控释组合物的制作方法

文档序号:3616399阅读:234来源:国知局
专利名称:控释组合物的制作方法
技术领域
本发明涉及可生物降解的化学品组合物,其中化学品、尤其至少一种油井化学品被吸附到粒状淀粉,尤其是颗粒淀粉上,从而提供适用于油田应用的稳定、控释配方。本发明进一步涉及制备这些组合物的方法。
背景技术
在各种基质上涂敷涂料材料是一种公知的技术,用于当恶化时控制或延迟该基质的释放。例如,拟用在地下石油回收操作的油井化学品的封装,使化学品与引入化学品的环境隔开,避免直接接触,从而保持化学品的完整性,并防止令人讨厌的附聚或反应,直到化学品可在所需的位置被释放。
各种化学品组合物惯常地在食品、化妆品、油漆、药物、个人护理、家庭用品,以及聚合物和油田工业中用作控释剂。常规的控释组合物典型地以胶囊剂的方式工作,它包括阿拉伯树胶、糊精、低粘度改性淀粉、阿拉伯半乳聚糖、金合欢胶、酪蛋白、明胶、羧甲基纤维素、龙须胶、刺梧桐、藻酸钠、单宁和纤维素。
增溶淀粉已被公开在油田封装技术中用作试剂。例如美国专利No.4704214描述了使用多糖和多元醇形成封装各种成分、特别是油田化学品用的基体。在此情况下,使多糖(该多糖可以是淀粉)增溶,形成一层环绕吸油聚合物的惰性膜。随后该膜熔化或缓慢溶解,从而释放出油溶胀的聚合物,然后在不阻塞油井钻孔的情况下封闭断面或大孔。范围广泛的油井化学品的封装还公开在美国专利No.5922652中,其中一种复合胶体(它可以是胶凝化淀粉)与水不溶混化学品液滴一起形成一层凝聚层。美国专利No.5546798公开了淀粉同溶胀粘土和密封剂(如碳酸钙)一起可用作水溶性的增稠剂,以便封装并因此保护油田芯样的完整性。这些形式的封装都要求在其封装配方中应用增溶淀粉或非颗粒淀粉。
软颗粒和硬颗粒的使用也都是在油田应用中使用的已知控释成分。正如美国专利No.5560439和No.5204183中所公开的,典型的颗粒是碳酸钙、粘土、尿素、聚乙酸乙烯酯粉末或乳状液。颗粒内往往与水溶性增稠剂例如聚乙二醇混合物、聚乙二醇或磺化弹性体聚合物一起用来作为填料或溶胀剂。尤其是,美国专利No.5628813公开了含颗粒物(如滑石、二氧化钛、硅石、粘土或石膏)的木素磺酸盐涂料的应用,其中颗粒物充当填料。木素磺酸盐涂料是一种拟保护薄的水可渗透的聚合物涂层的二级封装,它用于封装药物、农用化学品和油井化学品。对可改性以适用于许多环境,特别是油井应用的各种控释剂仍有持续的需求。
因此,现已发现粒状淀粉理想地吸附化学品,从而提供适于油田应用的稳定、控释的化学品组合物。
发明概述本发明涉及化学品,尤其至少一种油田化学品被吸收到粒状淀粉上的化学品组合物。本发明的粒状淀粉包括颗粒淀粉,和由其制备的耐久淀粉,较好是颗粒淀粉。
该化学品组合物的制备包括将化学品与粒状淀粉混合。可任选地向混合物中加入在控释配方中有用的添加剂。混合物也可任选地进行进一步处理,以便获得稳定的、自由流动的化学品组合物。
本发明的化学品组合物有利地是可生物降解的,尤其在油井应用中显示出良好的控释性能。
发明详述本发明涉及化学品,尤其是至少一种油井化学品被吸附到粒状淀粉上的控释化学品组合物。本发明进一步涉及获得这些组合物的方法及其应用方法。
使用淀粉作为油井化学品供给的一种载体比通常在该行业中使用的那些载体具有许多的优点。例如,淀粉可生物降解,并提供一种良好的环境形象。
此处所使用的术语淀粉粒状物拟包括具有高度有序结构的淀粉,其中包括颗粒淀粉和由其制备的耐久淀粉。
所有颗粒淀粉和面粉(其后称为“淀粉”)可适用于此且可衍生于任何天然来源。此处所使用的天然淀粉是一种同它在自然界中发现时一样的淀粉。衍生于植物的淀粉也是合适的,而所述植物可通过标准的育种技术(包括杂交、易位、反转、转化,或者任何其它基因或染色体工程方法,包括其各种变异)获得。另外,由人工突变和上述基因组合物的变体而培育的植物所衍生的淀粉在此处也是合适的,其中所述基因组合物的变体可通过突变育种的已知标准方法来产生。
淀粉的典型来源是谷物、块茎、根茎、豆科植物和水果。天然来源可以是玉米、豌豆、土豆、甘薯、香蕉、大麦、小麦、大米、西米、苋属植物、木薯淀粉、竹芋、美人蕉属植物、高粱及其蜡状或高度直链淀粉品种。此处所使用的术语“蜡状淀粉”拟包括含有至少约95wt%支链淀粉的淀粉,而术语“高度直链淀粉”拟包括含有至少约40wt%直链淀粉的淀粉。
保持其颗粒结构的转化产品可衍生于任何淀粉,其中包括由氧化、酶转化、酸解、热和/或酸性糊精化制备的流动性淀粉或低稠性淀粉,和/或剪切产品,在本发明中也是有用的。
尤其有用的是颗粒结构,所述颗粒结构通过酶或酸的作用“蚀坑”(pit),而留下仍然有序的结构,从而形成多孔性淀粉。使用业内众所周知的技术进行淀粉颗粒的酶解或酸解。所使用的酶量取决于酶,即酶的类型、来源和活性,以及酶的浓度、底物浓度、pH、温度、是否存在抑制剂以及改性的程度和类型。以下本发明将描述改性的类型。可调节这些参数,以优化淀粉颗粒“蚀坑”的性质和程度。
在本发明的控释应用中有用的另一种颗粒淀粉是耐久淀粉。耐久淀粉通常已知是在健康个体的小肠内不可能被吸收的淀粉。颗粒或粒状淀粉(如RS-2型(一种对胰α-淀粉酶的消化具有抗性的淀粉颗粒)和RS-4型(一种化学改性的淀粉,如乙酰化淀粉、羟烷基化淀粉或交联淀粉))是尤其合适的。然而,RS-3型耐久淀粉(通过淀粉的热/湿处理而形成的胶化(retrograded)的非颗粒淀粉)也适用于本发明,这是由于其从缔合直链淀粉的排列和缔合中产生的胶化或结晶水平高。在RS-3型淀粉的情况下,原来颗粒状态下存在的秩序已被与胶化直链淀粉相关的结晶秩序替代,所述胶化直链淀粉可在水中稍微溶胀,但不完全增溶。
这些类型的耐久淀粉是业内公知的且可列举美国专利No.US5593503(其中公开了制造颗粒耐久淀粉的方法)、美国专利No.5281276和5409542(这两篇专利公开了制造RS3型耐久淀粉的方法)以及美国申请序号60/157370(其中公开了高度耐久淀粉的形成)所公开的那些。在前述参考文献中公开了制造耐久淀粉的方法,其公开内容在此列为参考。
可通过用对淀粉的控释性能有贡献的任何试剂或试剂组合的处理来改性淀粉粒状物(包括颗粒和耐久淀粉在内),前提是改性不破坏淀粉的粒状本性。化学改性意在包括交联淀粉(包括用反应性聚合物交联粒状淀粉)。优选的反应性聚合物包括用醛或硅烷醇基团改性的淀粉。其它化学改性包括但不限于乙酰化和有机酯化淀粉、羟乙基化和羟丙基化淀粉、磷酰化和无机酯化淀粉、阳离子、阴离子、非离子和两性离子淀粉,和琥珀酸淀粉以及有取代的琥珀酸淀粉衍生物。优选的改性淀粉是取代度(“DS”)约可高达约1.5的淀粉乙酸酯,尤其是US5321132中公开的那些,从而改进与合成疏水材料的相容性。这样的改性是业内已知的,例如参见Modified Starches;Properties and Uses,Ed.Wurzburg,CRCPress,Inc.,Florida(1986)。另一特别合适的改性淀粉是淀粉琥珀酸辛烯酯铝盐。
其它合适的改性和制备粒状淀粉的方法是业内已知的且在美国专利No.4626288(其公开内容在此列为参考)中公开。在一个特别有用的实施方案中,通过使淀粉与链烯基环状二羧酸酐反应(根据美国专利No.2613206和No.2661349中公开的方法,其公开内容在此列为参考),或与环氧丙烷反应,更尤其是与辛烯基琥珀酸酐反应,从而使淀粉衍生化。
在选择合适的淀粉时,业内技术人员会注意其无渗漏地吸收和载带化学品的能力。这是重要的,因为化学品必须到达其目的地且不在沿途损失。例如,当使用油井化学品时,淀粉必须沿着管道或脐带式管线携载化学品直至其到达油井。因此淀粉必须在油田工业中所使用的输送介质(如有机、含水介质或MEG介质)中稳定。
业内技术人员会进一步注意该淀粉在其目的地释放化学品的能力。粒状淀粉有效地实现这一要求。当淀粉煮熟时,它释放出吸附的化学品。由于不同的淀粉有不同的胶凝化温度,可选择淀粉使得它在特定的应用中在所希望的选择温度下释放其化学品。
本发明的粒状淀粉(包括颗粒淀粉和耐久淀粉在内)可与化学试剂尤其油井化学品组合,形成本发明的控释化学品组合物。
按照本发明的油井化学品包括但不限于摩擦降低剂、腐蚀抑制剂、蜡抑制剂、水合物抑制剂、凝胶破坏剂、示踪剂、表面活性剂、污垢抑制剂、消泡剂、反乳化剂、倾点下降剂、杀生物剂、减阻剂、抗氧化剂、硫化氢清除剂、氧气清除剂、去油剂和沥青烯抑制剂。这样的化学品可以呈液体或固体形式。
污垢抑制剂意在包括但不限于磷酸盐、磷酸酯和无机磷酸盐,以及丙烯酸酯、马来酸酯和磺酸酯的共聚物。腐蚀抑制剂意在包括但不限于胺和多胺;杀微生物剂如醛或卤代丙酰胺。氧气清除剂意在包括但不限于亚硫酸氢钠。
也可使用其它油井试剂,如美国专利No.4670166(其公开内容在此列为参考)中所公开的试剂。另一类油井化学品是所谓的破坏剂,它随压裂液一起导入地下构造中,以降低该压裂液的粘度。这种破坏剂的实例包括但不限于过硫酸钠和过硫酸铵、α-和β-淀粉酶和葡糖苷酶以及如美国专利No.4506734(其公开内容在此列为参考)中公开的类似试剂。
尤其合适的油井化学品是腐蚀抑制剂、蜡抑制剂、气体水合物抑制剂和沥青烯沉积抑制剂。腐蚀抑制剂包括但不限于非季铵化的脂族长链烃基N-杂环化合物以及单-和二-烯键不饱和脂族基团。蜡抑制剂包括但不限于聚合物如聚乙烯,或共聚酯如乙烯醋酸乙烯酯共聚物、α-烯烃马来酸酯、富马酸聚酯,以及醋酸乙烯酯聚合物。气体水合物抑制剂可以是任何惯常的亲水水合物抑制剂,包括但不限于甲醇、乙醇、羟基醚、二元醇和氯化铵、氯化钠或氯化钙溶液。沥青烯抑制剂包括但不限于两性脂肪酸或琥珀酸烷酯盐。
本发明的控释化学品组合物可任选地包括另外的添加剂,所述添加剂改进控释或其本身被业内已知的其它封装介质所封装。可能的添加剂包括但不限于增塑剂、表面活性剂、填料、螯合剂、增稠剂、粒状物和其它典型的控释成分如明胶、阿拉伯树胶、玉米蛋白、大豆蛋白质和共聚物/聚合物如聚乙烯和聚氯乙烯。
淀粉使得本发明的组合物可用一步吸附工艺来制备。通过使所希望的油井化学品与淀粉粒状物混合,形成混合物,并在常温和常压下剧烈搅拌,就可以制备本发明的组合物。可能需要调节淀粉/化学品混合物所暴露的剪切量,以确保化学品被恰当地吸附到粒状淀粉上。
典型地,油井化学品与淀粉之比为约30∶70-80∶20,更尤其40∶60-60∶40。在可实施的情况下,在将化学品加入到淀粉粒状物中之前,首先熔化油田化学品,特别若它是在室温下呈固体的蜡抑制剂的情况下。任选地,在配方混合物中可以包括至少一种封装添加剂和/或溶剂。此外,可加入增重剂,使油井介质与组合物的重力分离降到最低限度。
也可任选地对配方混合物进行进一步的处理,以便获得具有控释性能的稳定的自由流动粉末。在获得自由流动粉末之后,然后任选地将封装的化学品组合物研磨到所希望的粒径,优选小于20微米。本发明的粒径应当大到足以在操作时能抑制吸入和防止粉化。
获得本发明控释化学品组合物用的任选处理包括但不限于使配方混合物进行诸如真空分批热加工、辊压、流化床加工、喷雾干燥和挤出之类的处理。这些加工处理对业内普通技术人员来说是公知的。处理的加工条件应当限于产生一种化学品组合物而其中淀粉仍保留其粒状结构的条件。
所得的化学品组合物以具有控释性能的可生物降解的、不发粘的、自由流动粉末形式存在。一旦释放出被吸附的化学品,淀粉将被含水相携带并排放到环境中。相反,在配方混合物中使用增溶淀粉会产生不适于在控释应用中使用的粘性混合物。
淀粉的选择控制释放性能。例如,更容易或在不太苛刻的条件下就破坏的淀粉将更快地使淀粉释放。典型地,未煮的淀粉在高温下破坏,从而当将其导入到含水或有机载体流体中时将被释放,迫使封装材料排出到液流中。然而,可配制淀粉,以便在淀粉会暴露的其它条件下将其释放。
本发明的组合物因此保护吸附材料,避免其与可能不相容和/或可溶介质(如油井流体)接触。淀粉使得可在一种介质中携载两种不相容(或相容)的油井化学品。与没有淀粉相比,淀粉还能在一次注射中负载更高的油井化学品,并能容易和安全地操作潜在危险的材料,使暴露受到限制。进而,吸附使得有可能使用那些本来闪点太低而不能离岸使用的材料。
自由流动的粉末当离岸使用时有比液体更好的操作特征。若在载体淀粉和油井介质之间存在高的表面张力或相界面,则颗粒淀粉的分散比精细粉末容易得多,且足够坚固,能够经受用来使该材料在载带介质中混合的剪切应力,即叶轮的作用。
下述实施例将进一步阐述和解释本发明,无论如何不应当认为是限制本发明。
实施例使用下述油井化学品Corrtreat 2001-29,一种水可溶的两性内铵盐基固体表面活性剂,用作腐蚀抑制剂,商购于TR Oil ServicesCorrtreat 2001-30,一种基于三巯基三嗪的固体腐蚀抑制剂,商购于TR OilServicesHytreat 569,乙二醇2-丁氧基乙醇丙-2-醇PV己内酰胺,用作动力学以致用水合物抑制剂,商购于TR Oil ServicesHytreat A560,季铵盐2-丁氧基乙醇二异丁基酮,用作抗附聚的水合物抑制剂,商购于TR Oil ServicesScaletreat 2001-26,一种磷酸盐基水溶性固体结垢抑制剂,商购于TR OilServicesScaletreat 2001-28,一种聚合物基水溶性固体结垢和腐蚀抑制剂,商购于TROil ServicesScaletreat 1020,一种与水互溶的三嗪液体硫化氢清除剂,商购于TR OilServicesTrosquat,一种液体的杀生物剂配方,商购于TR Oil ServicesWaxtreat 398,一种液体的EVA蜡抑制剂,商购于TR Oil ServicesWaxtreat 7302,一种液体的树脂基沥青烯/石蜡分散剂,商购于TR OilServices实施例1本实施例阐述了本发明可生物降解控释化学品组合物的制备方法。
将颗粒淀粉(150g,淀粉辛烯基琥珀酸酯,铝盐,商购于National Starch andChemical Company)加入到已在高于30℃的温度下熔化的倾点抑制剂XPC3147C(50g,Aldrich)中。在高剪切分散器(Torrence,#785049)中,在常温和常压下,以2000-4000rpm搅拌混合物。向混合物中加入另外的100g颗粒淀粉,再搅拌2分钟,形成精细的自由流动粉末。
实施例2本实施例阐述了含粒状淀粉的本发明化学品组合物比用增溶淀粉制备的化学品组合物优异。
将增溶淀粉(250g β-淀粉酶处理的3%辛烯基琥珀酸酐改性的蜡状玉米淀粉)加入到已在高于30℃的温度下熔化的XPC3147C(50g,Aldrch)中。在高剪切分散器(Torrence)中,在常温和常压下,以2000-4000rpm搅拌混合物。
所得固体手感发粘,且不象实施例1的优异自由流动粉末,用作控释化学品组合物是不能令人满意的。
实施例3本实施例阐述了使用水溶性油井化学品的本发明组合物。
用淀粉以1∶1的比例(50%负载在淀粉上)配制水溶性固体。将油井化学品溶解在环境水中,并在9000-10000rpm(Silverson L4RT)下均化1-2分钟。然后将淀粉加入到溶液中,并进一步在9000-10000rpm、20℃(Silverson L4RT)下均化混合物2-3分钟。该混合物喷雾干燥(40%固体,375°F入口温度,225°F出口温度,供料速率160ml/min和使用Bowen Lab Model(30”×36”)的双轮雾化),制备可流动的不发粘的组合物。
a.本实施例使用结垢抑制剂Scaletreat 2001-28作为油井化学品和Vulca90(一种在干燥淀粉上用表氯醇交联的玉米淀粉)进行。
b.本实施例使用腐蚀抑制剂Corrtreat 2001-29作为油井化学品和淀粉乙酸酯(1.5DS)蜡状玉米淀粉进行。
c.本实施例使用结垢抑制剂Scaletreat 2001-26作为油井化学品和微孔蜡状玉米淀粉进行,其中微孔蜡状玉米淀粉在干燥淀粉上使用0.3%葡糖淀粉酶消化,达到15%消化度。
实施例4本实施例阐述了使用水不溶性油井化学品的本发明组合物。
用淀粉以1∶1的比例(50%负载在淀粉上)配制水不溶的固体。将油井化学品加入到用3%辛烯基琥珀酸酐改性并转化成水流动度为40的蜡状玉米淀粉中。将混合物在9000-10000rpm,20℃(Silverson L4RT)下均化1-2分钟。将水加入到乳液中,该混合物进一步在9000-10000rpm、20℃(Silverson L4RT)下均化1分钟。然后向溶液中加入淀粉,该混合物进一步在9000-10000rpm、20℃(SilversonL4RT)下均化1-2分钟。该混合物喷雾干燥(35%固体,380°F入口温度,230°F出口温度,供料速率140-160ml/min,有使用Bowen Lab Model(30”×36”)的双轮雾化),制备可流动的不发粘的组合物。
a.本实施例使用蜡抑制剂Waxtreat 398作为油井化学品和微孔蜡状玉米淀粉进行,其中微孔蜡状玉米淀粉用0.3%葡糖淀粉酶消化30%,并用3%辛烯基琥珀酸酐改性且用1%硫酸铝交联。
b.本实施例使用沥青烯抑制剂Waxtreat 7302作为油井化学品和微孔蜡状玉米淀粉进行,其中微孔蜡状玉米淀粉用3%辛烯基琥珀酸酐改性,用0.3%葡糖淀粉酶酶处理,达到15%消化度。
c.本实施例使用硫化氢清除剂Scavtreat1020作为油井化学品和高度直链淀粉HYLONVII淀粉(商购于National Starch and Chemical Company)进行。
d.本实施例使用动力学水合物抑制剂Hytreat 569作为油井化学品和微孔(30%酶消化)蜡状玉米淀粉进行,其中微孔蜡状玉米淀粉用3%辛烯基琥珀酸酐改性,用0.3%葡糖淀粉酶进行酶化处理。
e.本实施例使用抗附聚水合物抑制剂Hytreat A560作为油井化学品和阳离子淀粉硅烷醇(0.3%氮,0.4%硅烷醇)进行。
实施例5本实施例进一步显示了本发明的代表性组合物。
将淀粉称重放入玻璃容器中。加入油井化学品的同时,使用设定在80的Powerstat,Variable Autotransformer(3PN168),Bodine Electric Co,Speed reducermotor(NSE-12R)混合5分钟,然后再混合5分钟,或者直到均匀。
a.所使用的淀粉是50∶50的西米和木薯淀粉DD的混合物,且所使用的油井化学品是Waxtreat 398。所使用的淀粉∶化学品之比是100∶40且负载为28.6%。
b.所使用的淀粉是用3%辛烯基琥珀酸酐和10%聚乙烯醇改性的高度直链(70%)玉米淀粉,和所使用的油井化学品是Waxtreat 398。所使用的淀粉∶化学品之比是100∶80且负载为44.4%。
c.所使用的淀粉是酶转化的(α-淀粉酶)麦芽糖糊精,和所使用的油井化学品是Trosquat。所使用的淀粉∶化学品之比是100∶38且负载为27.5%。
d.所使用的淀粉是酶转化的(α-淀粉酶)麦芽糖糊精,和所使用的油井化学品是Troscat。所使用的淀粉∶化学品之比是100∶38且负载为27.5%。
e.所使用的淀粉是高度直链(70%)的玉米淀粉,其中所述玉米淀粉被胶凝化,完全在酶作用下脱支并胶化,和所使用的油井化学品是Hytreat A560。所使用的淀粉化学品之比是100∶24且负载为19.3。
尽管具体参照某些实施方案描述了本发明,但要理解的是,普通技术人员可在下述权利要求的精神和范围内作出变化和修改。
权利要求
1.一种可生物降解的控释化学品组合物,其中包括粒状淀粉和至少一种化学品。
2.权利要求1的组合物,其中粒状淀粉是颗粒淀粉。
3.权利要求2的组合物,其中化学品是油井化学品。
4.权利要求3的组合物,其中油井化学品选自摩擦降低剂、腐蚀抑制剂、蜡抑制剂、水合物抑制剂、凝胶破坏剂、示踪剂、表面活性剂、污垢抑制剂、消泡剂、反乳化剂、倾点下降剂、杀生物剂、减阻剂、抗氧化剂、硫化氢清除剂、氧气清除剂、去油剂和沥青烯抑制剂。
5.权利要求2的组合物,其中淀粉是被蚀坑的淀粉。
6.权利要求2的组合物,其中淀粉是疏水化改性的淀粉。
7.权利要求6的组合物,其中淀粉是淀粉辛烯基琥珀酸酯。
8.权利要求1的组合物,进一步包含选自增塑剂、表面活性剂、填料、螯合剂、增稠剂、粒状物、明胶、阿拉伯树胶、玉米蛋白、大豆蛋白质以及聚乙烯和聚氯乙烯的聚合物/共聚物的添加剂。
9.权利要求1的组合物,其中选择淀粉,以便在选定的温度下释放化学品。
10.权利要求9的组合物,其中选择淀粉,以便在60℃下释放化学品。
11.制备权利要求1的组合物的方法,包括a.将粒状淀粉与化学品混合,形成一种混合物;和b.处理该混合物,得到自由流动的不发粘的粉末,前提是该处理使粉末状淀粉仍保留其粒状结构。
12.权利要求11的方法,其中粒状淀粉是颗粒淀粉。
13.权利要求11的方法,其中淀粉是被蚀坑的淀粉。
14.权利要求11的方法,其中淀粉是疏水化改性的淀粉。
15.权利要求14的方法,其中淀粉是淀粉辛烯基琥珀酸酯。
16.权利要求11的方法,其中该处理包括在常温和常压下搅拌配方混合物,直到获得自由流动的不发粘的粉末。
17.权利要求11的方法,其中该处理选自真空分批热加工、辊压、流化床加工、喷雾干燥和挤出。
18.权利要求11的方法,其中该混合物进一步包括选自增塑剂、表面活性剂、填料、螯合剂、增稠剂、粒状物、明胶、阿拉伯树胶、玉米蛋白、大豆蛋白质以及聚乙烯和聚氯乙烯的聚合物/共聚物中的添加剂。
19.一种组合物,包含至少两种权利要求1组合物的混合物,其中化学品彼此互不相容。
全文摘要
本发明涉及可生物降解的化学品组合物,其中,核心基质尤其油井化学品被吸附到粒状淀粉尤其颗粒淀粉上,从而提供适用于油田应用的稳定的控释配方。本发明进一步涉及获得这些组合物的制备方法。
文档编号C08L3/00GK1405221SQ0214346
公开日2003年3月26日 申请日期2002年8月7日 优先权日2001年8月7日
发明者M·C·克罗斯曼, J·A·罗斯, D·B·索拉雷克 申请人:国家淀粉及化学投资控股公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1