-4-吡唑-羧基酰胺(202.22)203.2203.41-甲基-2-苄基-丙酰胺酸酯(207.33)4-氨基-2,3,5,6-四氟苯甲酰胺(208.11)212.2----> 2,3-萘二羧酸(212.22)219.3221.2228.2234.2237.4241.4数据表明31种化合物的22种出现在具有预计的质量的光谱中,31种化合物的9种出现在具有在预计的质量范围之内的n+H质量(一个原子质量单位,amu)的光谱中。后一种现象可能是由于化合物中的胺的质子化作用所致。因此31种化合物的31种都可由MALDI质谱法检测。更重要的是,例子显示用光谱方法能够同时检测多个标记。
α-氰基基质单独地(图11)在146.2、164.1、172.1、173.1、189.1、190.1、191.1、192.1、212.1、224.1、228.0、234.3给出峰值。其它所鉴定的质量是由于在所购买的化合物中的污染(因为没有努力以进一步纯化化合物)所致。
实施例14利用多个探针的基因表达的分析由硼酸和氢氧化钠新制备硼酸钠缓冲液(SBB)。APB缓冲液是0.18M NaCl、0.05M Tris(pH7.6)、5mM EDTA以及0.5%Tween 20R。TMNZ缓冲液是0.05M Tris(pH9.5)、1mM MgCl2、0.5mM ZnCl2。FW(洗滤)是0.09M NaCl、50mM Tris(pH7.6)、25mM EDTA。SDS/FW是具有0.1%十二烷基硫酸钠(SDS)的FW。溶解和杂交溶液是3M硫氰酸胍、2%N-十二烷酰肌氨酸(sarcosyl)、50mM Tris(pH7.6)和25mM EDTA。CAP缓冲液是0.1M柠檬酸钠和0.2M磷酸钠(pH6.5)。HRP(辣根过氧化物酶)底物溶液是0.1M柠檬酸钠(pH6.5)、0.2M磷酸钠、2.87mM 4-甲氧基-1-萘酚、0.093mM 3-甲基-2-苯并噻唑啉酮腙盐酸盐和4mM过氧化氢。AP(碱性磷酸酶)底物溶液是1mM 5-溴代-4-氯吲哚基(chlorindoy1)-3-磷酸酯、1mM氮蓝四唑和在TMNZ中的0.01%Tween 20。碱性磷酸酶的荧光底物是0.5mM 4-甲基-伞形酮磷酸酯、0.05M Tris(pH9.5)、1mM MgCl2、0.5mM ZnCl2。聚(乙烯亚胺)购自Polysciences(Warington,PA)。抛光的或者未抛光的尼龙小珠购自The Hoover Group(Sault St.Marie,MI)。三乙基水合氢根四氟硼酸盐、琥珀酸酐和1-甲基-2-吡咯烷酮购自Aldrich Chemical(Milwaukee,WI)。Tween 20R和NHS-LC-生物素购自Pierce(Rockford,IL)。硫氰酸胍(GuSCN)购自Kodak(Rochester,纽约)。氰尿酰氯得自Aldrich化学公司(Milwaukee,WI),并且从甲苯中再结晶。
A.ODN合成利用标准的氰乙基-N,N-二异丙氨基-亚磷酰胺(CED-亚磷酰胺)化学法,在或者ABI 380B或者MilliGen 7500自动DNA合成仪上合成互补(5’-CCTTAGGACAGTCTTCTTCACGC)于保守的或者高变的区域(牙龈卟啉单胞菌(Pg)的16S核糖体RNA(rRNA)的区域)的ODN。利用市售的N-单甲氧基三苯甲氨基己基-6-氧-CED-亚磷酰胺将胺尾掺入至5’-末端上。利用Hamilton PRP-1(7.0×305mm)反相柱,使用5%至45%CH3CN的梯度,在0.1M Et3NH+OAc-、pH7.5下,由HPLC色谱分析具有5’-单甲氧基三苯甲基的ODN,该过程历时20多分钟。在用80%乙酸脱三苯甲基之后,通过加入3M乙酸钠和1-丁醇沉淀ODN。通过利用Toso-Haas DEAE-NPR柱的离子交换HPLC和变性聚丙烯酰胺凝胶电泳(PAGE)完成ODN质量分析校核。
B.涂布聚合物的尼龙小珠的制备在环境温度下,振荡在无水1-甲基-2-吡咯烷酮(1800mL)中的未抛光的尼龙小珠(25,000,3/32英寸直径)5分钟。加入三乙基水合氢根四氟硼酸盐(200mL,1M,在二氯甲烷中),然后在环境温度下振荡30分钟。倾析液体,同时用1-甲基-2-吡咯烷酮(4×500mL)快速洗涤小珠。然后在3%(w/v)70,000MW聚(乙烯亚胺)溶液(1L)(在1-甲基-2-吡咯烷酮(由30%聚(乙烯亚胺)的水溶液制备)中)中振荡小珠12-24小时。在倾析聚(乙烯亚胺)溶液之后,用1-甲基-2-吡咯烷酮(2×1L)、SDS/FW(2×1L)、H2O(10×2L)以及最后用95%乙醇(1×500mL)洗涤小珠。在高真空下干燥小珠4至5小时。通过与苦基磺酸反应测定小珠的胺含量。
C.5’-[6-(4,6-二氯-1,3,5-三嗪-2-基氨基)-己基]-ODN的制备在5’-氨基己基ODN溶液(1mL,10mg/mL)(在新制备的0.1M SBB(pH8.3,3.2mL)和H2O(1.8mL)中)中加入再结晶的氰尿酰氯的乙腈溶液(1mL,50mg/mL)。在环境温度下混合该溶液30-120分钟。利用新制备的0.1M SBB n(pH9.3,4×10mL)作为洗涤液,通过3000MW截断膜(Amicon,Beverly,MA),由超滤除去未反应的氰尿酰氯。在最后的洗涤之后,上述溶液体积减少至1mL。在4℃下使5’-[6-(4,6-二氯-1,3,5-三嗪-2-氨基)己基]-ODN在0.1M SBB(pH8.3)中稳定(没有可检测的分解)1周。
D.尼龙小珠向ODNS的连接将涂布PEI的尼龙小珠(500粒小珠)(如以上描述)放置在等体积的新制备的0.1M SBB(pH9.3)中,并将其剧烈振荡30分钟以再水化小珠。倾析硼酸盐溶液,同时用0.1M SBB(pH8.3)洗涤小珠一次,然后用等量的新鲜的0.1M SBB vocered小珠。然后将5’-[6-(4,6-二氯-1,3,5-三嗪-2-氨基)己基]-ODN的硼酸盐溶液(1mL,500mg/mL)加入至小珠。在环境温度下剧烈振荡混合物60分钟。倾析溶液,然后用0.1M SBB(pH8.3,2×500mL)洗涤小珠。用1-甲基-2-吡咯烷酮1.0M SBB(pH8.3)为9∶1的琥珀酸酐(10mg/mL)在三倍该体积的小珠中处理上述洗涤过的小珠。在环境温度下振荡反应混合物1小时。然后用1-甲基-2-吡咯烷酮(3×250mL)、dH2O(2×1L)、SDS/FW(5×250mL)洗涤小珠,以及然后用dH2O(4×1L)洗涤小珠。小珠存储在25mM EDTA中。
E.设计和标记探针就实施例5来说,设计探针,其使得可以在受激的Jurkat人T-细胞淋巴瘤(JRT 3.5)(相对于未受激的Jurkat人T-细胞淋巴瘤)中进行不同的mRNA表达。
在25℃下,使100μg的每种以上所描述的5’-末端胺-连接的寡核苷酸与过量的再结晶氰尿酰氯在10%正甲基-吡咯烷酮碱性(pH8.3至8.5优选地)缓冲液中反应30至120分钟。最后的反应条件由0.15M硼酸钠(pH8.3)、2mg/ml再结晶氰尿酰氯和500μg/ml的各自的寡核苷酸组成。在G-50 Sephadex柱上由大小排阻色谱法除去未反应的氰尿酰氯。然后使活化的纯化的寡核苷酸在0.15M硼酸钠(pH8.3)中与100摩尔过量的胱胺在室温下反应1小时。在G-50 Sephadex柱上由大小排阻色谱法除去未反应的胱胺。然后使衍生的ODN与胺活性的荧光染料进行反应。将衍生的ODN制剂分成3部分,并使每一部分与(a)20倍摩尔过量的得克萨斯红磺酰氯(分子探针,Eugene,OR)、与(b)20倍摩尔过量的丽丝胺磺酰氯(分子探针,Eugene,OR)、(c)20倍摩尔过量的荧光素异硫氰酸盐之任一进行反应。最后的反应条件由0.15M硼酸钠(pH8.3)、1小时、室温组成。由大小排阻色谱法在G-50葡聚糖凝胶柱上除去未反应的荧光染料。用得克萨斯红标记IL-2、IFN-G、GM-CSF。用丽丝胺标记c-fos、IL-4和PKC-g,并用荧光素标记CTLA4/CD28和GMP激酶。收集IL-2、c-fos和CTLA4探针。收集IFN-g、IL-4和GMP激酶探针,并收集GM-CSF和PKC-g探针。
F.用于基因表达分析的固相载体cDNA合成寡DMO 596 5′-ACTACTGATCAGGCGCGCCTTTTTTTTTTTTTTTTTTTT-3′间隔AscI(聚dT)20G.刺激和RNA制备当存在10ng/ml佛波醇-12-肉豆蔻-13乙酸盐(Calbiochem,SanDiego,CA)和100ng/ml离子霉素时,在1×10-6细胞/ml的细胞密度下在无血清培养基(生命技术,Gaithersburg,MD)中刺激Jurkat系JRT 3.56小时。
(Calbiochem)。将细胞离心沉淀,并用1×PBS(生命技术)洗涤所得的沉淀,再次离心沉淀,并将所得的沉淀以每10-6细胞溶解在0.5ml缓冲液(包含4M胍异硫氰酸盐/l%N-月桂基肌氨酸/25mM柠檬酸钠pH7.1(Fisher Scientific,Pittsburg,PA))中。加入十分之一体积的2M pH4.2乙酸钠(Fisher Scientific),其后加入一体积水饱和的苯酚(Amresco.Solon,OH)。在混合之后,加入四分之一体积的三氯甲烷∶异戊醇(29∶1)(FisherScientific)同时剧烈混合溶液,然后在冰上培养10分钟。然后离心裂解物,用等量的三氯甲烷∶异戊醇除去和提取水相。然后收集水相,并用2体积的EtOH(Quantum Chemical Corp.,Tuscola,IL)沉淀RNA。在离心之后,倾析EtOH,并简短风干RNA,然后按照1和5mg/ml之间的浓度使RNA悬浮在无RNase的水中。
H.捕捉和第一链合成一种携带以共价键连接的寡核苷酸,5’-ACTACTGATCAGGCGCGCCTTTTTTTTTTTTTTTTTTTT-3′的尼龙小珠(GenSet,La Jolla,CA)加至10μg总细胞RNA中,并在无菌的1.5ml微型离心管(Fisher Scientific)中用足以覆盖小珠的无RNase水稀释。在65℃下培养RNA和小珠5分钟。将等量的2×mRNA杂交缓冲液(由50mM Tris(pH7.5)、1M NaCl(Fisher Scientific)和20μg/ml乙酰化的BSA(新英格兰生物实验室,Beverly,MA)组成)加入至每支管中,并在室温下和缓地摇动管2小时。除去上清液,然后在1×mRNA杂交缓冲液中洗涤小珠三次。在最后的洗涤完成之后,将逆转录混合物(由1×MMLV-逆转录酶缓冲液、1mM dNTP混合物、2mMDTT(生命技术)、20单位Rnasin(Promega.Madison,WI)和10μg/ml乙酰化的BS(新英格兰生物实验室)组成)加入至每支管中,其后加入600单位MMLV-逆转录酶(生命技术)。在42℃下和缓地摇动这一反应2小时。然后加入1单位Rnase H(Boehringer-Mannheim.Indianapolis,IN),使反应再继续0.5小时。再一次除去上清液,并在10mM Tris(pH8.0)、1mM EDTA(pH8)(FisherScientific)中洗涤每一小珠三次。通过在具有0.01%SDS(Fisher Scientific)的TE中煮沸小珠除去余下的RNA模板。
然后使尼龙固相支持体与每毫升100纳克的下列的标记的寡核苷酸探针杂交(5’-GAACTCAAACCTCTGGAGGAAGTG-3’,IL-2,5’-CAGTGCAGAGGCTCGCGAGCTATA-3’,IFN-γ5’-CTTGACCATGATGGCCAGCCACTA-3’,GM-CSF5’-CATTCCCACGGTCACTGCCATCTC-3’,c-fos5’-GCGACTGTGCTCCGGCAGTTCTAC-3’,IL-45’-GTGGTTCATCGACGATGCCACGAA-3’,PKC-γ5’-GAGCTCATGTACCCACCTCCGTAC-3’,CTLA4/CD285-ATCTTCGTGCAGCCGCCCTCACTG-3’,GMP激酶)(除基于牛的序列的GMP激酶外,所有寡核苷酸都是人的同系物)。杂交在3M GuSCN中在37℃下进行8小时。在杂交期间和缓地混合反应混合物以便促进探针向固相支持体的扩散。在8小时培养时间之后,固相支持体用3M GuSCN洗涤两次,用0.1×SSC洗涤5次,然后放置在0.01M二硫苏糖醇中以便从寡核苷酸上切割荧光染料。在室温下培养混合物15分钟。在黑色的微量滴定板(Dynatek实验室,Chantilly,VA)上测量荧光。然后利用495nm的激发波长和监测在荧光素的520nm的发射,利用591nm的激发波长和监测在得克萨斯红的612nm的发射,利用570nm的激发波长和监测在丽丝胺的590nm的发射,用Fluoroskan II荧光计(Flow实验室,McLean,VA)直接阅读平板。探测的结果如下不受激的受激的IL-2 1.2rfu 230rfuIFN 0.8rfu 120rfuGM-CSF 21rfu 38rfuc-fos16rfu 76rfuIL-4 33rfu 12rfuPKC 10rfu 130rfuCTLA-4 ND NDGMP激酶 450rfu 420rfu实施例15在固相上的单碱基对错配序列的检测这一实施例描述了在固定化的探针中的单碱基对错配序列的检测,该检测利用互补的荧光标记的寡核苷酸。寡核苷酸系列由一种形成完全的碱基配对的探针和一种杂交时包含错配序列的寡核苷酸组成。用不同的荧光染料标记这两种寡核苷酸,在使杂交在错配序列的Tm下发生之后,测定杂交的荧光染料的比率。
在一系列固相支持体上固定“靶”寡核苷酸(DMO5015′-TTGATTCCCAATTATGCGAAGGAG-3′)。如同以前描述(Van Ness等,核酸研究,193345,1991)的一样制备ODN小珠(3/32nd英寸直径)。ODN小珠包含0.01至1.2mg/小珠的以共价键固定化的ODN。DMO578是DMO501(完全的补体)的补体。DMO1969是在位置11具有G--->T变化的DMO501的补体。DMO1971是在位置12具有A--->T变化的DMO501的补体。用BIODIPY、TAMRA或者得克萨斯红标记每一探针寡核苷酸。杂交反应在3M GuSCN、0.01M Tris(pH7.6)、5mMEDTA中装配,探针量为50ng/ml的各自的探针。在每支管存在3种固相支持体时,将等摩尔比率的每一探针类型用于每一杂交中。在42℃下以匀速搅拌进行30分钟的杂交。小珠在42℃下用3M GuSCN洗涤两次,然后用SDS/FW洗涤5次。
为使探针寡核苷酸变性,将固相支持体放置在20μl TE(TE是0.01MTris、pH7.0、5mM EDTA)中。在100℃下培养混合物10分钟。在黑色的微量滴定板中测量荧光。从培养管(200微升)中除去溶液,并将该溶液放置在黑色的微量滴定板(Dynatek Laboratories,Chantilly,VA)中。然后利用495nm的激发波长和监测在荧光素的520nm的发射,利用591nm的激发波长和监测在得克萨斯红的612nm的发射,利用570nm的激发波长和监测在丽丝胺或者TAMRA的590nm的发射,用Fluoroskan II荧光计(Flow Laboratories,McLean,VA)直接阅读平板。探测的结果如下表10
结果表明对杂交没有任何荧光染料的效应,如第1行所表明的,得克萨斯红(TR)578寡核苷酸和578-BD(BIODIPY)平等地竞争与固定化的靶的杂交,这是由于在杂交之后标记的比率并没有变化。在允许进行碱基对错配序列的某些检测的GuSCN中,完全碱基配对的探针富集超过错配探针平均20倍。
从前述中可明显地看出虽然在这里为说明的目的描述了本发明的具体实施方案,但是可以进行各种修改而不偏离本发明的精神与范围。因此,除例如附加的权利要求书而外,本发明是不受限制的。
权利要求
1.一种式Tms-L-X的化合物,其中,Tms是一个可由质谱法检测的有机基团,该基团包含碳原子、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子;L是一个有机基团,该基团使得包含Tms的部分可以与化合物的剩余部分切割开来,其中包含Tms的部分包含一个官能团,当对化合物进行质谱分析时该官能团支持单一的离子化电荷状态,并且该官能团选自叔胺、季胺以及有机酸;X是不同于核酸片段的MOI片段,并且该化合物具有至少250道尔顿的质量。
2.按照权利要求1的化合物,其中Tms具有15至10,000道尔顿的质量,且其分子式为C1-500N0-100O0-100S0-10P0-10HαFβIδ,其中α、β和δ的总数足以满足C、N和O原子所没有满足的价。
3.按照权利要求1的化合物,其中Tms和L通过选自酰胺、酯、醚、胺、硫化物、硫酯、二硫化物、硫醚、脲、硫脲、氨基甲酸酯、硫代氨基甲酸盐、席夫碱、还原的席夫碱、亚胺、肟、腙、磷酸酯、膦酸酯、磷酰胺、膦酰胺、磺酸酯、氨磺酰或者碳-碳键的官能团结合在一起。
4.按照权利要求3的化合物,其中所说的官能团选自酰胺、酯、胺、脲以及氨基甲酸酯。
5.按照权利要求3的化合物,其中L选自LhU、Lacid、Lbase、L[O]、L[R]、Lenz、Lelc、LΔ和LSS,其中光化辐射、酸、碱、氧化、还原、酶、电化学、热和巯基交换分别使包含Tms的部分与分子的剩余部分切割开来。
6.按照权利要求5的化合物,其中LhU具有式L1-L2-L3,其中L2是一个吸收光化辐射从而促进Tms从X上切割的分子碎片,L1和L3分别是一个直接键或者有机部分,其中L1把L2与Tms分离而L3把L2与X分离,并且当L2吸收光化辐射时既非L1也非L3遭受键裂。
7.按照权利要求6的化合物,其中-L2-L3具有式 在a、b、c、d或e位置有一个碳原子为-L3-X所取代,b、c、d或者e位的一个或多个基团可以也可以不为烷基、烷氧基、氟原子、氯原子、羟基、羧基或者酰胺基所取代;R1是氢或者烃基。
8.按照权利要求7的化合物,其中X是-CO-R2,R2是-OH或者一个或保护或激活羧酸与另一部分偶联的基团。
9.按照权利要求6的化合物,其中L3选自直接键、亚烃基、-O-亚烃基以及亚烃基-(O-亚烃基)n-H,并且n是1至10之间的整数。
10.按照权利要求1的化合物,其中-L-X具有式 其中b、c、d或e位的一个或多个为氢、烷基、烷氧基、氟原子、氯原子、羟基、羧基或者酰胺基所取代;R1是氢或者烃基。
11.按照权利要求1的化合物,其中Tms具有式T2-(J-T3-)n-T2是一个由碳和一个或多个氢、氟、碘、氧、氮、硫以及磷形成的有机部分,并具有15至500道尔顿的质量;T3是一个由碳和一个或多个氢、氟、碘、氧、氮、硫以及磷形成的有机部分,并具有50至1000道尔顿的质量;J是一个直接键或者一个选自酰胺、酯、胺、硫化物、醚、硫酯、二硫化物、硫醚、脲、硫脲、氨基甲酸酯、硫代氨基甲酸盐、席夫碱、还原的席夫碱、亚胺、肟、腙、磷酸酯、膦酸酯、磷酰胺、膦酰胺、磺酸酯、氨磺酰或者碳-碳键的官能团;同时n是1至50之间的整数,并且当n大于1时,T3和J各自是分别选择的。
12.按照权利要求11的化合物,其中T选自烃基、烃基-O-亚烃基、烃基-S-亚烃基、烃基-NH-亚烃基、烃基-酰胺-亚烃基、N-(烃基)亚烃基、N,N-二(烃基)亚烃基、烃基酰基-亚烃基、杂环烃基(其中杂原子选自氧、氮、硫和磷)、取代的杂环烃基(其中杂原子选自氧、氮、硫和磷,取代基选自烃基、烃基-O-亚烃基、烃基-NH-亚烃基、烃基-S-亚烃基、N-(烃基)亚烃基、N,N-二(烃基)亚烃基和烃基酰基-亚烃基)以及前述之任一的衍生物(其中一个或多个氢为等量的氟原子所取代)。
13.按照权利要求11的化合物,其中T3具有式-G(R2)-,G是具有单一R2取代基的C1-6亚烷基,R2选自烷基、烯基、炔基、环烷基、芳基稠合的环烷基、环烯基、芳基、芳烷基、芳基取代的烯基或者炔基、环烷基取代的烷基、环烯基取代的环烷基、联芳基、烷氧基、烯氧基、炔氧基、芳烷氧基、芳基取代的烯氧基或者炔氧基、烷氨基、烯氨基或者炔氨基、芳基取代的烷氨基、芳基取代的烯氨基或者炔氨基、芳氧基、芳氨基、N-烷基脲取代的烷基、N-芳基脲取代的烷基、烷基碳酰氨基取代的烷基、氨基碳酰取代的烷基、杂环基、杂环基取代的烷基、杂环基取代的氨基、羧烷基取代的芳烷基、氧代碳环稠合的芳基和杂环烷基;环烯基、芳基取代的烷基和芳烷基、羟基取代的烷基、烷氧基取代的烷基、芳烷氧基取代的烷基、烷氧基取代的烷基、芳烷氧基取代的烷基、氨基取代的烷基、(芳基取代的烷氧碳酰氨基)取代的烷基、巯基取代的烷基、烷基磺酰取代的烷基、(羟基取代的烷基硫代)取代的烷基、硫代烷氧基取代的烷基、烃基酰氨基取代的烷基、杂环酰氨基取代的烷基、烃基取代的杂环酰氨基取代的烷基、烷基磺酰氨基取代的烷基、芳基磺酰氨基取代的烷基、吗啉烷基、硫代吗啉烷基、吗啉羰基取代的烷基、硫代吗啉羰基取代的烷基、[N-(烷基、烯基或者炔基)-或者N,N-[二烷基、二烯基、二炔基或者(烷基、烯基)-氨基]羰基取代的烷基、杂环氨基碳酰、杂环亚烷氨基碳酰、杂环氨基碳酰取代的烷基、杂环亚烷氨基碳酰取代的烷基、N,N-[二烷基]亚烷氨基碳酰、N,N-[二烷基]亚烷氨基碳酰取代的烷基、烷基取代的杂环羰基、烷基取代的杂环羰基-烷基、羧基取代的烷基、二烷氨基取代的酰氨基烷基和氨基酸侧链(选自精氨酸、天冬酰胺、谷氨酰胺、S-甲基半胱氨酸、甲硫氨酸以及其相应的亚砜和砜衍生物、甘氨酸、亮氨酸、异亮氨酸、别异亮氨酸、叔亮氨酸、正亮氨酸、苯丙氨酸、酪氨酸、色氨酸、脯氨酸、丙氨酸、鸟氨酸、组氨酸、谷酰胺、缬氨酸、苏氨酸、丝氨酸、天门冬氨酸、β氰丙氨酸和别苏氨酸);alynyl和杂环羰基、氨基碳酰、酰氨基、单或者二烷氨基碳酰、单或者二芳氨基碳酰、烷芳氨基碳酰、二芳氨基碳酰、单或者二酰氨基碳酰、芳香族或者脂肪族酰基、可以也可以不由选自氨基、羧基、羟基、巯基、单或者二烷氨基、单或者二芳氨基、烷芳氨基、二芳氨基、单或者二酰氨基、烷氧基、烯氧基、芳氧基、硫代烷氧基、硫代烯氧基、硫代炔氧基、硫代芳氧基和杂环的取代基取代的烷基。
14.按照权利要求1的化合物,该化合物具有式 其中,G是(CH2)1-6,其中在一个而且仅有的一个CH2基团上的氢为-(CH2)c-酰胺-T4所取代;式T2和T4是式C1-25N0-9O0-9HαFβ的有机部分,其中α和β的总数足以满足C、N和O原子所没有满足的价;酰胺是-N(R1)-CO-或-CO-N(R1)-R1是氢或者C1-10烷基;c是0至4之间的整数;X是按照权利要求1定义的;以及n是1至50之间的整数,这样当n大于1时,G、c、酰胺、R1和T4是分别选择的。
15.按照权利要求1的化合物,该化合物具有式 其中T5是式C1-25N0-9O0-9HαFβ的有机部分,其中α和β的总数足以满足C、N以及O原子所没有满足的价;T5包括叔或者季铵或者有机酸;m是0-49之间的整数。
16.按照权利要求1的化合物,该化合物具有式 其中T5是式C1-25N0-9O0-9HαFβ的有机部分,其中α和β的总数足以满足C、N以及O原子所没有满足的价;T5包括叔或者季铵或者有机酸;m是0-49之间的整数。
17.按照权利要求5和6之任一的化合物,其中-酰胺-T5选自 和
18.按照权利要求5和6之任一的化合物,其中-酰胺-T5选自 和
19.按照权利要求11的化合物,其中T2具有当下列有机酸之一与胺基团缩合时导致T2C(=(O)-NR)-形成的结构甲酸、乙酸、丙炔酸、丙酸、氟乙酸、2-丁炔酸、环丙烷羧酸、丁酸、甲氧基乙酸、二氟乙酸、4-戊炔酸、环丁烷羧酸、3,3-甲基丙烯酸、戊酸、N,N-二甲基甘氨酸、N-甲酰基-甘氨酸-OH、乙氧基乙酸、(甲硫基)乙酸、吡咯-2-羧酸、3-呋喃甲酸、异唑-5-羧酸、反-3-己烯酸、三氟乙酸、己酸、Ac-甘氨酸-OH、2-羟基-2-甲基丁酸、苯甲酸、烟酸、2-吡嗪羧酸、1-甲基-2-吡咯羧酸、2-环戊烯-1-乙酸、环戊基乙酸、(S)-(-)-2-吡咯烷酮-5-羧酸、N-甲基-L-脯氨酸、庚酸、Ac-B-丙氨酸-OH、2-乙基-2-羟基丁酸、2-(2-甲氧基乙氧基)乙酸、对甲苯甲酸、6-甲基烟酸、5-甲基-2-吡嗪羧酸、2,5-二甲基吡咯-3-羧酸、4-氟苯甲酸、3,5-二甲基异唑-4-羧酸、3-环戊基丙酸、辛酸、N,N-二甲基琥珀酰胺酸、苯丙炔酸、肉桂酸、4-乙基苯甲酸、对甲氧基苯甲酸、1,2,5-三甲基吡咯-3-羧酸、3-氟-4-甲基苯甲酸、Ac-DL-炔丙基甘氨酸、3-(三氟甲基)丁酸、1-哌啶丙酸、N-乙酰脯氨酸、3,5-二氟苯甲酸、Ac-L-缬氨酸-OH、吲哚-2-羧酸、2-苯并呋喃羧酸、苯并三唑-5-羧酸、4-正丙基苯甲酸、3-二甲氨基苯甲酸、4-乙氧基苯甲酸、4-(甲硫基)苯甲酸、N-(2-糠酰)甘氨酸、2-(甲硫基)烟酸、3-氟-4-甲氧基苯甲酸、Tfa-甘氨酸-OH、2-萘甲酸(Napthoic acid)、喹哪啶酸、Ac-L-异亮氨酸-OH、3-甲基茚-2-羧酸、2-喹喔啉羧酸、1-甲基吲哚-2-羧酸、2,3,6-三氟苯甲酸、N-甲酰基-L-蛋氨酸-OH、2-[2-(2-甲氧基乙氧基)乙氧基]乙酸、4-正丁基苯甲酸、N-苯甲酰甘氨酸、5-氟代吲哚-2-羧酸、4-正丙氧基苯甲酸、4-乙酰基-3,5-二甲基-2-吡咯羧酸、3,5-二甲氧基苯甲酸、2,6-二甲氧基烟酸、环己烷戊酸、2-萘乙酸、4-(1H-吡咯-1-基)苯甲酸、吲哚-3-丙酸、间三氟甲基苯甲酸、5-甲氧基吲哚-2-羧酸、4-戊基苯甲酸、Bz-b-丙氨酸-OH、4-二乙氨基苯甲酸、4-正丁氧基苯甲酸、3-甲基-5-CF3-异唑-4-羧酸、3,4-二甲氧苯基乙酸、4-联苯羧酸、新戊酰-脯氨酸-OH、辛酰基-甘氨酸-OH、(2-萘氧基)乙酸、吲哚-3-丁酸、4-(三氟甲基)苯乙酸、5-甲氧基吲哚-3-乙酸、4-(三氟甲氧基)苯甲酸。Ac-L-苯丙氨酸-OH、4-戊氧基苯甲酸、Z-甘氨酸-OH、4-羧基-N-(呋喃-2-甲基)吡咯烷-2-酮、3,4-二乙氧基苯甲酸、2,4-二甲基-5-CO2Et-吡咯-3-羧酸、N-(2-氟苯)琥珀酰胺酸、3,4,5-三甲氧基苯甲酸、N-苯氨茴酸、3-苯氧基苯甲酸、壬酰-甘氨酸-OH、2-苯氧基吡啶-3-羧酸、2,5-二甲基-1-苯基吡咯-3-羧酸、反-4-(三氟甲基)肉桂酸、(5-甲基-2-苯基唑-4-基)乙酸、4-(2-环己烯氧基)苯甲酸、5-甲氧基-2-甲基吲哚-3-乙酸、反-4-可替宁羧酸、Bz-5-氨基戊酸、4-己氧基苯甲酸、N-(3-甲氧苯基)琥珀酰胺酸、Z-Sar-OH、4-(3,4-二甲氧苯基)丁酸、Ac-o-氟代-DL-苯丙氨酸-OH、N-(4-氟苯)戊酰胺酸、4’-乙基-4-联苯羧酸、1,2,3,4-四氢化吖啶羧酸、3-苯氧基苯乙酸、N-(2,4-二氟苯基)琥珀酰胺酸、N-癸酰基-甘氨酸-OH、(+)-6-甲氧基-a-甲基-2-萘乙酸、3-(三氟甲氧基)肉桂酸、N-甲酰基DL-Trp-OH、(R)-(+)-a-甲氧基-a-(三氟甲基)苯乙酸、Bz-DL-亮氨酸-OH、4-(三氟甲氧基)苯氧基乙酸、4-庚氧基苯甲酸、2,3,4-三甲氧基肉桂酸、2,6-二甲氧苯甲酰-甘氨酸-OH、3-(3,4,5-三甲氧苯基)丙酸、2,3,4,5,6-五氟苯氧基乙酸、N-(2,4-二氟苯基)戊酰胺酸、N-十一酰-甘氨酸-OH、2-(4-氟代苯甲酰基)苯甲酸、5-三氟甲氧基吲哚-2-羧酸、N-(2,4-二氟苯基)二甘醇酰胺酸、Ac-L-Trp-OH、Tfa-L-苯基甘氨酸-OH、3-碘代苯甲酸、3-(4-正戊基苯甲酰)丙酸、2-苯基-4-喹啉羧酸、4-辛氧基苯甲酸、Bz-L-蛋氨酸-OH、3,4,5-三乙氧基苯甲酸、N-月桂酰-甘氨酸-OH、3,5-双(三氟甲基)苯甲酸、Ac-5-甲基-DL-Trp-OH、2-碘代苯乙酸、3-碘代-4-甲基苯甲酸、3-(4-正己基苯甲酰)丙酸、N-己酰-L-苯丙氨酸-OH、4-壬氧基苯甲酸、4’-(三氟甲基)-2-联苯羧酸、Bz-L-苯丙氨酸-OH、N-十三酰-甘氨酸-OH、3,5-双(三氟甲基)苯乙酸、3-(4-正庚基苯甲酰)丙酸、N-庚酰(Hepytanoyl)-L-苯丙氨酸-OH、4-癸氧基苯甲酸、N-(α,α,α-三氟间甲苯基)邻氨基苯甲酸、尼氟灭酸、4-(2-羟基六氟异丙基)苯甲酸、N-豆蔻酰-甘氨酸-OH、3-(4-正辛基苯甲酰)丙酸、N-辛酰-L-苯丙氨酸-OH、4-十一烷氧基苯甲酸、3-(3,4,5-三甲氧苯基)丙酰-甘氨酸-OH、8-碘代萘甲酸、N-十五酰-甘氨酸-OH、4-十二烷氧基苯甲酸、N-棕榈酰-甘氨酸-OH以及N-硬脂酰-甘氨酸-OH。
20.按照权利要求1的化合物,其中MOI选自蛋白质、肽、寡糖、抗体、抗原、药物和合成的有机分子。
21.一种组合物,该组合物包含一对下式的化合物Tms-L-MOI其中,Tms是一个可由质谱法检测的有机基团,该基团包含碳原子、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子;L是一个使得包含Tms的部分可以与化合物的剩余部分切割开来的有机基团,其中包含Tms的部分包含一个官能团,当对化合物进行质谱分析时该官能团支持单一的离子化电荷状态,并且该官能团选自叔胺、季铵以及有机酸;MOI是一个核酸片段,其中L在除MOI的3’末端之外的其他位置与MOI缀合;以及该对化合物具有不相同的Tms基团,并且除在一个碱基位置的碱基不相同外,具有相同的序列。
22.一种组合物,该组合物包含一对下式的化合物Tms-L-MOI其中,Tms是一个可由质谱法检测的有机基团,该基团包含碳原子、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子;L是一个使得包含Tms的部分可以与化合物的剩余部分切割开来的有机基团,其中包含Tms的部分包含一个官能团,当对化合物进行质谱分析时该官能团支持单一的离子化电荷状态,并且该官能团选自叔胺、季铵以及有机酸;MOI是一个核酸片段,其中L在除MOI的3’末端之外的其他位置与MOI缀合;以及该对化合物具有不相同的Tms基团,并且除在两个碱基位置的碱基不相同外,具有相同的序列。
23.按照权利要求21或者22之任一的组合物,该组合物包含多对上述化合物。
24.按照权利要求21或者22之任一的组合物,该组合物包含多对上述化合物,以及相等的多个固定在固相支持体上的不相同的核酸,其中这些多个核酸的每一个成员都具有确切地互补于每对化合物的一个成员的碱基序列。
25.一种组合物,该组合物包含多个具有下式的化合物Tms-L-X其中,Tms是一个可由质谱法检测的有机基团,该基团包含碳原子、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子;L是一个使得包含Tms的部分可以与化合物的剩余部分切割开来的有机基团,其中包含Tms的部分包含一个官能团,当对化合物进行质谱分析时该官能团支持单一的离子化电荷状态,并且该官能团选自叔胺、季铵以及有机酸;X是除核酸片段之外的MOI,并且这些化合物包含至少4种化合物,并且每一化合物都具有不相同的Tms基团。
26.按照权利要求25的组合物,其中化合物的数量至少是10个。
27.一个用于突变分析的试剂盒,该试剂盒包含多个容器,每一个容器包含一对下式的化合物Tms-L-MOI其中,Tms是一个可由质谱法检测的有机基团,该基团包含碳原子、至少一个氢和氟原子以及可有可无的选自氧、氮、硫、磷和碘的原子;L是一个使得包含Tms的部分可以与化合物的剩余部分切割开来的有机基团,其中包含Tms的部分包含一个官能团,当对化合物进行质谱分析时该官能团支持单一的离子化电荷状态,并且该官能团选自叔胺、季铵以及有机酸;MOI是一个核酸片段,其中L在除MOI的3’末端之外的其他位置与MOI缀合;这样该对化合物具有不相同的Tms基团,并且除在一个或两个碱基位置的碱基不相同外,具有相同的序列。
28.按照权利要求27的试剂盒,其中所说的多个至少是3个。
29.按照权利要求27的试剂盒,其中所说的多个至少是5个。
全文摘要
本发明提供了一种用于检测配体对的第一成员与第二成员的结合的方法,该方法包括以下步骤(a)在足以使第一成员与第二成员结合的条件和时间下,把一系列第一标记的成员与可能包含一个或多个第二成员的生物样品组合在一起,其中所说的标记与特定的第一成员相关且可由非荧光光谱测定法或者电位滴定法检测;(b)将未结合的成员与结合的第一和第二成员分离;(c)从所说的标记的第一成员切割标记;以及(d)由非荧光光谱测定法或者电位滴定法检测标记,并由此检测第一成员和第二成员的结合。
文档编号C07H21/00GK1515541SQ20041000278
公开日2004年7月28日 申请日期1997年1月23日 优先权日1996年1月23日
发明者J·范尼斯, J·C·特邦, J·J·豪伯特, J·T·默利甘, J 范尼斯, 特邦, 豪伯特, 默利甘 申请人:拉普吉恩公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1